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ABSTRACT Networks had an increasing impact on modern life since network cybersecurity has become
an important research field. Several machine learning techniques have been developed to build network
intrusion detection systems for correctly detecting unforeseen cyber-attacks at the network-level. For
example, deep artificial neural network architectures have recently achieved state-of-the-art results. In this
paper a novel deep neural network architecture is defined, in order to learn flexible and effective intrusion
detection models, by combining an unsupervised stage for multi-channel feature learning with a supervised
one exploiting feature dependencies on cross channels. The aim is to investigate whether class-specific
features of the network flows could be learned and added to the original ones in order to increase the
model accuracy. In particular, in the unsupervised stage, two autoencoders are separately learned on normal
and attack flows, respectively. As the top layer in the decoder of these autoencoders reconstructs samples
in the same space as the input one, they could be used to define two new feature vectors allowing the
representation of each network flow as a multi-channel sample. In the supervised stage, a multi-channel
parametric convolution is adopted, in order to learn the effect of each channel on the others. In particular,
as the samples belong to two different distributions (normal and attack flows), the samples labelled as normal
should bemore similar to the representation reconstructed with the normal autoencoder than that of the attack
one, and viceversa. This expected dependency will be exploited to better disentangle the differences between
normal and attack flows. The proposed neural network architecture leads to better predictive accuracy when
compared to competitive intrusion detection architectures on three benchmark datasets.

INDEX TERMS Cybersecurity, intrusion detection, machine learning, computer security.

I. INTRODUCTION
The goal of a network intrusion detection system (IDS) is
to discover any unauthorised access to a computer network
by analysing traffic on the network for signs of malicious
activity. In particular, the network intrusion detection task
is to build a predictive model capable of distinguishing
between attack and normal network flows. Despite decades of
developments, existing IDSs still face challenges in improv-
ing the detection accuracy by reducing the false alarm rate
and detecting unknown attacks. To solve these problems,
many researchers have focused on developing IDSs that cap-
italise on machine learning methods [1]. The category of the
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machine learning methods [2]–[4] has achieved satisfactory
detection levels when sufficient training data are available
and sophisticated hand-engineering features are constructed
to achieve sufficient generality and detect both attack variants
and novel attacks.

With the advent of deep learning [5], the task of
hand-engineering features has been replaced with trainable
multi-layer networks that have shown impressive feature rep-
resentation capability for a wide range of applications. The
recent research trend is recognising deep learning as a def-
initely relevant approach in intrusion detection [1], [6], [7],
since (non-linear) multiple activation layers may actually
facilitate the discovery of effective patterns that keep their
effectiveness also under drifting conditions [8]. In this case,
raw input data are transformed into higher representations
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through consecutive transformations, with each transforma-
tion reaching a higher level of abstraction and complexity,
which is useful for gaining accuracy in the predictive task.

Among the different approaches in deep learning, autoen-
coder architectures have received significant attention.
An autoencoder is an artificial neural network (NN) consist-
ing of an encoder function mapping the input to a hidden code
and a decoder, producing the reconstructed input learned by
minimizing a loss function. As the hidden code commonly
reduces the size of data, autoencoders are mostly used for
saving the output of the encoder function for dimension-
ality reduction [9]–[13]. In any case, there are few studies
that learn autoencoders, which go beyond the dimensionality
reduction purpose, e.g., considering the output of the decoder
function for data denoising [14] or the loss (residual error)
for the anomaly detection [15]–[17]. In particular, the loss
has been recently used as a likelihood measure to assess the
outlier degree of a sample in intrusion detection tasks [18].

The aim of this paper is to enrich the representation of
the original flows with class-specific information, in order
to facilitate the disentanglement between the classes. In par-
ticular, we consider network flows represented as raw data
vectors and use autoencoders, in a novel manner, to derive
a multi-channel representation of each network flow. One
way to learn a new representation specific for each kind of
flow is to learn two autoencoders on normal and attack flows,
separately. Then they are used to restore each network flow
by applying the learned encoder and decoder in cascade to the
original data row representation. The restored representation
obtained represents a new description of the original flow.
In this way, each sample is represented as a multi-channel
sample spanned on three dimensions, that is, the original
raw vector, as well as the two vectors recovered through the
autoencoders.

We note that our use of autoencoders is novel with respect
to the common one in the literature. In fact, it leads to
augmenting the representation size instead of performing
dimensionality reduction. On the other hand, considering the
output of the decoder function of class-specific autoencoders
is not directed to operate simple data denoising. In principle,
the autoencoder trained on the normal samples can contribute
to recovering denoised normal samples, but it should see
attacks as anomalies, and so reconstruct them badly. Vicev-
ersa, the autoencoder trained on the attacks should denoise
the attacks, seeing the normal flows as anomalies and badly
reconstructing them. The idea is to exploit possible pat-
terns existing among the channels, given the class of flow.
Multi-channel deep feature learning can disclose these pat-
terns, which aids in intrusion detection.

Multi-channel feature learning has recently gained atten-
tion in both image analysis [19] and speech recognition [20],
where the learned model can be improved by captur-
ing possible correlation among multiple channels. In gen-
eral, multiple channels are dealt with through feature-level
fusion-based approaches [21] or decision-level fusion-based
strategies [22]. However, these approaches separate the

feature extraction from the dependency modelling—they
may under-utilise the ability of modelling dependencies.
To address this issue, we learn the intrusion detection model
through a convolution neural network, adopting many convo-
lutional filters to learn dependencies among multiple chan-
nels, i.e., learning channel-based representations. The ability
of deep learning in automatic feature extraction and fea-
ture selection reduces the difficulties in computing domain-
specific, hand-engineered features, and helps us to bypass the
traditional feature selection phase.

In short, the main contributions of this work are the
following:

1) An extensive discussion of the state-of-the-art works in
deep learning for intrusion detection.

2) The definition of a novel deep learning intrusion detec-
tion approach, named MINDFUL (MultI-chanNel Deep
FeatUre Learning for intrusion detection), that uses
autoencoders to derive a multi-channel representation
of flows, and resorts to a deep learning architecture
with convolutions, in order to disclose possible patterns
hidden in the adopted multi-channel representation.
To the best of our knowledge, this is the first study
that explores multi-channel deep feature learning in
intrusion detection.

3) An extensive evaluation of the effectiveness of the
proposed approach in intrusion detection for samples
collected in several benchmark datasets. The empiri-
cal study investigates the ability of our approach to
increase accuracy when compared to several competi-
tors taken from the recent literature on deep learning in
intrusion detection.

The paper is organised as follows. The related works
are presented in Section II. The formulated machine learn-
ing methodology is describe in Section III. The findings
in the evaluation of the proposed strategy are discussed
in Section IV. Finally, Section V refocuses on the pur-
pose of the research, draws conclusions and proposes future
developments.

II. RELATED WORKS
The recent literature on network security proves how
the advances made in machine learning have led the
problem of intrusion detection to a more challenging
level of study and relative computational solutions to an
improved level of performance [23]. Neural network archi-
tectures, and more generally deep learning, offer a deter-
minant contribution, thanks to the opportunity to deal with
high-dimensionality and non-linearity that are typical of
network-related data. They make classical intrusion detection
systems perform poorly, since trainable multi-layer networks
achieve higher feature representation capabilities than sophis-
ticated hand-engineering features constructed by classical
approaches. In fact, to deal with network data complex-
ity, classical intrusion detection systems commonly per-
form complex data transformations to obtain highly qualified
training data. One possibility is offered by the methods of
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feature selection and feature extraction. In the first cate-
gory, we find works focused on the identification of an
optimal feature subset of the original features, e.g. rank-
ing methods based on Chi-square statistical significance test
or fuzzy rough set theory. In the second category, we can
collocate techniques such as principal component analy-
sis (PCA) and linear discriminant analysis (LDA). Their
main characteristic is defining a low-dimensional space that
fully takes the correlation between features into consider-
ation, although they require manual experience and data
pre-processing skills [24], [25] and perform linear combi-
nations only. We find few attempts in the literature, which
adopt an opposite approach, that is, projecting data into a
higher-dimensional space, where only the kernel-basedmeth-
ods are applicable [26].

Deep learning approaches represent a valid alternative
because they have a good potential for achieving effective
data representation. The superiority of the accuracy perfor-
mance of deep learning in intrusion detection applications
is already proved in [7], [27]. In this section, we focus on
autoencoders and convolutional neural networks, as they are
more related to the method proposed in this paper.

A well-consolidated research stream has focused on the
use of neural autoencoding models to lower the high
dimensionality of original raw data in favour of com-
pressed representations that exclude features prone to
mis-classification [10]–[13], [28]. Stacked autoencoders are
also considered in combination with traditional classifiers
(e.g., SVM, K-NN, Gaussian Naive-Bayes) [29]. In addition,
Zeng et al. [30] adopt stacked autoencoders, in which the
compressed output of an autoencoder is used as the input of
the autoencoder in the next layer.

Ali and Li [31] study the specific task of DDoS attack
detection by combining the features produced by a hierar-
chy of autoencoders, which are then unified according to a
weighting schema in Multiple Kernel Learning. Li et al. [32]
try to increase the intrusion detection rate by combining
pre-trained Restricted Boltzmann Machines, used as autoen-
coders, with a fine-tuning phase performed after the decod-
ing operation. However, experimental results of this study
prove that the Deep Belief Network model without autoen-
coders can perform even better than configurations integrat-
ing autoencoders. A common aspect in the above mentioned
works is that complex autoencoders pay the price of several
stages of training, resulting in making the whole method
inefficient, without stably improving the attack detection
capabilities [29]. In addition, they all train the autoencoders
on the entire training set and focus on the dimensionality data
reduction purpose.

Recent studies have explored the possibility to com-
bine auotencoders, finalised to the dimensionality reduction,
with non-neural methods, finalised to the construction of
new features able to make inter-dependencies between class
and features explicit. In [33], the authors propose a multi-
perspective vectorized representation built with both a fea-
ture generalization step and a feature memorization step.

The feature generalization step converts raw input features
into dense vectors through a sparse autoencoder. Thememori-
sation step accounts for feature interactions extracted through
cross-product feature transformations. This is different from
our method, since in [33] correlations are pre-extracted as
a part of the feature extraction step, while in our method
correlations are directly extracted cross channels in the clas-
sification step.

Andresini et al. [18] have recently investigated the use
of autoencoders for both feature augmentation and anomaly
detection. They propose a two-stepped intrusion detection
deep learning algorithm. In the first step, a deep neural net-
work is trained on an input feature space extended with a new
attribute measuring the loss (residual error) of an autoencoder
that reconstructs the training samples. In the second step,
an autoencoder is used as an anomaly detector to refine
classifications. In both steps, autoencoders are trained from
class-normal samples only. Again this is different from our
method presented here, although we also use autoencoders
to synthesise new feature spaces. However, in [18], a single
autoencoder is trained from normal samples only, while in our
method two autoencoders are trained from normal samples
and attack samples separately. In [18], one new feature is
synthesised considering the loss, while in our method we
consider autoencoders to define two new feature vectors
arranging a multi-channel representation of the samples.

The idea of constructive new features has also been
investigated in [34], where the authors try to unearth the
class-discriminating ability of the original feature space by
creating new feature spaces through the marginal density
ratios of the class estimations. This is a direct projection of the
input space, which, therefore, could inherit the data sparsity,
as well as the noisy data. However, this method does not
use deep learning architectures. In addition, it trains separate
classifiers (SVMs) from the distinct feature spaces and merge
decisions through an ensemble. This means that possible
correlations a cross various feature spaces are ignored during
the classifier learning in [34].

Research investigating deep learning in intrusion detection
has recently focused on using Convolution Neural Networks
(CNNs). These are a family of robust, popular neural net-
works designed to process input data stored in arrays. They
are commonly considered where there is spatial or temporal
ordering in input data. Therefore, to learn 2-dimensional
CNNs in intrusion detection, network flows must be mapped
into 2D image arrays, expressing latent characteristics of
input data within a 2D data representation [35], [36]. To this
aim, Li et al. [35] describe a quantization method to convert
the value of each numeric feature into an 8-digit binary
pixel. The input representation built with this method is
finally processed as the input of two popular CNNs, that is,
ResNet50 [37] and GoogLeNet [38]. Kim et al. [36] illus-
trate a RGB-like approach, that outperforms the one in [35].
This input representation is processed in combination with
GoogLeNet Inception V3 [38]. However, these approaches,
representing features as pixels, assume unconfirmed spatial

53348 VOLUME 8, 2020



G. Andresini et al.: Multi-Channel Deep Feature Learning for Intrusion Detection

TABLE 1. List of symbols.

relations between features that depend on the order in which
they are processed.

In the other-hand, Lopez et al. [26] use 1-dimensional
CNNs with vector-like data. However, their study com-
putes convolutions on original data without accounting for
autoencoders.

Recently, Sharma et al. [39] adopted a CNN architecture
to process software binaries as matrix-like data, by scanning
them along one dimension. They argue that this solution
leads to accuracy and efficiency gain compared with existing
solutions for malware detection tasks (malicious software
or benign software). Their idea is similar to the one we
propose. In fact we deem it unnecessary to scan the network
flows along 2-dimensions, as one should do with the real
images, and we read the matrix vector-by-vector from top to
bottom. Contrary to our work, however, Sharma et al. [39]
propose representing sequences of vectors (software binaries)
in the form of single-channel matrices, while we rely on the
combined use of raw data with class-discriminating features,
which motivates the use of multi-channel CNNs.

III. THE PROPOSED METHOD
In this section we describe MINDFUL—the multi-channel
deep learning method we propose to deal with the problem
of network intrusion detection. It combines an unsupervised
approach for multi-channel feature construction—based on
two autoencoder NNs—with a supervised one exploiting
cross-channel feature correlations. The list of symbols used
to describe the method is reported in Table 1.

A. AUTOENCODERS
Differently from classical multi layer perceptrons (MLPs),
an autoencoder is a particular NN trained to attempt to copy
its input to its output [40]. In particular, it can be viewed as
being composed of two functions: an encoder f—mapping
the input vector x to a hidden representation h via a deter-
ministic mapping h = f (x), parameterized by θf—and a
decoder g—mapping back the resulting hidden representation

h to a reconstructed vector in the input space x̂ = g(h),
parameterized by θg.

Usually the functions g and f correspond to two different
NNs combined in a single one, whose parameters {θf , θg}
are simultaneously learned by minimizing a loss function
L(x, g(f (x)) = L(x, x̂), penalising x for being dissimilar from
x̂ such that Lse(x, x̂) = ||x− x̂||2.

In this paper, we use class-specific autoencoders for fea-
ture learning, transforming a single-channel sample into a
multi-channel one.

LetD = {(xi, yi)}Ni=1 be a set of N training samples, where
each xi ∈ RD is a row vector corresponding to an input sam-
ple defined overD features, and yi is the corresponding binary
label denoting a normal or an attack sample. Furthermore, let
X = [x1, . . . , xN ]> ∈ RN×D denote the data matrix of N
D-dimensional random variables x ∈ RD.
We denote with Xn

= X|yi=n, resp. X
a
= X|yi=a, the

subset of samples in X, whose label is normal, resp. attack.
The samples in Xn and Xa could then be separately used to
learn two independent autoencoders gn · fn, denoted as zn, and
ga · fa, denoted as za.

Since the activation produced by the top layer in the
decoder network corresponds to a reconstructed vector in the
same input space, the idea is to consider it as new learned
features. In particular, each autoencoder can be employed to
build a new feature vector x̂ = g(f (x)) ∈ RD from a sample x.
These features may then be considered to transform a single-
channel sample to a multi-channel one by concatenation.
Hence, each sample xi ∈ RD could be replaced by the

multi-channel sample:

x′i = [xi, x̂ni , x̂
a
i ]
>
∈ RD×3,

where x̂ni = gn(fn(xi)) and x̂ai = ga(fa(xi)) are the recon-
structed representations of the single-channel sample xi, thus
leading to the extended multi-channel representation X′ =
[x′1, . . . , x

′
N ]
>
∈ RN×D×3.

In this way, the sample xi is enriched with information
synthesised by exploiting both the normal and the attack
autoencoder.When the samples belong to two different distri-
butions, samples xi, labelled as normal should bemore similar
to the representation x̂ni than that of x̂

a
i , or ||xi− x̂

n
i ||

2 < ||xi−
x̂ai ||

2, and viceversa. This conjecture has been experimentally
validated in Section IV-D.1.

The aim now is to exploit, in the supervised step, the effect
of one channel on each of the others, in order to better
disentangle the differences between the two classes. As we
will see in the next section, a solution to learn a representation
among the three channels is to adopt a (1× 1) convolutional
filter—a cross-channel parametric convolution. This is also
why the learned representations have been concatenated in
RD×3—a 3-channel representation—and not in R3D, by just
increasing the number of features.

B. CONVOLUTIONAL NEURAL NETWORKS
A Convolutional Neural Network (CNN) [41] is a specialised
kind of NN used for processing data with grid-like topology,
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such as images or sequences. A CNN is able to produce
a good internal representation of the world by successfully
capturing (spatial and/or temporal) dependencies (e.g. edges,
colours, gradient orientation) in data through the application
of relevant filters [42].

Typically a CNN consists of alternating convolutional
layers and spatial pooling layers. The name ‘‘convolutional
neural network’’ indicates that the network employs a mathe-
matical operation called convolution [40]—a specialised kind
of linear operation. A convolution is a dot-product opera-
tion between a grid-structured set of weights and similar
grid-structured inputs drawn from different spatial localities
in the input volume [43]. A convolutional layer builds a
feature map f by linear convolutional filters followed by a
nonlinear activation function σ as:

fijk = σ (w>k xij),

where (ij) is the position in the feature map, xij denotes the
input patch—receptive field—centered at the point (ij), and
k is the channel index in the feature map.

Usually a convolutional layer is followed by an additional
layer that performs a local averaging and a sub-sampling,
by both reducing the resolution of the feature map and dimin-
ishing the sensitivity of the output to shifts and distortion [44].
The purpose of this operation, called pooling, is to achieve
spatial invariance by reducing the resolution of the feature
map, preserving important information and discarding irrele-
vant details [45].

For two-dimensional data, such as images, the convolu-
tions in a 2D CNN occur with multi-dimensional filters,
scanning through the data dimensions from left to right and
from top to bottom, in order to capture the high-level features
from the input image.

Restricting the size of the filter to 1, thus using (1 × 1)
2D convolutions, we may obtain a dimensionality reduc-
tion/increase in the filter dimension as happens in the
Google Inception module [46], as opposed to a (k × k)
convolution, making a reduction in the spatial dimension.
Furthermore, since they include the use of a non-linear acti-
vation, this makes them dual purpose. The same Network-
in-Network approach, proposed in [47] to increase the
representational power of neural networks, when applied to
convolutional layers can be viewed as a (1 × 1) convo-
lutional layer. In particular, a (1 × 1) convolution should
have the effect of combining existing information in the
channel dimension to obtain more abstract channel-wise
information.

C. 1D CONVOLUTIONAL NEURAL NETWORKS
1D CNNs have been recently used in several domains like
process mining [48], remote sensing [49], wind predic-
tion [50], medical image processing [19] or malware detec-
tion [39]. 1D CNNs process 1-dimensional input vectors, like
sequential data, and the filter in the convolution slides along
one dimension only.

Restricting the size of the filter to 1 in a 1D convolutional
layer, like in a (1 × 1) 2D convolutional layer, has the effect
of a non-linear reduction/increase of the number of channels.

Now the idea is to exploit a 1D convolution, in order
to increase the cross channel information. In particular,
as reported in Figure 1, the 3-channel representation X′,
obtained as previously described, is input to a 1D convolu-
tional layer with filter size equal to 1. Using a number of
filters greater than three, we are able to increase the number
of non-linear cross-channel dependencies.

In particular, given a sample x′i = [xi, x̂ni , x̂
a
i ]
>
∈ RD×3,

the receptive field of the 1D convolution is represented
by x′i,j,:, and each filter k computes the signal fi,j,k in the
feature map as:

fi,j,k = σ (w>k x
′
i,j,: + bk ),

with weights and bias wk ,bk ∈ R3, and σ a non-linear
activation function. The channels of each feature in x′i,j,: are
convolved with the same shared weights and mapped to the
feature map with a non-linearity. Adopting K filters in the
convolutional layer leads to a transformation of a sample in
RD×3 to a feature map in RD×K .

An alternative solution could be to concatenate the learned
features in the space R3D instead of in RD×3, and then input
them to a fully connected layer. However, the topology of the
input is completely ignored in a fully connected layer [44]—
the output of the training is not affected by the order of the
input features. Hence, with this alternative, we may lose both
the channel-based ordering and the possibility to learn new
cross-channel features.

The output of the 1D convolutional layer is then flattened
and dealt with as the input to two stacked fully-connected
layers (FC), computing the output classification probabilities
using a final softmax layer. The overall architecture of our
proposed MINDFUL model is reported in Figure 1. The pseu-
docode of MINDFUL is described in Algorithm 1

IV. EMPIRICAL STUDY
We consider three benchmark datasets, described in
Section IV-A, in order to evaluate the effectiveness of the
intrusion detection methodology implemented in MINDFUL.
Each dataset includes both a labelled training set—processed
to learn the intrusion detection model—and a testing set—
considered to evaluate the intrusion detection ability of the
trained model. Specifically, we analyse the performance
of MINDFUL along the various accuracy metrics presented
in Section IV-C. These metrics are commonly considered
in cybersecurity for the evaluation of intrusion detection
systems. The implementation details of the deep learning
architecture adopted in this experimental study are illustrated
in Section IV-B, while the results, achieved on each dataset,
are discussed in Section IV-D. In particular, the presentation
of the results is organised as follows. First, we evaluate how
the two autoencoders, computed on the normal/attack training
samples separately, disclose knowledge that may contribute
to separate attacks from normal flows (see Section IV-D.1).
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FIGURE 1. Architecture of MINDFUL. The architecture takes as training samples X as input. The normal
samples are used to learn the first autoencoder zn (top-left) and the attack samples are used to learn
the second autoencoder za (bottom-left). The two autoencoders are used for each training sample x, both
normal and attack samples — in order to return the reconstructed features x̂n and for x̂a. These new
features are used to build a new augmented dataset that is used as input to a 1-CNN neural network
(right).

Algorithm 1 Multi-Channel Deep Learning Method for
Network Intrusion Detection
Data:

D : set of training samples {(xi, yi)}Ni=1 with
yi ∈ {attack, normal}
X : data matrix of single-channel samples x ∈ RD

Result:
(zn, za, model) : the learned intrusion detection model

1 begin
/* Autoencoder training */

2 zn← trainAutoencoder(Xn)
3 za← trainAutoencoder(Xa)

/* Compute reconstructed vectors
using the autoencoders zn and za
*/

4 foreach x∈X do
5 x̂ni ← zn(xi)
6 x̂ai ← za(xi)
7 x′i = [xi, x̂ni , x̂

a
i ]
>

/* CNN training */
8 model ← train1DCNN(X′)
9 return zn, za, model

Second, we analyse the effectiveness of MINDFUL along the
components of the adopted deep learning architecture (see
Section IV-D.2). Finally, we discuss the evaluation results
that are reported in the recent intrusion detection literature

and which have been achieved by processing the datasets also
considered in our study (see Section IV-D.5).

A. DATASET DESCRIPTION
A summary of the characteristics of the datasets considered
in this evaluation is reported in Table 2.
• KDDCUP991 was introduced in the KDDTools Compe-
tition organised in 1999. This is a benchmark dataset that
is commonly used for the evaluation of intrusion detec-
tion systems also in recent studies [51]–[53]. It contains
network flows simulated in a military network environ-
ment and recorded as vectors of 42 attributes (6 binary,
3 categorical and 32 numerical input attributes, as well
as 1 class attribute). The original dataset comprised a
training set of 4.898.431 samples and a testing set of
311.027 samples. As reported in [54], the testing set
collects network flows belonging to 14 attack families,
for which no sample is available in the training set.
We note that this simulates a zero-day attack condition.
To keep the cost of the learning stage under control,
the original dataset comprises a reduced training set,
denoted as 10%KDDCUP99Train, that contains 10% of
the training data taken from the original dataset. In this
study, we consider 10%KDDCUP99Train for the learn-
ing stage, while we use the entire testing set, denoted
as KDDCUP99Test, for the evaluation stage.2 We note

1http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
210%KDDCUP99Train and KDDCUP99Test are populated with

the data stored in kddcup.data_10_percent.gz and corrected.gz at
http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
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TABLE 2. Dataset description. For each dataset we report: the number of attributes, the total number of network flow samples collected in the dataset,
the number of normal network flows (and their percentage on the total size) and the number of attacking flows (and their percentage on the total size).

that this experimental scenario, with both 10%KDD-
CUP99Train and KDDCUP99Test, is commonly used in
the literature (e.g. [32], [55], [56]). In addition, the entire
dataset is imbalanced in both the training and testing set,
where the percentage of attacks is higher than that of
normal flows (80.3% vs 19.7% in the training set and
80.5% vs 19.5% in the testing set).

• UNSW-NB15 dataset3 was created by the IXIA Perfect-
Storm tool4 in the Cyber Range Lab of the Australian
Centre for Cyber Security (ACCS). This is a hybrid
dataset that includes the realistic modern normal activ-
ities and the synthetic contemporary attack behaviour
extracted from network traffic monitored in 2015 [57].
The dataset has recently been used in the evaluation
of various intrusion detection approaches [26], [36],
[55], [58]. It consists of one training set and one testing
set, which comprise network flow samples, stored as
the vectors of 43 attributes (2 binary, 3 categorical and
37 numerical input attributes and 1 class attribute). The
dataset, that is quite balanced in the training set, is a little
imbalanced in the testing set, where the percentage of
attacks is slightly higher than the percentage of normal
flows (68.1% vs 31.9%).

• CICIDS20175 was collected by the Canadian Institute
for Cybersecurity in 2017. This dataset contains nor-
mal flows and the most up-to-date common attacks,
which resemble the true real-world data (PCAPs). It also
comprises the results of the network traffic analysis,
performed using CICFlowMeter with the labelled flows
based on the timestamp, source and destination IPs,
source and destination ports, protocols and attack. The
original dataset was a 5-day log collected from Monday
July 3, 2017 to Friday July 7, 2017 [59]. The first
day (Monday) contained only benign traffic, while the
other days contained various types of attack, in addition
to normal network flows. Every network flow sample
is spanned over 79 attributes (18 binary and 60 cat-
egorical input attributes and 1 class attribute) [59].

3https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/

4https://www.ixiacom.com/products/perfectstorm
5https://www.unb.ca/cic/datasets/ids-2017.html

We note that this dataset is commonly used in the evalu-
ation of anomaly detection approaches with the learning
stage performed on the first day [60], [61]. However,
a few recent studies have considered these data also
in the evaluation of classification approaches, as we
do in this paper [36], [56], [62]. In our experimental
study, we consider the training and testing sets built
according to the strategy described in [36]. So, we build
one training set with 100K samples and one testing set
with 900K samples. Both training and testing samples
are randomly selected from the entire 5-day log. For the
creation of both the training and testing set, we have used
the stratified random sampling, in order to select 80%
of normal flows and 20% of attacks, as in the original
log. This dataset is imbalanced in both the learning stage
and the evaluation stage. In fact, the number of normal
network flows is significantly higher than the number of
attacks (80% vs 20%). We note that this resembles the
common set-up of an anomaly detection learning task
that often occurs in a network.

B. IMPLEMENTATION DETAILS
The proposed methodology has been implemented in Python
3.7 using the Keras 2.36 library with TensorFlow7 as back-
end. The source code is available online.8

For each dataset, we have conducted a hyper-parameter
optimization using the tree-structured Parzen estimator algo-
rithm as implemented in the Hyperopt library [63], by using
20% of the training set as the validation set.We chose the con-
figuration of the parameter that achieved the best validation
loss. The hyper-parameters and their corresponding possible
values are reported in Table 3. Data have been scaled using
the Min-Max scaler.

The autoencoders have been defined with three layers.
These layers include 40 × 10 × 40 neurons, in KDDCUP99
and UNSW-NB15 datasets, and 50 × 10 × 50 neurons in
CICIDS2017. A dropout layer is placed before the decode
layer, in order to perform data regularisation and prevent
the overfitting. For the autoencoders, the mean squared error

6https://keras.io/
7https://www.tensorflow.org/
8https://github.com/gsndr/MINDFUL
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FIGURE 2. Reconstruction error analysis (KDDCUP99 dataset): normal and attack flows reconstructed with the autoencoders trained on the normal
flows (zn) and the attacks (za), respectively. Figures 2(a) and 2(b) show the box plots of the reconstruction errors (RE) of the training samples, while
Figures 2(c) and 2(d) show the box plots of the reconstruction errors of the testing samples.

TABLE 3. Hyperparameter search space for both the autoencoders and
classifier.

(mse) has been used as the loss function. The classical recti-
fied linear unit (ReLu) [64] has been selected as the activation
function for each hidden layer, while for the last layer the
Linear activation function has been used.

As regards the classifier, the architecture consists of a
1D convolutional layer and three fully-connected layers. The
network takes samples of size (D × 3) as input and predicts
a Bernoulli probability. The input sample is transformed by
the 1D convolutional layer with 64 filters into a feature
map of size (D × 64), that is processed by the following
fully-connected layer of size 320, 160 and 2, respectively. The
output probabilities are obtained using the softmax activation
function in the last layer. The ReLu activation function has
been used in all the other layers. In order to perform data reg-
ularisation, a dropout layer follows each layer in the network.
For this architecture, weights are optimised byminimising the
binary-cross entropy as the loss function.

The networks are trained with mini-batches by back-
propagation, and the gradient-based optimisation is per-
formed using the Adam update rule [65]. The weights are
initialized following the Xavier scheme. Furthermore, a max-
imum number of epochs equal to 150 has been set, retain-
ing the best models, using an early stopping approach that
achieves the lowest loss on a validation set.

C. EVALUATION METRICS
The overall performance of the proposed approach is mea-
sured by analysing both the accuracy and F-score of the
intrusion detection models learned. While the accuracy is the
ratio of flows correctly labelled, the F-score is the harmonic
mean of precision and recall, where the precision measures
the ability of an intrusion detection system to identify only
the attacks, while the recall can be thought as of a system’s
ability to find all the attacks. Mathematically, the precision

is calculated as the ratio of the attacking flows correctly
labelled by the intrusion detection algorithm to all attacking
flows labelled at each independent configuration parameter
set. The recall is calculated as the ratio of the attacking flows
correctly labelled by the algorithm to all flows which are
actually attacking. The higher the F-score, the better the bal-
ance between precision and recall achieved by the algorithm.
On the contrary, the F-score is not so high when one measure
is improved at the expense of the other.

D. RESULTS
The performance of the proposed approach is measured
reporting the residual error of autoencoders, as well as the
accuracy and the F-score of intrusion detection models.

1) AUTOENCODER ANALYSIS
We start by investigating how the autoencoders can actually
disclose knowledge that contributes to separating attacking
flows from normal ones. To this aim, we explore how the
autoencoders zn (trained on normal samples) and za (trained
on attack samples) can accurately reconstruct samples from
both classes.

Figures 2, 3 and 4 show the box plots of the reconstruction
errors, computed as ||x− x̂||2, when both autoencoders zn and
za are used to reconstruct both normal and attack flows x as
x̂ in each considered dataset.
These plots confirm that the autoencoder zn is, in gen-

eral, more accurate in reconstructing the normal samples
than in reconstructing the attack ones. On the other hand,
the opposite behaviour is evident for za. This behaviour,
that was expected on the training samples (as shown
in Figures 2(a), 2(b), 3(a), 3(b), 4(a) and 4(b)), has
also been evident on testing samples (as shown in
Figures 2(c), 2(d), 3(c), 3(d), 4(c) and 4(d)), although the
testing samples comprise network flows unseen at training
time.

In general, the result of this analysis supports the idea
that the knowledge enclosed in the autoencoders, sepa-
rately trained from the normal and attack samples, allows
us to introduce information that can contribute to separating
the two classes. Furthermore, this result also suggests that
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FIGURE 3. Reconstruction error analysis (UNSW-NB15 dataset): normal and attack flows reconstructed with the autoencoders trained on the normal
flows (zn) and the attacks (za), respectively. Figures 3(a) and 3(b) show the box plots of the reconstruction errors (RE) of the training samples, while
Figures 3(c) and 3(d) show the box plots of the reconstruction errors of the testing samples.

FIGURE 4. Reconstruction error analysis (CICIDS2017 dataset): normal and attack flows reconstructed with the autoencoders trained on the normal
flows (zn) and the attacks (za), respectively. Figures 4(a) and 4(b) show the box plots of the reconstruction errors (RE) of the training samples, while
Figures 4(c) and 4(d) show the box plots of the reconstruction errors of the testing samples.

our methodology can better benefit from autoencoder-based
number of samples in both classes.

2) ABLATION STUDY
We proceed with the analysis by studying how a) the addi-
tional information synthesised through the autoencoders,
b) the multi-channel input representation and c) the con-
volutions can jointly contribute to gain accuracy in the
intrusion detection model learned by MINDFUL. To this
purpose, we consider four architecture configurations as
baselines. These are in turn defined by removing the autoen-
coders’ information, the multi-channel input representa-
tion, or the convolutions from the whole architecture of
MINDFUL. In particular, we consider the following baseline
architectures:
• NN: it consists of the last 3 fully-connected layers of
the MINDFUL architecture, and it processes as input
samples xi ∈ RD, represented in the original feature
space, i.e., X(D)

→ FC(320)→ FC(160)→ FC(2);
• ANN: it accounts for the autoencoders’ information.
The architecture is the same as NN, but taking as input
samples xi ⊕ x̂ni ⊕ x̂ai ∈ R3D, where the output of
the autoencoders zn and za has been row-concatenated,
i.e., X(3D)

→ FC(320)→ FC(160)→ FC(2). In partic-
ular, we want to see how much is added by considering
the autoencoders’ information wrt NN;

• CNN: it works like NN, taking as input samples
xi ∈ RD, but adding a 1D convolutional layer before the
fully-connected layers, i.e., X(D)

→ Conv1D(64) →
FC(320)→ FC(160)→ FC(2);

• ACNN: it is like CNN, but the same as ANN it takes as
input the row-concatenated autoencoders’ information,
i.e., X(3D)

→ Conv1D(64)→ FC(320)→ FC(160)→
FC(2). In particular, it is like MINDFUL, but the outputs
of the autoencoders zn and za are not concatenated to
obtain a multi-channel representation.

The baselines listed above have been run with the same
parameter set-up (e.g. activation function, number of neurons
and loss function) adopted to run MINDFUL (see the descrip-
tion in Section IV-B).

We evaluate the performance of MINDFUL, NN, ANN,
CNN and ACNN in terms of accuracy and F-score. The
results, reported in Table 4 for all the datasets, show that
MINDFUL outperforms all its baselines. This confirms the
effectiveness of combining autoencoders, convolutions and
multi-channel input, in order to gain accuracy in an intru-
sion detection task. In particular, we note that autoencoders
decoupled from convolutions cannot guarantee an over-
all improvement of the performance. On the other hand,
putting autoencoders aside, a convolution dense layer com-
monly improves the intrusion detection accuracy. In any
case, the highest overall accuracy and the highest F-score
are commonly achieved when convolutions are applied to
data enriched with autoencoders. Concerning that point,
our analysis highlights that the superiority of MINDFUL
due to convolutions depends on the ability of comput-
ing convolutions on multiple channels (instead of a sin-
gle channel built by concatenation), looking for features
across the original variables and their autoencoder-based
counterparts.
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TABLE 4. Accuracy and F-score measured on KDDCUP99Test, UNSW-NB15Test and CICIDS2017Test: MINDFUL, NN, ANN, CNN and ACNN. The best results
are in bold.

TABLE 5. Number of parameters (weights) learned with each neural network on KDDCUP99Train, UNSW-NB15Train and CICIDS2017Train: MINDFUL, NN,
ANN, CNN and ACNN.

In addition, we analyse the number of parameters esti-
mated with MINDFUL, NN, ANN, CNN and ACNN. The
results reported in Table 5 show that the higher accuracy
of MINDFUL is commonly achieved at the expenses of the
higher number of parameters to estimate. In any case, we note
that ACNN, which is the runner-up in the accuracy analy-
sis reported in Table 4 for KDDCUP99 and UNSW-NB15,
requires a higher number of parameters than MINDFUL.

3) VARYING THE NUMBER OF FILTERS
To explore in depth the advantages of using convolutions
on multi-channel input, we have performed an additional
experiment, where MINDFUL has been run by varying the
number of filters in the convolutional layer. Let us consider
that filters can be seen as pattern detectors, as they multi-
ply the number of channels. Our point of view is that the
higher the number of filters, the better the pattern detected
by augmenting the data volume along the channel dimension
through the convolutions and, consequently, the higher the
accuracy of the intrusion detection model. To validate this
point of view, we analyse the F-score by varying the number
of filters in the convolutional layer. Figure 5 plots the F-score
of a simplified version of the MINDFUL architecture, as it is
measured on both the training set and testing set of UNSW-
NB15, by varying the number of filters of the convolutional
layer among 3, 5, 7, 9 and 11. After the flatten layer, we used
a single fully-connected layer, of varying size, before the last
layer, in order to have architectures with the same number of
parameter. When three filters were considered, 256 neurons
were used in the fully-connected layer, arriving at 68 neurons

FIGURE 5. F-score of MINDFUL measured on both the training set and
testing set of UNSW-NB15 by varying the number of filters among 3, 5, 7,
9 and 11.

in the case of 11 filters. This plot confirms our point of view,
as it shows that the F-score computed on the training set,
jointly with the F-score computed on the testing set, increases
with the number of filters.

4) IMBALANCED SCENARIO
We analyse the robustness of the proposed approach to
the imbalance phenomenon. For this analysis, we consider
the CICIDS2017 dataset, where data have already been
collected in an imbalanced scenario (the expected one in
many real world networks), consisting of 80% normal flows

VOLUME 8, 2020 53355



G. Andresini et al.: Multi-Channel Deep Feature Learning for Intrusion Detection

TABLE 6. Accuracy and F-score measured on KDDCUP99Test, UNSW-NB15Test and CICIDS2017Test: MINDFUL is compared to several competitors reported
in the recent literature. The accuracy metrics of the competitors are collected from the reference papers. The best results are in bold. ‘‘-’’ denotes that no
value is reported in the reference paper for the considered metric.

FIGURE 6. F-score of MINDFUL NN, ANN, CNN and ACNN by varying the
amount of attacks in both CICIDS2017.

and 20% attacks. We stress this condition by considering
new trials on this dataset, which comprise all normal flows
and a sample of attacks both in the learning stage and in
the evaluation stage. We consider five trials with 100%
(baseline), 75%, 50%, 25% and 5% attacks, respectively.
The F-score of MINDFUL, NN, ANN, CNN and ACNN,
collected by diminishing the number of attacks, is plot-
ted in Figure 6. We note that diminishing the number of

attacks (and consequently stressing the imbalanced condi-
tion), the F-score of all compared algorithms decreases.
In any case, MINDFUL continues outperforming its baselines
independently of the balance degree in the training set.

5) COMPETITOR ANALYSIS
To complete this evaluation, we compare the accuracy perfor-
mance achieved by MINDFUL to that of several competitors
selected from the recent state-of-the-art literature. A sum-
mary of the characteristics of the considered competitors is
reported in Table 6 (column 3). For all the methods in this
comparative study, we consider the accuracy and the F-score
as provided in the reference studies.

The accuracy performance of the compared methods is
reported in Table 6 (columns 4 and 5) for all the datasets.
These results show that MINDFUL commonly outperforms
its competitors (including the competitors with autoencoders
and/or CNN architectures). The only exception is observed
with the performance of the competitor named DNN 4 Lay-
ers on KDDCUP99Test. This competitor learns its intru-
sion detection model with a deep neural network along with
text representation methods to capture the contextual and
sequence-related information from system calls. It comprises
optimisation procedures to find the optimal parameters and
the optimal topology of the network. Therefore, the higher
accuracy of DNN 4 Layers on KDDCUP99Test can be due
to the text representation methods, as well as to the topology
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and parameter setting of the architecture determined. In any
case, we note that the performance of DNN 4 Layers has also
been evaluated on UNSW-NB15Test in [55]. In this dataset,
MINDFUL significantly outperforms DNN 4 Layers. Hence,
the superiority ofDNN 4 Layers is restricted to the evaluation
made on KDDCUP99Test, so it may also depend on the
specific characteristics of this dataset. On the other hand,
MINDFUL is the runner-up in KDDCUP99Test measuring
accuracy and F-score, close to DNN 4 Layers.

V. CONCLUSION
In this study, we have presented a network intrusion detec-
tion methodology, named MINDFUL. This learns an intru-
sion detection model through a Convolution Neural Network,
trained on a multi-channel representation of network flows.
Two autoencoders are learned from normal and attack flows,
respectively. They are used to supply the original feature
vector representation of the network flows with the feature
vectors built with these autoencoders. The main idea is that
patterns may exist across the channels, formed by the original
features and their autoencoder-based counterparts. Disclos-
ing these patterns may aid the intrusion detection model in
separating attack flows from normal ones. To select features
disclosing such patterns we use a convolutional layer with a
multi-channel filter, so that it is forced to learn the possible
dependencies among the channels. Representations disclosed
from convolutions are processed through fully-connected lay-
ers that look for further relationships among these patterns.

We evaluate the effectiveness of the proposedmethodology
using three benchmark datasets that contain network flows
collected in different years and scenarios. The experimental
analysis confirms the effectiveness of the proposed method-
ology. In addition, it proves that MINDFUL gains accuracy
compared to several, recently defined, state-of-the-art com-
petitors. In particular, our experiments have proved that our
methodology is more robust than its baselines also for imbal-
anced data.

One research direction is investigating a strategy to supply
new training samples, in order to reduce the gap between the
majority andminority class—when this gap exists. This could
also be an important task in an adversarial environment, to be
considered as one of the significant directions for futurework.

Another limitation of the proposed methodology is that
it does not give detailed information on the structure and
characteristics of the attacks. Therefore explainable artificial
intelligence may be an additional research direction here.

Finally, we consider the opportunity of extending the pro-
posed methodology, in order to classify intrusion categories
(e.g. Probe, DoS, R2L or U2R). In principle, this is possi-
ble by using separate autoencoders, learned from samples
belonging to distinct intrusion categories, as multiple chan-
nels of the methodology described in this paper.
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