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ABSTRACT This paper considers unsupervised dimensionality reduction of multi-view data, where locality
preserving canonical correlation analysis and a new locality-preserving canonical correlation analysis are two
typical effective methods. However, they ignore the global structure while considering the local structure
of data, and are sensitive to noises because of the relationship of neighbors based on the Euclidean
distance. In this paper, we propose a novel multi-view dimensionality reduction method: multiset canonical
correlations analysis based on low-rank representation. Our model introduces the cross-view similarity
matrix to consider the correlation of all different points in cross views, which makes it not only preserve
the local structure but also the global structure of data. And the cross-view similarity matrix is constructed
by using low-rank representation, which can make the model more robust. In addition, a parameter β is
introduced to adjust the importance of the correlation of different sample points, enhancing the generalization
ability for different datasets. Experiments on four multi-view datasets show our proposed method has better
performance than the related methods.

INDEX TERMS Unsupervised learning, multi-view learning, dimensionality reduction, similarity matrix,
global structure.

I. INTRODUCTION
In the fields of machine learning and pattern recognition, due
to the advancement of data acquisition technology, a large
number of data are presented in various forms, which forms
multi-view data [1]–[4]. For example, an object can be
described in various forms such as its shape, color or texture.
Multi-view data has more feature information than single
view data, and the feature information in each view tends to
be complementary [5]. This makes the study of multi-view
data more meaningful than single view data [6].

Because multi-view data is often represented in high-
dimensional feature space, directly learning multi-view data
not only cause a huge waste of time and cost, but also leads
to ‘‘dimension disaster’’, so multi-view data learning is also
facing more severe challenges [7]–[10].

Dimensionality reduction of multi-view data is one
of the approaches to overcome this difficulty and has
attracted widespread attention from researchers [11]–[14].
Dimensionality reduction can be divided into supervised,
semi-supervised and unsupervised [15]. This paper is
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concerned with the last one, which is formulated as fol-
lows: Suppose that m views for N patterns are given as{
X (i)
= (x(i)1 , x

(i)
2 , . . . , x

(i)
N ) ∈ RDi×N

}m
i=1

, where Di denotes
the dimension of the i-th view. We hope to find m suitable
projection matrix

{
P(i) ∈ RDi×d

}m
i=1 (d < Di) to reduce the

dimensions of multi-view data into a lower common dimen-
sion by

{
P(i)T X (i)

}m
i=1.

Among recent methods [16]–[20] the most representa-
tive is to apply the canonical correlation analysis (CCA)
[16], [21], [22] to two views of data. The idea of
CCA is to extract the canonical variables P(1)TX (1) and
P(2)TX (2) from the mean-normalized two-view data X (1)

=[
x(1)1 , . . . , x(1)N

]
and X (2)

=

[
x(2)1 , . . . , x(2)N

]
by maximiz-

ing (P(1)TX (1),P(2)TX (2)), where (P(1)TX (1),P(2)TX (2)) rep-
resents the correlation between P(1)TX (1) and P(2)TX (2).
Or equivalently by maximizing

∑N
i=1 (P

(1)T x(1)i ,P(2)T x(2)i ).
Clearly the quantity

∑N
i=1 (P

(1)T x(1)i ,P(2)T x(2)i ) can be con-
sidered as the overall correlation and (P(1)T x(1)i ,P(2)T x(2)i )
as the correlation of the same sample point in cross views.
So CCA is to seek the maximum sum of the correlation of the
same sample point in cross views after dimension reduction.
Later the above CCA for two-view data is extended to deal
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with multi-view data, e. g. MCCA [23]. Note that both CCA
and MCCA are only suitable for dimensionality reduction
of samples with linear distribution [24], [25]. In order to
break the limitation, kernel function is introduced. Firstly,
the sample points are mapped nonlinearly into the high-
dimensional kernel function space, so that the sample points
with non-linear distribution are transformed into the ones
with linear distribution. Then, the dimensionality reduction
of the sample points is carried out through the traditional
CCA in the kernel function space. This is the well-known
kernel canonical correlation analysis (KCCA) [26]. However,
the KCCA also has obvious shortcomings: for all sample
points in each view, the uniform non-linear mapping makes
KCCA difficult to find a suitable and effective kernel func-
tion. Even if such a kernel function exists, the generalization
ability of the model will be greatly weakened [27]. Thus
in order to protect local manifold structure, Sun and Chen
proposed the locality preserving canonical correlation anal-
ysis (LPCCA) [27] for two-view data, which is based on
locally linear embedding(LLE) [28] and locality preserving
projections(LPP) [29] for single view data. LPCCA embeds
near-neighbor information by deleting non-neighbor points
when calculating correlation matrix with CCA, protecting the
local manifold structure of sample points. It divides data into
multiple small neighborhoods where the data in each small
neighborhood can be considered as linearly distributed [28].
However, when calculating the overall correlation it only con-
siders the correlation of the same sample point in cross views,
but does not require the correlation of different sample points
in cross views. As a further improvement, a new locality-
preserving canonical correlation analysis (ALPCCA) [30]
was proposed by Wang and Zhang, when calculating overall
correlation, not only the correlation of the same point in
cross views, but also the correlation of the neighbors in cross
views is taken into account. This method adds local neighbor
information of the data to the model so that the local mani-
fold structure of the data can be maintained. Compared with
LPCCA, ALPCCA improves the discriminating ability of the
model to some extent [30]. And because ALPCCA chooses
‘‘add strategy’’ instead of ‘‘delete strategy’’, it is more effec-
tive than LPCCA to solve ‘‘small sample problem’’. However,
both LPCCA and ALPCCA only pay attention to the protec-
tion of the local structure of the sample points and neglect
the global structure of the data. And their embedding of local
neighbors in the model depends on the Euclidean distance
between neighbors, which is sensitive to noisy data [31].
In addition, because the fixed parameters are used to generate
the similarity matrix, these methods cannot generate adaptive
neighborhoods and greatly reduce the generalization ability
of the model. Moreover, both LPCCA and ALPCCA are
suitable for dimensionality reduction of two views, but not
for the case of more than two views.

In this paper we propose a novelmulti-view data dimension
reduction method: multiset canonical correlations analysis
based on low-rank representation (LRMCCA), which pro-
tects both the local structure and the global structure

of sample points. First, we perform low-rank representa-
tion [32]–[37] of the data, spontaneously learn the low-rank
representationmatrix of the sample points in each view. Then,
to maintain the global structure [35] of the data, we construct
the cross-view similarity matrix by using the low-rank rep-
resentation matrix, so that we can get the similarity between
the sample points, including all sample points in cross views.
Moreover, our LRMCCA is robust to noisy data due to using
low-rank representation instead of using Euclidean distance
to learn similarity matrix.

Our LRMCCA has the following three characteristics:
• The cross-view similarity matrix is introduced to reflect
the structure property of both the local and the global of
data.

• The cross-view similarity matrix is constructed through
low-rank representation instead of Euclidean distance.
This makes our model not sensitive to the outliers and
no need to select neighbor points.

• A parameter β is introduced to adjust the importance
of the correlation of different sample points in cross
views to enhance the generalization ability for different
datasets.

The rest of the paper is organized as follows: Multiset
canonical correlation analysis and low-rank representation
are reviewed in Section II in brief. In Section III, our LRM-
CCA are presented, as well as the solution and complexity
analysis of our method. A series of comparative experiments
are shown to verify the advantages of our LRMCCA in
Section IV. Section V gives the summarization, including the
possibility to extend our LRMCCA to supervised and semi-
supervised learning.

II. USEFUL WORKS
Four works, MCCA, LPCCA, ALPCCA and LRR are useful
for our study later.

A. MCCA
Consider the multi-view dimensionality reduction problem
proposed in Section I, MCCA seeks m projection matrix{
P(i) ∈ RDi×d

}m
i=1 (d < Di), to maximize the sum of

the pairwise correlation between the transformed variables{
P(i)TX (i)

}m
i=1 under some constraints. More precisely, it con-

structs the optimization problem:

max
P(1),P(2),...,P(m)

m∑
i=1

m∑
j=1,j 6=i

P(i)TC (ij)P(j)

s.t.
m∑
i=1

P(i)C (ii)P(i) = I (i = 1, . . . ,m) (1)

where I ∈ Rd×d is identity matrix, C (ii)
=
∑N

k=1 x
(i)
k x

(i)T
k =

X (i)X (i)T is the within-set scatter matrix in the i-th views,
C (ij)

=
∑N

k=1 x
(i)
k x

(j)T
k = X (i)X (j)T (i 6= j) is the between-

set scatter matrix between the i-th and j-th view. The solution
can be obtained by solving a generalized eigenvalue prob-
lem [23].
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B. LPCCA
LPCCA [27] is applied to solve two-view feature extraction
problem. It aims at exploring locality correlations between
different views. LPCCA is defined by the following optimiza-
tion problem:

max
P(1),P(2)

tr

P(1)T N∑
i,j=1

S(1)ij

(
x(1)i −x

(1)
j

)
S(2)ij

(
x(2)i −x

(2)
j

)T
P(2)


s.t. P(1)T

N∑
i,j=1

S(1)ij

(
x(1)i − x

(1)
j

)
S(1)ij

(
x(1)i − x

(1)
j

)T
P(2) = I

P(2)T
N∑

i,j=1

S(2)ij

(
x(2)i −x

(2)
j

)
S(2)ij

(
x(2)i −x

(2)
j

)T
P(2)= I (2)

where the weight values S(1)ij and S(2)ij are calculated by:

S(1)ij =


exp

(
−

∥∥∥x(1)i −x
(1)
j

∥∥∥2
2
/t
)

if x(1)i and x(1)j

are the neighbors
0 otherwise

(3)

S(2)ij =


exp

(
−

∥∥∥x(2)i −x
(2)
j

∥∥∥2
2
/t
)

if x(2)i and x(2)j

are the neighbors
0 otherwise

(4)

where t > 0 is a given parameter.

C. ALPCCA
ALPCCA [30] not only considers the correlation of the same
points in cross views, but also the correlation of the neighbors
in cross views. ALPCCA is defined by the following opti-
mization problem:

max
P(1)T ,P(2)T

tr
(
P(1)T C̄12P(2)T

)
s.t. P(1)TC11P(2)T = I

P(1)TC22P(2)T = I (5)

where C̄12 =
∑N

i=1 x
(1)
i

(
x(2)i

)T
+
∑N

i=1
∑N

j=1 S
(1)
ij x

(1)
i

(
x(2)j

)T
+
∑N

i=1
∑N

j=1 S
(2)
ij x

(1)
i

(
x(2)j

)T
C11 = X (1)X (1)T and C22 =

X (2)X (2)T .
In (5), S(1)ij and S(2)ij are defined by (3) and (4), respectively.

D. LRR
Suppose that there is a dictionary A=[a1,a2, . . . , aN ] ∈
RD×N . Low-rank representation finds a matrix Z ∈

RN×N with the lowest rank such that the data set X =
{x1, x2, . . . , xN } ∈ RD×N can be represented as a linear
combination AZ . The corresponding optimization problem
can be written as

min
Z
‖Z‖∗ , s.t. X = AZ (6)

where ‖‖∗ represents the nuclear norm of a matrix. In real
applications, we often choose sample matrix X as dictionary
matrix A.The above problem become

min
Z
‖Z‖∗ , s.t. X = XZ (7)

or approximately

min
Z ,E
‖Z‖∗ + α ‖E‖` , s.t. X = XZ + E (8)

where α is a positive parameter, E is a sparse additive
error matrix. For noisy data sets, low-rank representation has
strong denoising ability. For different distribution of noise in
datasets, ‖E‖` can be selected as ‖E‖2F , ‖E‖1 and ‖E‖2,1
etc. [32].

III. MULTISET CANONICAL CORRELATIONS ANALYSIS
BASED ON LOW-RANK REPRESENTATION
Now we are in a position to show our LRMCCA. Its model
and the working procedure are given in Section A and FIG-
URE 1 respectively, and the corresponding solution and the
complexity analysis are shown in Sections B and C.

A. LRMCCA MODEL
Consider the multi-view dimensionality reduction problem
proposed in Section I. Previous studies have shown that LRR
mentioned in Section II can spontaneously learn the low-rank
representation coefficient matrix [38], [39]. And based on the
coefficient matrix, the cross-view similarity matrix of sample
points can be constructed, which does not need to select the
global parameters as K-nearest neighbor algorithm [40] does,
but can automatically obtain the adaptive neighborhood of
sample points. Furthermore, it captures the local structure and
the global structure of data.
More precisely, the optimization problem of low-rank rep-

resentation of sample points X (i) in the i-th view is as follows:

min
Z (i),E (i)

∥∥∥Z (i)
∥∥∥
∗

+ α

∥∥∥E (i)
∥∥∥
`

s.t. X (i)
= X (i)Z (i)

+ E (i) (i = 1, . . . ,m) (9)

The solution Z (i) can be used to get the lower dimension
sample points

X̃ (i)
= X (i)Z (i), i = 1, . . . ,m (10)

with denoising property. It can also be used to give the
similarity [35] between the k1-th sample point and the k2-th
sample point in the i-th view

s(i)k1k2 =
1
2

(∣∣∣z(i)k1k2 ∣∣∣+ ∣∣∣z(i)k2k1 ∣∣∣) (11)

Thus, we get the symmetric similarity matrix S(i), i =
1, . . . ,m of sample points under all views.

Furthermore, the similarity between the k1-th sample point
in the i-th view and the k2-th sample point in the j-th view
should be

w(ij)
k1k2
=

1
2
(s(i)k1k2 + s

(j)
k1k2

) (12)
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FIGURE 1. The working procedure of LRMCCA. Firstly, the low-rank representation coefficient matrix is learned in each view.
Secondly, the cross-view similarity matrix is constructed by using the coefficient matrix. Finally, the cross-view similarity matrix
is used to find the projection matrices to maintain the local and global structure in low-dimensional space.

In this way, we can get the cross-view similarity matrix

W (ij)
=

w
(ij)
11 · · · w(ij)

1N
...

. . .
...

w(ij)
N1 · · · w(ij)

NN

 , i, j = 1, . . . ,m (13)

between the sample points of any cross views.
It should be noted that the element values representing

the similarity between sample points does not have a spe-
cific physical meaning as distance does, it is only a relative
value. So the similarity matrix S(i) should be normalized:
divide each element in S(i) by its maximum element A(i) =
max S(i), i = 1, . . . ,m. This yields

W (ij)
=

1
2

(
S(i)

A(i)
+
S(j)

A(j)

)
, i, j = 1, . . . ,m. (14)

Now let us turn to our ultimate goal to find m projec-
tion matrices

{
P(i) ∈ RDi×d

}m
i=1. We emphasize to protect

the global structure of data by considering the correlation
of all sample points in cross views, yielding our model—the
optimization problem with the variables

{
P(i) ∈ RDi×d

}m
i=1

max
P(1),P(2),...,P(m)

m∑
i=1

m∑
j=1,j 6=i

P(i)T C̃ (ij)P(j)

s.t.
m∑
i=1

P(i)T C̃ (ii)P(i) = 1 (i = 1, . . . ,m) (15)

C̃ (ij)
=

N∑
k=1

x̃(i)k x̃
(j)
k + βw

(ij)
k1k2

N∑
k1=1

N∑
k2=1

x̃(i)k1 x̃
(j)
k2

= X̃ (i)X̃ (j)T
+ βX̃ (i)W (ij)X̃ (j)T

= X̃ (i)X̃ (j)T
+ βX̃ (i)H (ij)X̃ (j)T

= X̃ (i)(I + βH (ij))X̃ (j)T (16)

where X̃ (i)
=

[
x(i)1 , . . . , x

(i)
N

]
and W (ij) are given by (10) (11)

and (14) respectively, C̃ (ii) represents the within-set scatter
matrix in the i-th view, H (ij) is the weight matrix obtained
by zeroing the diagonal elements of matrix W (ij) such that
there is no duplication, β is a positive parameter to adjust
the importance of the correlation of different sample points
in cross views. Note that the correlation of different sample
points in cross views after dimension reduction cannot be
greater than that of the same point, so β should lie between
0 and 1. And the model degenerates into MCCA when β=0.

B. LRMCCA SOLUTION
The solutions of optimization problem (9) and problem (15)
are considered here. In problem (9), let `=2,1, this means we
adopt L2,1-norm for the matrix E (i), introduce variable J to
separate the objective function and get:

min
Z (i),E (i),J (i)

∥∥∥Z (i)
∥∥∥
∗

+ α

∥∥∥E (i)
∥∥∥
2,1

s.t. X (i)
= X (i)Z (i)

+ E (i)

Z(i)
= J (i) (i = 1, . . . ,m) (17)
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TABLE 1. Description of the benchmark datasets.

TABLE 2. Highest classification accuracy (mean%) of different methods on four datasets.

FIGURE 2. Sample images of one identity in datasets.

Using augmented Lagrange function leads to

L(i)(Z (i),E (i), J (i),M1,M2, µ)

=

∥∥∥J (i)∥∥∥
∗

+ α

∥∥∥E (i)
∥∥∥
2,1

+ tr(MT
1 (X

(i)
− X (i)Z (i)

− E (i)))+ tr(MT
2 (Z

(i)
− J (i)))

+
µ

2
(
∥∥∥X (i)

− X (i)Z (i)
− E (i)

∥∥∥2
F
+

∥∥∥Z (i)
− J (i)

∥∥∥2
F
) (18)

whereM (i)
1 ,M

(i)
2 is a Lagrange multiplier, µi > 0 is a penalty

parameter and i = 1, . . . ,m is a view label. Problem (18)
is an unconstrained optimization problem and can be solved
by iteration alternatively. In fact, fixing the variable Z (i),E (i),
consider the objective function L(i) as a function of J (i) and
get the new J (i). Then fix other variables in the same way to
get the new Z (i),E (i) in turn [32], [41].

Now turn to the solution of problem (15). Similarly to
that of MCCA, it can also be transformed into a generalized
eigenvalue decomposition problem

0 C̃ (12)
· · · C̃ (1m)

C̃ (21) 0 · · · C̃ (2m)

...
...

. . .
...

C̃ (m1) C̃ (m2)
· · · 0



P(1)

P(2)
...

P(m)



= λ


C̃ (11)

C̃ (22)

. . .

C̃ (mm)



P(1)

P(2)
...

P(m)

 (19)

The above discussion leads to the following algorithm:

C. COMPLEXITY ANALYSIS
We now briefly analyze the major computational complex-
ity of our proposed LRMCCA, which is composed of two
parts. The first part is mainly to minimize the nuclear norm
in Step 1, which costs at most O(D3) (Suppose D =

max{D1,D2, . . . ,Dm} and D > N ) in each iteration through
SVD operation. So, the computational complexity is at most
O(mtD3), where t denotes the loops in the inner iteration
of Step 1. Fortunately, according to [32], [42], the SVD
could be speeded up to O(mtd2D) where d is usually a small
one. In the second part, the computational complexity of
covariance matrices is O(m2) in Step 5. Therefore, the major
computational complexity of LRMCCA is O(mtd2D+ m2).

IV. EXPERIMENTS AND RESULTS
In this part, in order to show the performance of our
LRMCCA, we compare it with a series of state-of-art
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Algorithm 1 LRMCCA

Input: data matrices X (1),X (2), . . . ,X (m) parameters α, β.
Output: projection matrices P(1),P(2), . . . ,P(m)

Initialize:

Z (i)
= J (i) = 0, E (i)

= 0, M1 = 0, M2 = 0,

µ = 10−6, µmax = 106, ρ = 1.1, ε = 10−8.

1. while not converged do (1) Update J (i) by

J = argmin
1
µ

∥∥∥J (i)∥∥∥
∗

+
1
2

∥∥∥J (i) − (Z (i)
+M2/µ)

∥∥∥2
F
,

which is solved via the Singular Value Thresholding
(SVT) operator.
(2) Update Z (i) by
Z (i)
= (I + X (i)TX (i))−1(X (i)T (X (i)

− E (i)) + J (i) +
(X (i)TM1 −M2)/µ).
(3) Update E (i) by

E (i)
= argmin

αi

µ

∥∥∥E (i)
∥∥∥
2,1
+

1
2

∥∥∥E (i)

− (X (i)
− X (i)Z (i)

+M1/µ)
∥∥∥2
F
.

(4) Update the multipliers M1,M2 by

M1 = M1 + µ(X (i)
− X (i)Z (i)

− E (i)),

M2 = M2 + µ(Z (i)
− J (i)).

(5) Update the parameter µ by µ = min(ρµ,µmax).
(6) Check the convergence conditions:∥∥X (i)

− X (i)Z (i)
− E (i)

∥∥
∞
< ε and

∥∥Z (i)
− J (i)

∥∥
∞
< ε.

end while
2. Get the denoised sample point by (10).
3. Construct and normalize the matrix S(i) by (11).
4. Calculate the cross-view similarity matrixW (ij) by (14).

Set the weight matrix H (ij) to be the matrix that returns
the diagonal elements of W (ij) to zero.

5. Calculate two scatter matrices C̃ (ij) and C̃ (ii) by (16).
6. Calculate the projectionmatricesP(1),P(2), . . . ,P(m) by

(19).

multi-view data reduction methods, including MCCA, LRR
+ MCCA, MVPLS, coLPP, LPCCA, ALPCCA (LRR +
MCCA is used to denoise first, and then MCCA is used to
reduce dimension) in four groups of real multi-view data.
The nearest neighborhood classifier is used to obtain the
classification accuracy, and the classification accuracy is
used to evaluate the experimental results. Finally, the influ-
ence of parameters α, β on the experimental results is
analyzed.

A. DATASETS
We perform experiments on four datasets. The sample
images of one identity in each dataset and description
of the datasets are given in FIGURE 2 and TABLE 1
respectively.

1) AR DATASET
The AR dataset was created by Aleix Martinez and Robert
Benavente in the Computer Vision Center (CVC) of UAB.
It is the most widely used standard database. It contains over
2600 face images of 100 individual (50 men and 50 women),
including frontal facial images with different facial expres-
sions, lighting conditions and occlusions. We randomly
choose ten images of each person for training and the rest
images for testing, so that here are 1000 training images and
1600 testing images in total.

2) COIL-20 DATASET
The COIL-100 Dataset was created by Columbia Univer-
sity in 1996. It contains 100 object images, each containing
72 color information. We select 20 object images and convert
the color information of these 20 images into three view
features in three different ways. We randomly choose fifteen
images of each object for training and the rest images for
testing, so that here are 300 training images and 1140 testing
images in total.

3) ORL DATASET
The ORL face dataset contains 400 images of 40 different
people. It was created by Olivetti Research Laboratory in
Cambridge from April 1992 to April 1994. All images are
stored in PGM format and are all sized 112 × 92 pixels
with 256-level gray scale. Each image of the same person
is captured in different time, light, facial expressions (open
eyes/close eyes, smile/no smile) and facial details (glasses/no
glasses). All images were taken in a darker uniform back-
ground, with the front face (some with a slight sideslip).
We randomly choose six images of each person for training
and the rest images for testing, so that here are 240 training
images and 160 testing images in total.

4) YALE DATASET
It was created by Yale University Computer Vision and Con-
trol Center, it contains 165 GIF-formatted gray images of 15
volunteers. Each volunteer had 11 pictures, including changes
in light, expression and posture. In experiments, we randomly
choose seven pictures in each group for the training, and the
rest four pictures for the testing, so that there are 105 training
pictures and 60 testing pictures in total.

B. SELECTION OF PARAMETERS α AND β

The parameter α > 0 is used to balance the importance
of low rank and noise when the data is represented by a
low-rank matrix. In general, the choice of this parameter
depends on a priori knowledge of the error level of the
data. The parameter β ≥ 0 is used to balance the impor-
tance of the correlation of different sample points in cross
views when calculating overall correlation in dimensional-
ity reduction. Because the correlation of different sample
points in cross views cannot be greater than the correlation
of the same points, we should limit β to between 0 and 1.
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FIGURE 3. Classification accuracy on four datasets with different dimensions.

As we all know, it is very challenging to choose an appro-
priate parameter to achieve the highest classification accu-
racy. In the experimental part of this paper, we searched

within α = [1e-5,1e-4,1e-3,1e-2,1e-1,1,10,100] and β =
[1e-4,1e-3,1e-2,1e-1,1] by the method of five-fold cross-
validation in order to obtain optimal parameters α and β.
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FIGURE 4. Classification accuracy changes with different parameters on four datasets.

The highest classification accuracy of different methods is
given in TABLE 2, where the bold value is the maximum
value among all methods in each dataset. And the classifica-
tion accuracy with different dimensions is given in FIGURE
3. From these results, we can see that our method can lead
to better classification effect on four datasets after dimension
reduction.

C. EFFECTS OF PARAMETERS α AND β

In LRMCCA, the choice of α and β will affect the dimension
reduction effect of the model. In order to make the reader to
intuitively understand the influence of parameter changes on
the dimensionality reduction effect of the model, we respec-
tively give three-dimensional graphics of the classification
accuracy corresponding to each group of parameters in FIG-
URE 4.

V. CONCLUSION
This paper presents a novel dimension reduction model for
multi-view data: LRMCCA. It first uses the low-rank rep-
resentation to learn the cross-view similarity matrix, then
transforms the cross-view similarity matrix into the weight
matrix, and finally uses the weight matrix for calculating
the overall correlation. Thus the correlation between any two
sample points in cross views is reasonably considered. For the
data, this model protects not only its local structure, but also
its global structure. Moreover, the low-rank representation
is exploited, which generates adaptive neighborhoods. This
makes the model have better generalization and noise resis-
tance. Our numerical experiments validated the advantage of
our approach.

It should be interesting to extend our approach from
unsupervised learning to both supervised learning and semi-
supervised learning. For supervised learning, what we need to

do is to add label information to LRMCCA; the sample points
belonging to the same class should correspond to larger cor-
relation. For semi-supervised learning, the similarity matrix
obtained from the low-rank representation may be exploited
to deduce the possibility of belonging to each class. This extra
label information should be helpful in each view.
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