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ABSTRACT Safety critical systems in Advanced Driver Assistance Systems (ADAS) depend on multiple
sensors to perceive the environment in which they operate. Radar sensors provide many advantages and
complementary capabilities to other available sensors but are not without their own shortcomings. Perfor-
mance of radar perception algorithms still pose many challenges, one of which is in object detection and
classification. In order to increase redundancy in ADAS, the ability for a radar system to detect and classify
objects independent of other sensors is desirable. In this paper, an investigation of a machine learning based
radar perception algorithm for object detection is implemented, along with a novel, automated workflow
for generating large-scale virtual datasets used for training and testing. Physics-based electromagnetic
simulation of a complex scattering environment is used to create the virtual dataset. Objects are classified
and localized within Doppler-Range results using a single channel 77 GHz FMCW radar system. Utilizing
a fully convolutional network, the radar perception model is trained and tested. The training is performed
using a wide range of environments and traffic scenarios. Model inference is tested on completely new
environments and traffic scenarios. These simulated radar returns are highly scalable and offer an efficient
method for dataset generation. These virtual datasets facilitate a simple method of introducing variability in
training data, corner case evaluation and root cause analysis, amongst other advantages.

INDEX TERMS ADAS, radar, FMCW, machine learning, millimeter wave, object detection, radar,
YOLOv3.

I. INTRODUCTION
With autonomous vehicles on the horizon, performance
requirements for Advanced Driver Assistance Systems
(ADAS) are ever increasing. These systems will rely on
multiple sensors to achieve either fully autonomous or semi-
autonomous operation. Optical, radar, lidar and ultrasonic
sensors are commonly used, either independently or in some
form of sensor fusion to perceive the environment and traffic
participants.

Perception algorithms, used to interpret and understand
information from sensors, are critical in the operation of
autonomous vehicles. Many avenues of research are being
pursed in the development of these perception algorithms,
with one major area of research being in the application of
machine learning (ML). Optical systems using ML based
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perception algorithms are widely researched and already
deployed in commercial systems [1]–[3]. Compared with
optical systems, radar ML based perception algorithms are
not nearly as mature. Recent research has demonstrated the
feasibility of using ML to augment or replace traditional
signal processing to interpret radar returns [4]–[10].

Modern radar sensors used in ADAS build a representation
of the environment based on the observation of complex, scat-
tered radio waves. From these scattered radio waves, infor-
mation of an object’s distance and velocity can be derived.
The observation of these fields can be transformed into a
Range-Doppler (RD)map as shown in Fig. 1. This result gives
a visualization of all the scattered fields in terms of relative
velocity and distance from the radar. These RD maps contain
many ambiguous features that may not be easily identifiable
to a human observer. Traditional radar signal processing,
along with sensor fusion can be used to interpret these radar
returns and perceive the environment. In this paper, an ML
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FIGURE 1. Example single channel Range-Doppler map output from the
radar sensor, shown in colorized grayscale. Bounding box, and object
classification label used in training overlay onto the plot, outlines the
object of interest and location in Doppler/range.

based perception algorithm will be demonstrated that is used
to classify and localize traffic participants within these RD
maps.

Prior research by Zhang et al. [4] has shown that multi-
channel radar returns can be used to train a convolutional
neural network (CNN) to predict 3D object orientation of
a single vehicle. Heuel and Rohling [5], [6], demonstrated
the ability to use Doppler spectrum and range profiles to
classify pedestrians using 24 GHz radar. Like optical image
classification, the RD maps contain features that may be
unique and can be recognized by a CNN. Research performed
by [7]–[9] has shown how a CNN can be used to exploit
features in theDoppler spectrum and range profiles to classify
different objects. Work performed by [10] extends the classi-
fication to real world scenes by applying the CNN classifica-
tion to regions of interest of the radar spectrum. These prior
works demonstrate how the application of ML can be used in
a radar perception algorithm. Furthermore, [11] demonstrated
how physics-based simulations of optical sensors have been
employed to train an ML model, which is then used for
inference on physical/real camera sensors.

The approach demonstrated here, uses physics-based,
simulated radar returns to train an ML based radar per-
ception algorithm. Using a 77 GHz, Frequency-Modulated
Continuous-Wave (FMCW) radar sensor, a perception algo-
rithm will be trained to perform object detection and localiza-
tion in real-world environments. Training will be done using
only the RD map of a single channel radar. The perception
algorithm will automatically discriminate between clutter,
pedestrians and vehicles, not relying on any other traditional
signal processing. Vehicles and pedestrians will be localized
within the RD map using a bounding box defined by range
(distance) and Doppler frequency (velocity). An example RD
map used in the training and the corresponding label is shown
in Fig. 1. A CNN is implemented and trained from scratch
using only the simulated radar returns, in the form of RD

FIGURE 2. Validation scenario: 2 corner reflectors.

maps, for many realistic driving scenarios. When training is
completed, the model inference is evaluated on new scenarios
and environments never seen during the training process.

II. METHODOLOGY
A. PHYSICS BASED RADAR SIMULATION
Many experts believe hundreds of millions of miles need
to be driven in order to demonstrate reliability [12]. This
requirement will not likely be achieved using only real-world
driven miles, but also rely on some form of simulation. From
semantic simulations to physics-based simulations, there are
many advantages offered when using simulations. Such as,
scalability, implementation cost, scenario variability, crash
replication, and sensor variation.

Training a robust ML radar perception algorithm is likely
going to depend on having a large, varied dataset that rep-
resents the real radar returns of complex scenarios. As most
real-world ADAS scenarios exceed 100k wavelengths in any
given dimension at 77 GHz, a numerical technique needs to
be selected that allows for accurate and efficient solution of
problems at this scale. The shooting bouncing rays (SBR)
technique is an asymptotic ray tracing approximation that
can efficiently calculate scattered fields for electrically large
geometries [13], [14]. This full physics simulation is based on
the geometric and physical optics numerical techniques and
can generate accurate electric and magnetic scattered fields
in a multi-path environment. While capturing interaction of
real material properties and complex geometry. An animated
time-sequence of geometry is used to define the ADAS sce-
nario simulation. Each time step in the series is analyzed
by first calculating currents on all surfaces in the model
using a user specified antenna pattern, and then radiating
those currents back to another antenna pattern using the SBR
method. The usage of the SBR technique has been demon-
strated by [15] and [16] to perform full physics simulation of
a realistic ADAS scenarios.

RD maps for a chirp sequence (CS) - FMCW radar can be
achieved by simulating a sequence of chirps across a coherent
processing interval (CPI). Each chirp is used to generate
a time domain response, which can be scaled for distance.
Fourier processing the chirps in a single CPI yields a Doppler
frequency (velocity) response. The time dependent geometry
describing the ADAS scenario is simulated for each chirp in
the CPI using SBR. Generating scattered fields that represent
the true position of all geometry at the corresponding time
step and further processed into RD maps. The SBR solver
implemented in ANSYS HFSS also includes a capability to
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FIGURE 3. RD map from validation scenario simulation. Location of peak
scattered fields agree with ground truth of (-15 m/s, 40 m) and (+30 m/s,
60 m) for each reflector. Peak values also agree with theoretical received
power determined by radar range equation for an RCS value of 9 dBsm.

further accelerate the solution of CS-FMCW radar systems
using a technique referred to as Accelerated Doppler Process-
ing (ADP) [17]. ADP accelerates the solution by providing
scattered fields for all chirps in one CPI in the same amount
of time that would be required for simulation of a single chirp.
This results in a simulation time that is typically several order
of magnitude faster than if each individual chirp needed to be
explicitly simulated.

A simple validation of the SBR and ADP simulation
methodology is demonstrated by comparing simulated results
with the ground truths and theoretical received power of a
known scenario. The scenario to be simulated is outlined
in Fig. 2, using two 9 dBsm corner reflectors. The radar
module used for this validation example uses a single trans-
mit and single receive antenna, each with peak total gain
of 17.2 dB. The half-power beam width of each antenna is
equal to 13.2 deg in the elevation plane and 51 deg in the
azimuth plane. With a center frequency of 77 GHz, band-
width = 600 MHz, CPI = 9.7 ms, and a pulse repetition
frequency = 51.4 kHz issuing 500 chirps. The simulation
generates the RD map shown in Fig. 3. The ground truth
for velocity and range correspond with the peak locations
seen in the simulated RD map. Theoretical received power
is compared with simulated results by evaluating the radar
range equation,

Preceived = PtG2
(

λ

4πR

)2
σ

4πR2
. (1)

where Pt is transmitted power, G is transmit/receive antenna
gain, σ is radar cross section of each target, λ is the wave-
length, and R is range of the respective target. The simu-
lated received power for each reflector is −101.05 dB and
−108.1 dB. This agrees very closely with the theoretical
received power of −101.4 dB and −108.5 dB.

B. TRAININING DATA GENERATION
Radar simulation of an ADAS scenario rely on a physical and
electrical description of the environment, scenario and radar

FIGURE 4. Library of actors, consisting of multiple vehicles and
pedestrians.

performance characteristics. The environment consists of a
physical geometry description, including terrain, roadway,
signage, vegetation, buildings, etc., along with the electrical
material property definitions. A scenario is defined by the
placement of any traffic participants/actors into these envi-
ronments, along with their respective position and trajectory.
These actors also include all relevant electrical material prop-
erties and geometry features. The radar performance char-
acteristics are defined by a far-field antenna pattern versus
frequency for each transmitter and receiver used in the radar
module.

A practical solution needs to be implemented to automate
scenario generation at a scale required for training an ML
model. The solution implemented here, begins with the cre-
ation of a library of environments and a library of actors.
The library of actors includes 5 different vehicles and 6 dif-
ferent pedestrians (Fig. 4). The environment library consists
of ∼ 200 × 200 meter section of the world with all objects
and material properties defined. Material properties for the
environment and traffic participants have been defined based
on [18]–[20]. As an example, Environment 1 (Fig. 2 (a))
shows a two-lane road with a guard rail on one side ending
in a tunnel and hillside. Environment 2 (Fig. 2 (b)) shows an
intersection with several buildings, curbs and traffic lights.
Along with the geometry, the environment also includes a
description that specifies rules for a valid placement and
trajectory of any actor. For instance, one such rule for an
environment may describe that a vehicle actor can be placed
anywhere on the roadway, but the main component of its
velocity must be in the direction of travel of the respective
lane. Multiple rules per environment are created to allow
for wide variability in scenarios, and not limiting unique,
unexpected scenarios, (i.e. a car traveling perpendicular to the
road’s primary direction of travel).

A scenario is evaluated for a single frame of data, where
a frame is defined and evaluated over a single CPI. The
scenario is generated by a random selection of up to 5 vehicles
and/or pedestrians in a randomly selected environment. The
location of the actors, along with their trajectories, are chosen
randomly, but with respect to the environment rules. This pro-
cess allows large-scale scenario generation to be automated,
only limited by the manual process of generating the initial
environment and rules.

Using the generated scenarios, simulation of the
electrical radar characteristics is completed using the
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HFSS-SBR+ solver. The radar system implemented here has
a range resolution of 25 cm and maximum range ambiguity
of 100 m. The velocity ambiguity is+/− 25 m/s and velocity
resolution of 0.12 m/s. This radar performance is achieved
by issuing 416 up-chirps over a CPI equal to 16.2 ms with a
Pulse Repetition Frequency of 25.7 kHz. Each chirp (sampled
in the frequency domain) is composed of 416 samples over a
625 MHz bandwidth. The single transmit and single receive
antenna configuration described in the simple validation
case is also implemented. These parameters are typical of
a generic medium range radar module used in automotive
applications [21]. The perception algorithm performance will
likely be impacted by these radar parameters and could be
explored in future work.

Actor movements are restricted to be purely translational,
without including movements that would contribute to what
would be considered the micro-Doppler (MD) signature. For
example, vehicles are translated in position for the defined
velocity, but with no rotation in the wheels. Similarly, pedes-
trians are translated at a single velocity, with extremities held
in a fixed pose. The translation of actors is captured by the
SBR solver by positioning all geometry in the environment
to reflect the current location dependent on the time step
requested. The animated sequence would appear as cars and
pedestrians ‘‘sliding’’ in position versus time. At each time
step a full physics extraction of the scattered fields is per-
formed on the current state of all geometry. Although this
technique will not capture these MD effects, the results will
still capture the Doppler velocity spread due to an objects
angular span relative to the radar. As well as any multi-body,
and multi-path interaction of fields. Including MD signa-
tures would likely generate additional features in the velocity
dimension of the RD map, ultimately improving detection
performance [10]. MD effects were excluded to reduce com-
putational complexity of the simulations in this initial study.
With the completion of each scenario, the resulting RD map
is exported and stored along with all corresponding labels.

Accurate annotation/labeling of radar returns needed for
ML training can be challenging in a physical measurement
scenario, but in simulation the labels are available with vir-
tually no additional effort or cost. This ground truth data is
inherently available and automatically synced with the output
data in simulation.

As all scenarios are completely independent of one another,
embarrassingly parallel distributed computing can be lever-
aged to scale simulation results. For the given scenarios,
using a 128-core compute cluster, simulation results can be
generated at a rate of approximately 500 scenarios per hour.

C. MODEL ARCHITECTURE
The radar perception algorithm demonstrated will leverage
many of the advances in image-based ML object detection
that have occurred in recent years. Namely, the model archi-
tecture implemented here, is based on the YOLOv3 archi-
tecture [22]. The YOLOv3 object detection architecture is
widely used in many optical systems, with advantages being

accuracy and speed of inference. These advantages make it a
good candidate for the time critical detection systems needed
in autonomous vehicles.

Simulation results for each scenario are transformed into a
colorized image of Doppler vs. range by taking themagnitude
of the complex scattered field quantities. This image, also
referred to as a RD map (Fig. 1), is the input to the training.
Labels for the corresponding image are generated during the
simulation setup.

Pre-processing of the radar image is limited to a threshold-
ing of −80 dB from the peak detected values (per scenario).
Opportunities for image augmentation, and other image pre-
processingmay exist to improve detection and training results
but will not be explored at this time.

III. RADAR OBJECT DETECTION
A. TRAINING
The CNN based on the YOLOv3 architecture was trained
from scratch, using simulation results generated as described
in section II B. Training was completed over 25 epochs using
9000 scenarios, and validated on 900 scenarios. Individual
images are generated as a single frame, with no reference
to the previous timestep/frame in the scenario. A future
opportunity to explore tracking and/or CNN-LSTM (Long
Short-Term Memory) networks [7] is possible to exploit the
transient nature of real-world scenarios.

B. TESTING AND RESULTS
Testing was performed on two different datasets, with the
model performance evaluated individually on each dataset.
The first dataset consists of ∼900 scenarios using the same
environments/terrain observed in the training, but with unique
scenarios not seen by the original training. The second dataset
is evaluated on 900 unique scenarios simulated in a com-
pletely new environment never seen by the training. The traf-
fic participant library is kept consistent between both datasets
in testing and training. This new environment in the second
dataset demonstrates the robustness of the inference model.
Model performance was evaluated using mean Average Pre-
cision (mAP) [23], and performance for each class evaluated
by Average Precision (AP).

1) TEST DATA SET – 900 NEW SCENARIOS
Evaluating precision across all 900 scenarios (Fig. 6), an
83.8% mAP was achieved. The model inference AP for vehi-
cles is 94% and 74% for pedestrian. A higher range resolu-
tion radar would likely improve performance on pedestrian
detection. The pedestrians occupy far fewer range bins than
vehicles, resulting in fewer features in the range profile. Also,
as previously mentioned, simulated results do not include the
MD signatures. This is likely the primary means of differ-
entiating pedestrians from the many similar sized, stationary
targets, whereMDwould create unique features in both range
and velocity that could be used in object detection.
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FIGURE 5. Library of environments. (a) Tunnel with hillside and
guardrail. (b) City/urban intersection. (c) Curved roadway with signage.
(d) Intersection with traffic signals and streetlights.

FIGURE 6. Testing results for dataset using 900 new scenarios in
previously seen enviroments. Evaluation of mAP and AP of the test cases.

FIGURE 7. Testing results for dataset using 900 new scenarios in
previously seen enviroments. Detection results showing false/true
positives for each class.

An example of inference on a single scenario, never seen
by the original training, is shown in Fig. 8. Object localization
and classification is predicted using only the RD map as an
input to the trained model. For a qualitative visualization of
the inference, the ground truth is overlayed onto the RD map,
along with the predicted object detections. Note the back-
ground clutter due to the environment was correctly ignored,

FIGURE 8. Example of inference on a single scenario. Red is predicted
object detections based on trained model. Object detections shown in
green are the ground truth overlay for purpose of visual comparison.

FIGURE 9. New environment used in testing, never seen by original
training. The environment is defined by a complex intersection with
buildings, traffic control devices (i.e. lights, cones, curbs, elevated
islands).

and correct classification/localization of traffic participants
was achieved.

2) TEST DATA –NEW SCENARIO AND NEW ENVIRONMENT
The new environment used to test model performance in
a completely new context is shown in Fig. 8. Scenarios
using this new environment are generated in a similar man-
ner as described in section II. B. The performance of this
model maintained a relatively high AP for vehicle detection
but is reduced for pedestrians. This results in a decreased
mAP from the previous dataset from 84% to 72% (Fig. 10).
Figure 10 demonstrates model inference on one scenario
using this new environment. Background clutter results in a
higher percentage of false positives, as the model has diffi-
culty in distinguishing between stationary objects and pedes-
trians. An example of a false negative is shown in Fig. 13.
As previously discussed, this is likely to be improved by
increased range resolution and incorporating MD signatures.

The performance of the previous dataset may have had
the advantage of learned background clutter, resulting in
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FIGURE 10. Results from testing model inference on completely new
enviroment and scenarios. Evaluation of mAP and AP of the test cases.

FIGURE 11. Results from testing model inference on completely new
enviroment and scenarios. Detection results showing false/true positives
for each class.

FIGURE 12. Results from a single scenario using the new environment,
showing correct object detections.

better performance over the completely new environment.
This new environment not only demonstrates the limitation
of this model, but also reveals how simulation can be used

FIGURE 13. Results from a single scenario using the new environment,
showing a pedestrian not correctly located or classified.

to introduce unique test data, explore the robustness of our
inference model and easily investigate root cause failures.

IV. CONCLUSION
This paper demonstrates an application of ML based per-
ception algorithm for radar systems. Without employing
traditional signal processing and relying solely on an image-
based object detection model, targets were classified, and
localized in range-Doppler. The ML model training was
based on simulated, physics-based radar returns. Simulation
allows for a wide variability in scenarios and environments,
all while providing automatically annotated output. Physics
based simulation can prove to be a critical tool in development
perception algorithms required for ADAS.
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