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ABSTRACT Wind speed forecasting takes a significant place in electric system owing to the fact that it
has significant influence on operation efficiency and economic benefits. Aimming at improving forecast
performance, a substantial number of wind speed prediction models have been proposed. However, these
models have disregarded the limits of individual prediction models and the necessity of data preprocessing,
resulting in poor prediction accuracy. In this study, a novel forecasting system is proposed consisting of three
modules: data preprocessing module, individual forecasting module and weight optimization module, which
effectively achieve better forecasting ability. For data preprocessing and individual forecasting module, more
regular sequences are obtained by decomposition technology, and association features are extracted by deep
learning algorithm in prediction module. In the weight optimized module, the combination method base
on the multi-objective optimization algorithm and nonnegative constraint theory are used to improve the
prediction effectiveness. The combination model successfully exceeds the limits of individual predicton
models and comparatively improves prediction accuracy. The effectiveness of the developed combination
system is evaluated by 10-min wind speed in Penglai, China. The experiment results indicate that proposed
forecasting system is better than other traditional forecasting models on three real wind speed datasets indeed.

INDEX TERMS Wind speed forecasting, deep learning, multi-objective optimization algorithm,
combination system.

NOMENCLATURE FARIMA Fractional. ARIMA .
MLP Multi-layer perceptron model ES Exponential smoothing
LSTM Long Short-Term Memory network

ARIMA  Autoregressive Integrated Moving Average EEMD Ensemble Empirical Mode Decomposition

MOP Multi-objective optimization problem
RNN Recycle neural network 0 i-opjective op Hon p
g MOBA  Multi-objective bat algorithm
ANN Artificial neural network
. AE Average forecast error
SVM Support vector machine
. . MAE Mean absolute error
GRNN  Generalized Regression Neural Network
. . . MSE Mean squared error
RBF Radial Basis Function network
RMSE Root mean square error
WNN Wavelet neural network
. MAPE Mean absolute percentage error
BP Back Propagation Neural Network
. . IMAE The percentage error of MAE
ARMA  Auto-Regressive Moving Average method
IMSE The percentage error of MSE
IMAPE The percentage error of MSE
The associate editor coordinating the review of this manuscript and MOPSO Multi-objective particle swarm optimization
approving it for publication was Zijian Zhang . algorithm
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BFGS Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton algorithm

EEMD-LSTM EEMD preprocessing data for LSTM
prediction

EEMD-MLP EEMD preprocessing data for MLP
prediction

EEMD-ARIMA EEMD preprocessing data for ARIMA
prediction

I. INTRODUCTION

With the improving attention to clean energy, the utilization
rate of resources is raising day by day. At the same time,
the resource lacking has also become a critical problem to
be solved. As widely distributed, pollution-free renewable
energy, wind energy is the theme of new energy resources
analysis and development. Wind energy is a kind of fastest
growing renewables, and is considered as an alternative to tra-
ditional fuel-fired electricity generation. Prediction of wind
speed is the soul of wind energy system and takes a vital
place in the supervision of wind farms. The precisely wind
speed forecast is also significant for improving wind energy
utilization and stable electric system operation. In contrast,
incorrect wind speed prediction can lead to unfavorable deci-
sions and wind power systems can be caused huge economic
losses. Recently, the electric power produced by wind power
has been increasing greatly. Wind power is advance in the
aspects of its reliability, good ability and low price, and
the utilization of wind energy helps to reduce air pollution,
which is the largest environment task for most regions and
countries [1].

Wind speed forecasting brings the decision-making chal-
lenge to electric system running due to the prediction has its
own error [2]. Conventional approaches of wind speed predic-
tion pay close attention to the potential features of previous
data and the effects of numerical weather on wind speed [3].
In recent decades, some artificial intelligence forecasting
models have been developed for wind speed prediction due to
the rapid development of artificial technology, such as artifi-
cial neural network (ANN) [4], [5], fuzzy logic method [6]
and SVM [7]. Short term wind speed prediction methods
could be separated into 4 classes [8]: (a) physical approaches;
(b) statistical approaches; (c) artificial intelligence methods;
and (d) hybrid model.

The physical model is the numerical weather forecast,
which mainly uses the detailed information of the lower
atmosphere to analyze, mine and forecast [9]. This model
is based on the basic information of the wind turbine pro-
vided by the numerical weather forecast system, parame-
terizes the physical phenomena according to the primary
conditions and the nonlinear partial differential equation
system, and then obtains a series of different meteoro-
logical parameters [10]. For example, Wilgan er al. [11]
established a comprehensive neutral atmosphere model with
high spatial-temporal resolution for prediction. The com-
bined model will be according to the NWP model, with
high spatial resolution and vertical message about different
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meteorological parameters. Statistical model is according to
a large number of historical data to study the prediction
model, without considering the impact of many meteoro-
logical factors. Milligan ef al. [12], [13] used ARMA model
to forecast wind power of wind farms in the United States.
Maatallah et al. [14] combined Hammerstein model and AR
model, and thus proposed a new wind speed forecasting
model, which finally achieved better prediction effectiveness.
Nevertheless, on the basis of the hypothesis that there is a
linear model between time series, statistical methods can’t
successfully capture the nonlinear structure [15].

In addition, with the rapid development and wide appli-
cation of artificial intelligence algorithm, a lot of scholars
already successfully used artificial intelligence method to
carry on wind speed forecasting. JursaR [16] proposed a
short-term wind power predicting model according to particle
swarm optimization (PSO). Amjady et al. [17] established
a prediction model on the basis of the ridge neural net-
work (RNN) as a prediction engine to effectively predict wind
power. An advanced prediction model put forward for very
short-term wind power prediction in [18] is combined the
adaptive Bayesian learning and approximated Gaussian pro-
cess. In [19], Zhang et al. used the radial basis function (RBF)
network as well as the swarm intelligence optimization algo-
rithm to forecast the wind speed in the interval, and finally
achieve high prediction accuracy. As the artificial intelligence
model has strong nonlinear prediction ability, it is generally
better than the time series model [20].

Reviewing the previous literature, it is believed that the
above prediction methods own certain of intrinsic shortcom-
ings. The shortcomings of these approaches are summed up
bellow:

(1) Physical model is easy to model and cost less.
However, compared with the statistical model, the physical
model has more requirements on data. Models based on air
pressure, terrain and temperature are usually used for wind
speed prediction of long-term situation of various weather
variables [21].

(2) Statistical methods include ARMA [22], ARIMA [23],
fractional ARIMA (FARIMA) [24] and so on, whose major
restriction is the pre-assumed linear form of the model. And
exponential smoothing (ES) [25] is established according
to the relationship between the variables, using mathemat-
ical statistics method to represent the latent correlation of
historical samples in wind speed prediction. Nevertheless,
the elegant statistical model according to the linear structure
between time series does not grasp the nonlinear mode of
wind speed time series well. Only in some specific cases can
statistical models achieve higher accuracy [26].

(3) Different from other methods, artificial intelligence
algorithm can effectively find the implicit non-linear relation-
ship between historical data, which has been widely studied
and applied in solving complex relationship and accurate
prediction. However, there are still some shortcomings in
artificial intelligence methods, such as local optimization,
over adaptation and relatively low convergence rate.
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(4) The hybrid model integrates two or more methods,
such as data preprocessing and prediction model, and inte-
grates the advantages of each method. With the disregard
of the limits of individual prediction models, the forecasting
power of the hybrid model seems to need improvement.

Therefore, in view of the shortcomings of the above pre-
diction methods, several combination wind speed prediction
models are proposed. Bates and Granger proposed a com-
bination prediction theory with good results in 1969 [27].
Since the 1970s, the research of combinatorial forecasting
model has been widely concerned [28], [29]. In the aspect of
wind speed forecast, Retrospected and sorted the combination
wind speed prediction models, Xiao et al. proposed two
combined wind speed prediction models which have prefer-
able prediction abilities: the first is no negative constraint
theory (NNCT) combined model, the second is meta-heuristic
algorithm combined model [27]. A powerful combination
prediction model was developed by Wang et al. in 2017,
which includes GRNN, RBF, WNN and BP. The model
combines these single prediction short-term wind speed pre-
diction models applying meta-heuristic optimization method
MOBA. The results show the established combination model
is superior to individual model in the aspect of accuracy and
reliability of forecasting.

Generally speaking, the goal of combinatorial prediction
mechanism is to search the best weight by diminishing the
total of prediction error squares of training sets provided
by each model. Nevertheless, quite a few conventional wind
speed prediction models ignore the importance of accuracy
and stability, and these two are equally significant in the
effective prediction of wind speed. Ideally, when the weights
of member model in the combination model are obtained
by optimization algorithm, the excellent accuracy and sta-
bility are obtained at the same time. Multiple objective
problems (MOPs) aim at the simultaneous optimization of
multiple conflicting objectives, which has aroused extensive
research interest. For a nontrivial optimized question, a range
of solutions exist when optimizing each objective concur-
rently, rather than a single solution, and this is different from
single objective optimization.

However, wind speeds are often highly nonlinear, irregu-
lar, and nonstationary, but upward moving in secular trend.
Many of the traditional predictive models ignore the both the
accuracy and stability, which is significance to the wind speed
prediction. The leading dedications and innovations of this
article are summed up as:

(1) An effective data preprocessing method is selected
as the step before the model forecast. The preprocessing
approach is used to diminish the objectionable effects of
highly frequency noise and collect the major features of the
data to achieve higher prediction accuracy, according to the
decomposition and integration technique,.

(2) The deep recurrent neural network is successfully
adopted in this study to build the combined model. Using
the deep recurrent neural network to predict the wind speed
has higher accuracy than the classifier without considering
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the time dependence of the encoding in the wind speed time
series signal.

(3) A more effective combination weight optimization
method, multi-objective optimization algorithm, is adopted
to calculate the weights of member model in the combina-
tion system. A group of non-dominated solutions are usu-
ally produced by the MOP, which are called Pareto optimal
solutions. Every goal corresponds to the point on the Pareto
frontier, and can be enhanced only by reducing one or more
other goal.

(4) According to the three hybrid artificial neural net-
works, the new combination model developed successfully
to enhance the prediction effectiveness of wind speed. The
developed combination model utilizes the advantages of the
member model and conquers the drawbacks of the tradi-
tional individual model with low accuracy and instability
effectively.

The process of established combination prediction
system architecture is shown as:

L In the first stage, in consideration of the randomness and
non-determinacy of the original wind speed series, a nonpara-
metric, data driven and adaptive time series preprocessing
technology is used for wind speed forecast to collect the
major characters of the original wind speed sequences.

I1. Three individual models including the MLP, LSTM and
ARIMA are look upon as prediction methods to forecast the
preprocessed wind speed sequences respectively.

III. According to the prediction results of MLP, LSTM
and ARIMA, a combined model is established, and the Fig.1
shows the structure of the combined model.

IV. MOPSO is applied to obtain the optimization of the
weights of member models in the combined model. The
proposed MOPSO architecture is also displayed in Fig.1.

V. Through meta-heuristic algorithm discussing and pre-
diction effectiveness evaluation of the prediction system,
the forecast ability of the model and the forecasting
availability is further verified.

The other part of this study is designed as: In Section 2,
EEMD and MOPSO, as well as the establishment of the
combination model on the basis of MLP, LSTM and ARIMA
model and the theory of the combination prediction model
are introduced. The numerical experiment results of the fore-
casting system are presented in Section 3. The discussion
on the meta-heuristic algorithm and forecasting system are
shown in Section 4. Ultimately, the conclusions are presented
in Section 5.

Il. COMBINED FORECASTING SYSTEM DESIGN

For the sake of acquire precise and steady forecasting
results at the same time, the system developed in this arti-
cle is divided into three stages: data preprocessing stage,
single model forecasting stage, combined forecasting with
multi-objective optimization stage. MOPSO is adopted to
calculate the weighting coefficient of each model to establish
a combination model. Fig.1 displays the flowchart of the
established combination system.
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FIGURE 1. The structure of the developed combination model. On the left is the specific step of EEMD preprocessing,
and on the right is the process of MOPSO optimizing weight. The middle part shows the model used in the model.

A. ENSEMBLE EMPIRICAL MODE
DECOMPOSITION (EEMD)
Firstly, the empirical mode decomposition (EMD) put for-
ward by Huang et al. is reviewed. Then decompose the
signals, in order to handle the nonlinear and non-stationary
data. The EMD can disintegrate the complex initial signal into
intrinsic mode functions (IMF) and residuals. In the EMD
method [31]:

Definition I1: The data X is disintegrated into IMFs,
¢j where r, is the residue of data X(;), and X, is defined
as follows [32]:

n
Xo=) ci+rm ey
j=1
As a result, a series of IMFs ¢; and a residual r, are
obtained. And the IMFs ¢y, ¢3, - - - , ¢, contain the bands of
different frequency.
Definition 2: The EEMD produces a set of datasets which
add different white noise wét) to the initial data firstly. In this
case, the i-th observation X ét) will be set as

Xét) =Xn+ wé,) 2)

Next, these new datasets are conducted using EMD. Last,
the set average of IMFs obtained by different decomposition
is calculated. For a time series X(;), the steps of EEMD
are [33]:

A new sequence Y ;) is generated by adding white noise to
the original sequence X ;). Determine all the local maximum
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and minimum of the time series Y ;). The upper envelopes
Y ;) and lower envelopes e;(t) of Y ;) are generated.
Calculate the average m;, from upper and lower envelope.
eu(t) +ei(1)
mg) = MT 3)
Pick up the different value between the data Y (1) and my)
as the first component k)

Y@ —may = hg )

The residue r; is regarded as a new series and the above
steps are repeated to obtain the whole r; and a residue c,.
By summarizing all IMFs and residues:

n
Yoy =) ¢+ Q)

j=1

B. MULTI-LAYER PERCEPTRON (MLP)
MLP is a feedforward method mapping the input set to output
set, and its weight is an adjustable model parameter [34].
MLP is composed of multi-layer sigmoid processed neu-
rons or elements, which reach interaction through weighted
connecting. Considering the structure shown in Fig. 2,
the neuron outputs in each layer except the input layer are
shown below:

1
h+1
SR P M
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Input layer . Hidden layer . Output layer

FIGURE 2. The construction of MLP.

Among them, w]]%. is connecting weight between the i-th

neuron in the A-th layer and the j-th neuron of the (k& + 1)-th
layer, and yfl is the condition of the i-th neuron in the previous
h-th layer. For input layer nodes, it can be obtained that
y](-) = xj(-), and this is the j-th component of the input vector.
For a given network weight vector w, the minimum mean

square error in the output vector is decided as

1
E@) =5} ) —dj.)’ (7
j.c

where d; . is the expected condition provided by the teacher
and yf (W) is the condition received by the output node j in the
H layer of the input-output situation c. One way to minimize
E is to use gradient descent method to update each weight
repeatedly starting from any group of weights.

oE
(t)_—s——l—ozA (t—l) 8)
dwji

Among them, ¢ is the positive constant controls the descent
and 0 < o < 1 is the momentum coefficient. Besides, 7 is the
current iteration numbers in procedure. The error E in Eq.(8)
can be reduced to minimum after the multiple times of scan
of the training set.

The main purpose of the training is to simulate the pro-
cedure of data generation [35]. Excellent generalized ability
can make well prediction for the experiment data [36]. For the
sake of assessing the performance of the model, the available
data must be separated into three subsets: training set, testing
set and validation set [37], [38]. The train set can be applied
to calculate network weight value and bias values. In the
train stage, testing set is applied to ensure the generalized
ability of the training model, while validation set is applied
to test the generalized ability of the training model. The error
function is applied to assess the prediction ability of the
model. By measuring the range from the network prediction
to the target, the range from the target to the prediction is
provided. Fig.2 displays the construction of MLP.
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FIGURE 3. The structure of LSTM.

C. LONG SHORT-TERM MEMORY (LSTM)

LSTM network is a special recycle neural network
(RNN) [39], and its inner structure is shown in Fig.3 LSTM
provides precise control over the algorithms embedded in
memory and dislodged from the hidden layer memory. This
is obtained by combining three gates, and they dominate the
inflow and outflow of memory units: input, forgetting and
output gate [43].

Definition 2: The condition of a memory cell at time ¢ are
described and the connection from time f — 1 to time 7 4 1 are
repeated. Fig.3 shows that two vectors remain unchanged in
time ¢ — 1: the hidden vector h,_; and the storage unit state
s:—1. Eq. (2) shows that the forgetting gate f, decides what
can be removed from the memory unit state. That is to say,
it compels the storage unit to forget the unimportant stuffs
based on error back propagation:

ft =0 (wxfx, + whfh;,1 + bf) ©)]

Among them, the weight matrix w,s is from input x to
forgetting gate f,, the weight matrix wys is from the prior
hidden vector h;_; to forgetting gate f,, x, represents the
input at f time, and by is forgetting gate deviation. The i; is the
input gate which decides the amount of every element of the
candidate renovate vector to the relevant storage unit element
in time ¢ according to the recursive connecting between the
hidden vector h;_; and the successive input x; at time ¢.

Definition 3: The gate outputs from the complete connec-
tion tanh layer and scales the candidate update vector:

iy = o(Wxix; +wyihi—1 + b;) (10)
S; = tanh(wyx; + wpgh;—1 + by) (11)

The delicate balance needed to maintain the state of mem-
ory cells in long series is achieved by discarding old message
and merging new message. And provide new message by
joining a part of each value given by the input gate product of
in the candidate renovate:

St=i1*§t +ft*st_1 (12)

Finally, for the designative time context, the output gate
determines the content of the output from the storage unit
state to the hidden vector to minimize errors.
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Definition 4. The output gate o, and hidden vector h; can
be calculated as:

0 = 0 (WxoX; + Whohi—1 + bo) (13)
h; = o; * tanh (s;) (14)

Every gate uses the S-shaped function o in the direction of
the element to proportional change each gate vector element
to the value in the range of [0, 1]. The gate function is realized
by selecting the value vector in the range of [0, 1], and
multiple with another vector, so as to specify the value that the
second vector passing the gating account for the whole vector;
otherwise, determine which parts are blocked [40]-[42].

D. AUTO-REGRESSIVE INTEGRATED MOVING
AVERAGE (ARIMA)
ARIMA model, proposed by Box and Jenkins [44], is an
important prediction model.
Definition 5: ARIMA model is defined as:

YVi=¢w_1+owy, o+ + ¢Pyt—p +é& — 484 (15)

Among them, y;(i = 1, 2, ..., t) is the actual value, ¢; and
0; are the coefficients, &;(i = 1, 2, ..., t) is the random error
at time ¢, and p, g are interrelated numbers, usually called
autoregressive polynomials and moving average polynomi-
als [45]. This model considers the objective sequence as a
random sequence, and applies the certain model to approach
the sequence. The model is divided into three stages: model
identifying, parameter estimating and diagnosis test. Then the
model is applied to predict the sequence.

E. MULTI-OBJECTIVE PARTICLE SWARM (MOPSO)
Multi-objective optimization algorithm (MOPSO) has been
widely used in a series of optimization problems [46], [47],
including inventory control problems [48], [49].

Step 1. n individuals are randomly opted from the
population;

Step 2. Non-dominated position of each individual is
obtained;

Step 3. The crowd distance of rank equaled solution is
calculated;

Step 4. Finally, the solution with the smallest rank is
selected. In addition, the individual with the largest crowd
distance should be chosen in the case that more than one
individual has the lowest level.

Similar to NSGA-II, the step1, step2 and step3 of the algo-
rithm MOPSO are initialization, fast non-dominated sequenc-
ing and congestion distance. The fourth step is to update
the speed and position of particles (chromosomes) through
formula (13) and formula (14):

v;{H’d = w*v}c’d 4 c1 ® 1y % (pbest}(,d —x}c’d)
+ep k% (gbest}; 4= X d) (16)
i i i
Xpi1,d = Xkd T Vig1,4 an
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where w is inertia weight, and coefficients ¢ and ¢ are the
required acceleration constants of pbest and gbest. r; and
rp are random uniform numbers in [0, 1]. By studying
the parameters of inertia weight, a linear decreasing inertia
weight is introduced into the initial particle swarm optimiza-
tion algorithm, which largely enhances the performance of
the algorithm [50]. Moreover, the linear distribution of inertia
weight is shown below [51]:

Wmax — Wwii

W= Wimax — NOG iteration (18)

where NOG is the maximal iteration numbers and iteration
is the current iteration number s. Eq.(15) gives the updating
method of inertia weight, which considered that wy,,, and
Wmin are primary weight and final weight. In this study,
we use the parameters wy,, = 0.9 and wy,;, = 0.4, which
Naka et al. [50] as well as Kennedy ef al. [51] have been
investigated in their work. Specially, the arranges and crowd
distance of new chromosomes are determined firstly. The
pseudo code of MOPSO is described in Appendix.

F. COMBINED FORECASTING THEORY
The combination prediction model is a kind of prediction
approach that selects the optimal weight to combine each
of the prediction models according to the forecasting results
of different forecasting models. The main purpose of this
method is to diminish the disadvantage that single predic-
tion models may meet and enhance the prediction ability.
The combined of single model could take full advantage of
wind speed message due to the different prediction models
own different forecasting abilities. Each prediction model
possesses its special features, reflecting different aspects
of the prediction object. This kind of feature does not
represent the whole feature of the prediction object, but
cannot be ignored. Better prediction performance can be
obtained by properly combining different individual artifi-
cial networks. The framework of the composite model is as
follows:

Definition 6: The conventional prediction combined theory
tries to get the optimum weights of the combination model on
the basis of minimizing SSE:

T m m

. RTL=1
minJ =LTEL =" "lijeuen {L =0 (19)

t=1 j=1 i=1

where L = (I, b, --- ,lm)T is the weight vector, R =
(1,1,..., I)T is a column vector whose entire elements are 1.
Eij = eiTej, for e = (el-l, [ -e,-N) and £ = (El])
named the error matrix.

The weight coefficients has no limit in the interval [0, 1]
in Eq. (19). The final results indicates that when the weight
vector is obtained the value in the interval [—2, 2], the
combined model can get ideal results. This work supplies a
weight determination approach that is evaluated by numerical
simulation rather than theories testify.

mxm
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G. COMBINATION SYSTEM ESTABLISHMENT

According to the mythologies discussed above, the estab-
lished system is mainly established by three modules,
including data preprocessing module, individual forecasting
module and weight optimization module.

One: Data preprocessing module.

The SSA preprocessing technique is selected in the estab-
lished model to obtain a reconstructed sequence by refining
and identifying the period and vibration parts of the original
signal. Through this method, a time series with less noise sig-
nal and random volatility can receive to apply in the following
forecasting steps.

Two: Individual forecasting module.

Three individual forecasting models—MLP, LSTM and
ARIMA—are selected to carry on wind speed forecasting,
respectively. And three forecasting results are obtained by
this operation. There are two neural networks for nonlinear
prediction and one linear prediction, and the models of both
the linear and nonlinear prediction is excellent in predicting
wind speed.

Three: Weight optimization module.

For the sake of obtaining the weight coefficients of each
model, a kind of decision-making weight method on the
basic of MOPSO algorithm and nonnegative constraint the-
ory is proposed to gain the optimal consequences. Say con-
cretely, the last three days of the training set are retained to
obtain the weights of selected models. It is remarkable that
when the algorithm reaches the maximum iteration number
or the minimum fitness function value, it will stop. According
to the weight coefficients of each model, the prediction con-
sequences of each model are combined for getting the final
wind speed prediction results.

Ill. NUMERICAL EXPERIMENTATION
In this section, the study area of three datasets and the data
structure are introduced firstly. Then the model parameter
selection and evaluation metrics are displayed. The last is the
experimental results for three datasets.

A. STUDY SITE INTRODUCTION AND DATA ANALYSIS

As exhibited in Fig.4, Penglai is situated in the northeast of
Shandong, China. Due to its geographical feature of along the
coast and monsoon climate, it has rich and huge wind energy
resources. It is reported that, the power generation capacity
of Penglai electric grid has more than 200 million kilowatts
in June 2017, ranking in the forefront of Shandong electric
system. In this paper, number seven wind turbine of wind
farm of Penglai is selected as the experiment object. The data
point is located in the coastal hilly area, with a measurement
height of 100m. The average sampling period is ten minute,
and the rate of scanning is 144 times every day.

For the sake of assess the practicality, effectiveness and
universality of the established new combination system, three
datasets are selected from three stations in Penglai for the
numerical simulation. Each dataset contains 3600 data points
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of ten-minute wind speed data, and these observations are
separated into training set and testing set. Currently, there
is no clear theory explain the method to choose the quantity
of train samples and test samples. Too few samples cannot
train the neural network well, while too many samples easily
make the network over fit. In fact, two thirds of the data in
the dataset is usually used as training data, and one third
of the data is retained as testing data [52]. In this article,
the ratio between training and testing is 5:1. In other words,
training samples selects the initial 3000 data points and the
testing samples selects the rest of 600 data points. The statis-
tical measurement results of the datasets of wind speed data
sampling, including minimum, maximum, mean value and
standard deviation, are shown in Fig.4.

B. PARAMETER OPTION OF EXPERIMENT

AND FORECASTING

The three datasets A, B and C of wind speed data are
applied to evaluate the effectiveness of the new combi-
nation system. Three prediction models, EEMD-LSTM,
EEMD-MLP and EEMD-ARIMA, are used for compari-
son, which are the member model of the combined model.
National energy administration issued the energy industry
standard NB/T31046-2011 and formulated the wind energy
measurement rules in 2011. The wind speed time provided
by wind farm must be more than 10 minutes, the maximum
error predicted by wind energy curve on the next day should
be no more than 0.25, and RMSE (root mean square error)
must be no more than 0.2.

1) OPERATING ENVIRONMENT

The operating environment of the ARIMA method and
MOPSO algorithm is: 3.20 GHz CPU, 8.00 GB RAM, Win-
dows 7, and MATLAB R2016a. The operating environment
of the MLP and LSTM is: 3.08GHz CPU, 4GB RAM, Win-
dows 10, Anaconda 3, Tensorflow 1.2 and Keras 2.0. More-
over, the parameter settings in the model are specified below.

2) PARAMETER SELECTION
Through many trials, the model parameters are seted as
follows:

(a) For LSTM, the network is established by apply-
ing Keras. The dimensions of each layer are: input
layer is 4, the first hidden layer is 50, the second hid-
den layer is 100, and the output layer is 1. Setting
some parameters as Activation="‘relu’, loss=‘mean squared
error’, optimizer=‘nadam’, epochs=400, batch size=16,
verbose=2.

(b) For MLP, the network is established by apply-
ing Keras. The dimensions of each layer are: input layer
is 4, the first hidden layer is 12, the second hidden
layer is 8, and the output layer is 1. Setting some
parameters as ‘activation =‘relu’, loss=‘mean squared
error’, optimizer=‘nadam’, epochs=400, batch size=16,
verbose=2.
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FIGURE 4. The selected sites of the Penglai and the data structure of selected datasets. The upper part of the
figure shows the data distribution and statistical characteristics of the three datasets. On the left is the input-output
structure of the wind speed prediction model, which is called rolling forecasting method. Below is the original time

series of wind speed.

(c) For MOPSO, the fitness function is MAPE and RMSE.
Number of decision variables is 3, the lower bound of vari-
ables is —2, the upper bound of variables is 2, the maximum
iterations are 1000 and the population size is 200.

C. EVALUATION METRICS

For the sake of effectively testify the prediction ability of
the combination prediction model with changing weights,
the model is usually evaluated based on evaluation indica-
tors. In this study, eight performance evaluation criteria are
adopted to estimate the prediction effectiveness of the com-
bined model, which contain AE (average error) [53], MAE
(mean absolute error) [54], MAPE (mean absolute percentage
error) [55], MSE (mean square error) [56] and RMSE (root
mean square error) [57] to evaluate the average error between
the forecasted and actual value, and the Iyag, Imse, IMAPE
represent the percentage error of the benchmark wind speed
forecasting models in this study compared to the developed
combination prediction model. If the value of these indexes is
the smaller, the developed model is considered as owning the
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excellent prediction performance. See Table 1 for the details
of the mentioned metrics.

D. EXPERIMENT I: THE PROPOSED MODEL COMPARED
WITH INDIVIDUAL MODELS

In the trial, using the dataset A, B and C (10-min wind speed
data), while each dataset selects 3000 samples as the training
set, the combination model is trained to predict 600 samples
in the future rested. The time series of the predicted value is
shown in Fig.5 and Fig.6.

1) EXPERIMENTAL RESULTS DESCRIPTION
The experiment is set as a comparison the forecasting per-
formance between proposed model and three single models,
including EEMD-MLP, EEMD-LSTM and EEMD-ARIMA.
The results are shown in the Table 2 and Table 3, as well as
the Fig.5 and Fig.6. From the table and figure obtained, the
information of experiment results can be shown as:

(1) Table 2 describes the forecasting results statistical
properties of the four models. This statistical description
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TABLE 1. Definition of the performance metrics.

Metric Definition Equation
1
AE The average forecast error of » times forecast results AE = NZ( Y, = y”)
n=1
MAE The average absolute forecast error of n times forecast results YV, =V,
1 ’
MSE The average of the prediction error squares MSE = WZ( Y, = yn)
n=1
1Y ’
RMSE The root average of the prediction error squares RMSE = N Z( Y, = yn)
n=l
1 & Pn=Vn
MAPE The average of absolute error MAPE = *27 x100%
NZ o,
MAE, -MAE
Imae The percentage error of MAE Lyae =——4—21x100%
MSE, - MSE
Inse The percentage error of MSE Lyse =——%——2{x100%
MSE
MAPE, - MAPE,
Imare The percentage error of MSE Lyape = ‘Wn’ x100%

Among the formula, »; and f/i represent the true value and predicted value of wind speed respectively. And N represents the testing set number.
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FIGURE 5. The results of every forecasting model on three datasets. On the right is the entire wind speed time series, including
original data and forecast data. On the left is the partial enlarged diagram of time series, which can clearly and intuitively see the

fitting situation of each model for wind speed data.

can show the prediction state of each model more intu-
itively. Table 3 shows the prediction error of EEMD-MLP,
EEMD-LSTM, EEMD-ARIMA and combined model for
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dataset A, B and C, which can reflect the prediction ability of
the model. From the prediction results, the developed model
is superior to all others in all evaluation indexes. For example,
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FIGURE 6. Comparison of the forecasting error for three datasets. On the
left is the display of the prediction error of each model on the time scale.
The figure on the right shows how discrete the forecast data is to the real
data.

TABLE 2. Statistical properties for each method forecasting result.

Data Model Mean (m/s) Std. (m/s) Max (m/s) Min (m/s)
EEMD-LSTM 6.4984 2.7436 13.4465 2.0753
EEMD-MLP 6.5360 2.7889 13.8692 2.0094
EEMD-ARIMA 6.4723 2.7506 13.1578 2.0089
Combined model 6.4510 2.7588 13.7644 1.9550

EEMD-LSTM 6.5333 3.0006 16.5282 1.8135

EEMD-MLP 6.5934 2.9894 16.5431 1.7485
EEMD-ARIMA 6.5493 2.9077 15.4549 2.1557
Combined model 6.5071 2.9386 16.2185 1.8469
EEMD-LSTM 5.2965 2.5187 11.5761 1.7809
EEMD-MLP 5.2136 2.4836 11.4204 1.7923
EEMD-ARIMA 5.2663 2.4940 11.3624 1.9046
Combined model 5.2645 2.5165 11.6111 1.7786

Specially, the mean value and the standard deviation (Std.) of the
forecasting data reflect the basic information of the data, which is calculated as

1. N oxoa
Mean=—Y 3, ,Std.= ’—1 > F-3)
no n—143

for dataset A, the MAE, MSE, RMSE and MAPE (%) of the
combined model are 0.2259, 0.0994, 0.3153 and 3.5271%,
respectively, while the errors of the other models are higher
than them. For three comparison models, EEMD-MLP is the
best model, and its error index MAE, MSE and RMSE are
all 0.01 higher than the combined model, and the MAPE is
also 0.212 higher. Other datasets can reach the same conclu-
sion. The worst performance is EEMD-ARIMA. Therefore,
the combined model is considered to improve the prediction
accuracy.
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TABLE 3. Wind speed forecasting errors of different models.

MAPE

(%)
EEMD-LSTM  0.0336 02599 01305 03612  4.2318
EEMD-MLP 00711 02347  0.1045 03232  3.7391

Data Model AE MAE MSE RMSE

A EEMD-ARIMA 00074 03386 02182 04671  5.5545
Combined 4139 02250 00994 03153 35271
model
EEMD-LSTM  -0.0171 03422 02118 04602  5.7187
EEMD-MLP 00430 03046  0.1737 04167  5.1124

B EEMD-ARIMA -0.0012 05427 05407 07353  9.2347
Combined 5 033 93014 01688 04109 50176
model
EEMD-LSTM  0.0297 02318  0.0950 03082  4.8838
EEMD-MLP  -0.0531 02046  0.0717 02678 42168

C  EEMD-ARIMA  -0.0004 03068  0.1712 04138 64343
Combined 50053 01920  0.0621 02493  4.0142
model

EEMD-LSTM model, EEMD-MLP model and EEMD-ARIMA model are
prediction models using the wind speed data processed by EEMD. These models
are the member models in the combination mechanism.

(2) The Fig.5 shows the results of the advance prediction
from EEMD-MLP, EEMD-LSTM, EEMD-ARIMA and the
combined model, respectively. Obviously, the error of the
combined model to the observation value is smaller compared
with the single model. The detail diagram on the left is
the partial amplification of the EEMD-MLP, EEMD-LSTM,
EEMD-ARIMA and the combined model. As shown in the
figure that the red line (the combined model forecasting
result) is closet on the black line (the original value forecast-
ing result). It is worth noting that when the observed wind
speed value encounters difficulties in the slope, the high accu-
racy prediction result is carried out. In this case, the prediction
effect is deteriorated.

(3) Fig.6 displays the actual plots and the predictions wind
speed plots of the combination model and other models of
dataset A, B and C. The conclusion is that the combina-
tion model obtains accurate predictions in most cases. The
sequence of prediction errors is shown in part A, and these
errors always fluctuate around 0. In addition, it can be seen
from part B that the combined model results in a strong
relation between the observed wind speed and the predict
wind speed. In the same time, the prediction result for dataset
B is divergence than the other two datasets, and it can also be
confirmed it in Table 3.

Remark: According to the results, the developed model
has the best performance and keeps the original curve form
better for prediction. Moreover, the proposed model is the
best according to the five error indexes. In general, the com-
prehensive model utilizes the advantages of the other three
modes, reduces the redundant information and improves the
local optimal value. The prediction accuracy is improved
obviously, and the prediction error fluctuation is small.

2) EXPERIMENTAL RESULTS ANALYSIS
Through comparing the combination model with three
benchmark models, the evalution metrics are calculated and
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FIGURE 7. Comparison of the prediction error for three datasets.

TABLE 4. The improvement rate of MAE, MSE and MAPE by the
combination model.

Data Model Imae (%) Ivse (%) Imare (%)

EEMD-MLP 3.7495 4.8804 5.6698

A EEMD-LSTM 13.0820 23.8314 16.6525
EEMD-ARIMA 33.2841 54.4455 36.5001
EEMD-MLP 1.0506 2.8210 1.8543

B EEMD-LSTM 11.9229 20.3022 12.2598
EEMD-ARIMA 44.4629 68.7812 45.6658
EEMD-MLP 6.1584 13.3891 4.8046

C EEMD-LSTM 17.1700 34.6316 17.8058
EEMD-ARIMA 37.4185 63.7266 37.6125

shown in Table 4 and Fig.7. Through the analysis, the con-
clusion can be obtained as follows:

(1) From Table 4, it can be clearly seen that based on
the three standards of Ipag (%), Imsg (%) and Iniapg (%),
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the proposed combination model is more accuracy than other
models discussed in this work. The results present that the
model could get more messages from the wind speed and get
the prediction results more precisely. More concretely, taking
the prediction results of dataset C as an example, compared
with the three benchmark models, the improvement of the
combined model improved MAPE by 4.8046%, 17.8058%,
37.6125%. Also, MAE and RMSE increased by 6.1584%,
17.1700%, 37.4185%, and 13.3891%, 34.6316%, 63.7266%,
respectively. Comparing with other models, the prediction
ability of combined model is largely improved, which shows
that the combined model does make use of the other three
models and improve the prediction accuracy effectively.

(2) Fig.7 includes five parts, where the top three box-
plots show the errors of EEMD-MLP, EEMD-LSTM,
EEMD-ARIMA and combined model in the three datasets.
The results show that the error of the proposed model is
the minimum, which means the predicting ability of the
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TABLE 5. Wind speed forecasting errors of combined model using
different preprocessing method.

TABLE 6. The improvement rate of the combined models using different
preprocessing methods.

Data____ Model AE___MAE _MSE__RMSE MAPE (%)
EMD-Combined 00253 03267 0.1871 04326 44647
SSA-Combined -0.0791 04470 04122 0.6420  6.1316

A WDD-Combined 00638 04585 03969 06300  6.2443

CEMD- 00139 02259 00994 03153 35271
EMD-Combincd -0.0551 04518 03941 06278 6.1931
SSA-Combined  0.0805 04457 03206 0.5662 73411

B WDD-Combined -0.0811 0.5409 05017 07083  9.6467

EEMD- 00433 03014 0.1688 04109 50176

Combined
EMD-Combined 0.0381 03375 02023 04498 56482
SSA-Combined -0.0790 04678 03752 0.6125  7.3667

C  WDD-Combined 0.0823 05450 05461 07390  8.275

EEMD- 40023 0.920 0.0621 02493 40142

Combined

EMD-combined model, SSA-combined model and WDD-combined
model are compared models using the wind speed data processed by different
preprocessing methods. And EEMD-combined model is the proposed model in
this study. These models are the member models in the combination mechanism.
The comparison of these models is to highlight the advantages of EEMD
preprocessing method.

developed model is excellent compared with the other three
models. Each point errors of the combination model are not
only closely related to the zero axis, but also have a very small
dispersion level. Part MAE presents that from left to right the
surface chart is raising along the X axis, which means that for
the same dataset, the combined method produces the smallest
MAE, and the EEMD-ARIMA yields the largest MAE value.
The other two parts, RMSE and MAPE, can also prove that
the combination model is better than the individual model in
each aspect.

Remark: Compared with the other three models, the
conclusion can be drawn that the combination model
owns the highest precision of prediction results. The
comparative experiment of EEMD-MLP, EEMD-LSTM
and EEMD-ARIMA shows that the prediction ability of
EEMD-MLP is better than the other three methods, and
the prediction performance of EEMD-ARIMA is the worst.
No matter dataset A, B and C, EEMD-MLP always perform
best than others.

E. EXPERIMENT II: THE EEMD COMPARED WITH OTHER
PREPROCESSING METHODS

This experiment designs the comparison based on different
preprocessing methods. The preprocessing methods include
EMD, SSA and WDD, as well as EEMD applied in the
proposed model. These models are built to emphasize the
importance of selecting an excellent data processing technol-
ogy. Compared with the above methods, the superiority of
the model proposed in this study is further illustrated. The
prediction error of the experiment is shown in Table 5 and
Table 6. The details of the experiment are as follows:

(1) For Table S, the proposed model has the best
MAE, MSE, RMSE and MAPE (%) respectively. Sec-
ondly, EEMD-combined model, EMD-combined model,
SSA-combined model and WDD-combined model are the
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Data Model Imae (%) Ivise (%) Inare (%)
EMD-Combined  30.8540% 46.8733% 21.0003%
A SSA-Combined  49.4631% 75.8855% 42.4767%
WDD-Combined  50.7306% 74.9559% 43.5149%
EMD-Combined  33.2891% 57.1682% 18.9808%
B SSA-Combined  32.3760% 47.3487% 31.6506%
WDD-Combined  44.2781% 66.3544% 47.9864%
EMD-Combined  43.1111% 69.3030% 28.9296%
C SSA-Combined ~ 58.9568% 83.4488% 45.5088%
WDD-Combined  64.7706% 88.6285% 52.9264%

models with high to low prediction accuracy, for the MAPE
value is gradually decreasing, which shows that EEMD is the
most suitable preprocessing method for this data. In addition,
there are still afew SSA and WDD do not follow this level, but
EEMD is always the best preprocessing method. The MAPE
of EEMD-combined model is about 3%-5%, which is the
best in three datasets. The results show that EEMD-combined
forecasting model is the best one at present.

(2) It can be clearly seen from Table 6 that for the
three standards of Iyag, Imsg and Imapg, the effect of
EEMD-combined model is significantly improved com-
pared with other preprocessing methods. Specifically, tak-
ing dataset A as an example, EEMD improved MAPE by
21.0003%, 42.4767% and 43.5149% compared with the other
three preprocessing methods. MAE and RMSE increased by
around 30%-50% respectively. For the other two datasets,
the prediction accuracy of the proposed model is significantly
improved, which shows that EEMD-combined method is
indeed more suitable for processing wind speed data than
other preprocessing methods, and the signal decomposition is
more complete, which can effectively increase the prediction
ability of the predict model.

Remarks: It can be seen from this experiment that
EEMD-combined model has the highest prediction accuracy
and the best MAPE value, and significantly improved MAE,
MSE and MAPE. In addition, on the basis of different prepro-
cessing methods, it shows that the proposed model is superior
to other models, thus verifying the effectiveness of the model.

IV. ANALYSIS AND DISCUSSION

A great amount of statistical and machine learning models
can be adopted to forecast time series, including economic
growth, currency inflation, and wind speed time series. This
section is absorbed in the efficient characteristic of the devel-
oped model in terms of meta-heuristic algorithm performance
and computational ability of the system.

A. META-HEURISTIC ALGORITHM DISCUSSING

In order to testify the performance multi-objective optimiza-
tion algorithm, this section will discuss the fitness functions
and convergence of the MOPSO algorithm in detail.
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TABLE 7. The definition of MOPSO parameters.

Cost Function Object 1&2
Number of Decision Variables 3
Bound of Variables [-2,2]
Maximum Number of Iterations 1000
Population Size 200
Repository Size 100
Inertia Weight 0.5
Mutation Rate 0.1

—EEMD-MLP 038
—EemDLSTM o b

MAPE

s 2
RMSE

MOPSO =

°

MAPE
%
°

1) FITNESS FUNCTIONS

The accuracy and stability of prediction are two commonly
selected assessment standard to assess the performance of
prediction model. Therefore, it is not enough to consider
only one aspect of prediction results, whether accuracy or
stability. In the combination prediction model, the goal of
weight coefficient optimization should be both good accuracy
and stability.

The framework of bias-variance error [58] is used to evalu-
ate both the prediction accuracy and stability of the prediction
model. Among this architecture, the accuracy and stability
of the value prediction model are respectively reflected by
the value of }Bias(&)] and Variance(y). According to the
bias-variance framework, the fitness function contains accu-
racy and stability of the optimization algorithm is established.
The difference between the original and the predict value is
considered as the error caused by bias. The variation of pre-
diction results is considered as the error caused by variance.

The y; — ¥; is regarded as the difference value between
the original value y; and the predict value y;. The predicted

N

expected value is calculated as E(3) = 1%, > 3, the expected
i=1

N
value of the observed value is expressed as E(y) = ILV > vi,

=1

where N is the data point numbers to be comparedl. The
bias-variance architecture is decomposed below:
N N A N 2

EG=3°=E[J-E()+E() -]
~ ~\12 ~ 2
=E[-EQ)] +E[E(Q) -]
= Bias($)* + Variance(y) (20)

Therefore, the fitness function target of the combined
model is the setting that minimizing the accuracy and stability
of the prediction, and it is obtained as:

Bias(9)|
Variance(y) |

Objective 1 =

Objective 2 = @D

min imam {

where a smaller }Bias(9)| proved that the prediction model
has high prediction accuracy. In the same way, a smaller
Variance(y) represents more stable. Specially, the parameter
definition of object 1 and 2 is shown in Table 7.

2) CONVERGENCE
From the Fig.8, we can see that as the iteration numbers
increases, the fitness rate drops rapidly. EEMD-MLP and
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FIGURE 8. Convergence of different models under three sets of data.

TABLE 8. MOPSO operating status.

Data RMSE MAPE CPU time
Data A 0.3982 0.0311 24.2 min
Data B 0.5726 0.0613 26.7 min
Data C 0.2621 0.0408 24.5 min

Specially, the calculation formula of RMSE and MAPE has been given
above, and now it is restated as follows:
"V

,%L” Y _1sP
RMSE = NZ(y yn) ,MAPE_N; "

EEMD-LSTM reached convergence in 400 iterations, and
deep neural network convergence performance was superior
to other comparison models. In the initial stage, the fitness of
EEMD-MLP is about 0.45, indicating that the performance of
the model using random initial parameters is poor. However,
as the iteration numbers increases, the fitness rate decreases
rapidly, indicating that the neural network finds better param-
eters in a short time. After 200 times, there was no significant
change in fitness, indicating that the model obtained the best
parameters. The fitness function value of EEMD-LSTM is
very small in the initial state, and it converges to the best
area in the first 10 times. It can be seen that the deep neural
network is highly efficient in data feature mining during the
learning process.

In addition, the global optimization ability of MOPSO in
the iterative process can be seen from the right side of Fig.8.
The final global optimal solution is the point marked in red
in the figure by defining the two objective functions as the
fitness function from precision and skewness. And use these
two aspects to control the final convergence position. During
the experiment, the overall optimization process is greater
than 20 minutes (see Table 8), but for the three groups of
dataset, the first 5 minutes locked the convergence interval,
and the latter iteration moved almost within the non-inferior

x100%
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FIGURE 9. The result of data preprocessing. On the left is the sequence of components decomposed by EEMD, and on the right is
the time series of original data and preprocessed data.

solution set. The black circle in the figure represents the
historical trajectories for each iteration, most of which are
concentrated in the convergence set in the lower left corner.
From the Table 8, we can see that the dataset B has a higher
MAPE than 0.05 when using multi-objective optimization,
and RMSE is greater than 0.5, which is larger than the values
of the other two datasets. This indicates that the nonlinearity
of dataset B is stronger and the forecasting trend is difficult to
grasp. Inference can also be confirmed from the experimental
results. The proposed combination method has a better search
for the convergence performance of each hidden neuron opti-
mal threshold in a highly nonlinear prediction than other
methods.

B. ISCUSS FORECASTING SYSTEM
This section conducts five profound discussions of the
forecasting system we established, including data process-
ing, train-to-verify ratios, Diebold-Mariano Test, forecasting
effectiveness and bias-variance test.

1) DATA PROCESSING

EEMD is applied to preprocess initial time series prior to the
forecast the wind speed by the models. Compared with the
original data, it is obviously that processed data have accu-
rate and stable display because of the removing of random
perturbation. The theory of EEMD has been expounded in
section III. Fig.9 is the details of data preprocessing.
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2) THE TRAIN-VERIFY RATIO

The train-verify ratio can indicate the extent to which the
latest sequence is being used, or its impact on the fore-
cast results. We have configured a number of sequence
train-verify ratios to study the influence of train-verify ratios
on the results. For the wind speed data of the datasets, the train
verification ratio is respectively configured as 1:1, 2:1, 3:1,
4:1 and 5:1. A large ratio means more samples are put into
training. On the other hand, a small ratio indicates a small
number of samples are involved in training. The experimental
results show that the better precision can be obtained by
increasing the ratio. It is beacuse appling updated data can
enhance the accuracy of training. Nevertheless, that doesn’t
mean the train-verify ratio can be infinitely expanded in
practical application, because in the case of few verification
samples, the train verification ratio lacks reliability. There-
fore, we suggest to choose a higher ratio when considering
the number of samples.

3) DIEBOLD-MARIANO TEST
For the sake of further assessing and discussing the effec-
tiveness of the developed combination prediction model,
this section discusses the Diebold-Mariano (DM) test
for prediction availability and evaluation of prediction
performance [58].

The DM test is used to verify the difference of the predic-
tion effectiveness between the established model and other
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TABLE 9. The definition of MOPSO parameters.

TABLE 10. The definition of MOPSO parameters.

Data Model Combined model EEMD-MLP EEMD-LSTM
EEMD-MLP 1.63523%3%
A EEMD-LSTM 6.29493% 4.55273%
EEMD-ARIMA 7.16293% 7.0757% 5.12893%
EEMD-MLP 0.6297 3% % %
B EEMD-LSTM 3.2710% 3.90793%
EEMD-ARIMA 8.3663% TATT3X 8.6176%
EEMD-MLP 3.8890%
C EEMD-LSTM 6.7316% 5.8325%
EEMD-ARIMA 9.2991 3% 8.89903 6.3036% b
EEMD-MLP 2.05133%
MEAN  EEMD-LSTM 5.4325% 4.7644%
EEMD-ARIMA 8.27613% 7.8174% 6.6834%

comparative models. Considering the significance level «,
zero hypothesis Hy indicates the predictive effectiveness of
the established model and the comparason model are not
significantly different. The meaning of Hj is contrast with Hg.
The relevant formulas is shown as:

Hy : E[F(e")] = E[F(e*)) & Hy : E[F(e))] # E[F(e?)]
(22)

In the fomula, F represents the loss function of prediction
error. And etl, et2 are the error sequence predicted by selected
model. In addition, the statistics of DM test can be defined in
the following ways:

> (L(erril) - L(errl.z)) 5
s
VS%/n

In which, $2 is the estimate of the variance of d, =
L(errl.l) — L(errl.z). Assuming a certain significance level «,
the obtained value DM is in comparison with that of zy 2.
Once DM statistics exceed the interval [—zq/2, Za/2], Ho
can be rejected. This shows the predictive performance of
the establishd model and that of the comparative model are
significantly different, which means that H; will be accepted.

In this part, we use the DM test to testify the validity
of the proposed model. The comparison are set between all
of the following models and the proposed model, that is,
EEMD-LSTM and EEMD-ARIMA compared with EEMD-
MLP, EEMD-ARIMA compared with EEMD-LSTM. On the
basis of the fundamental principle of DM test, no significant
difference between the two models of the forecasting effec-
tiveness is the main idea of the zero hypothesis, while there
exists significant difference in the forecasting effectiveness of
the two models is the main idea of the alternative hypothesis.
Table 9 shows the average DM test results for the three
datasets.

As can be seen from Table 9, in the multi-step prediction,
at the 1% significance level, the established combination
model is different from others. In addition, at 5% signifi-
cance level, for the comparison result of models with differ-
ent preprocessing methods, the minimum value of |DM| is
0.629747, which can makes the zero hypothesis be rejected.
Moreover, for some traditional individual models, including

DM = (23)
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Data Data A Data B Data C

Model

2-order

0.9248

l-order 2-order 1l-order 2-order 1-order

0.9350  0.9500 0.9058  0.9596

Combined model 0.9647

EEMD-MLP 09626 09313 09489 0.9028  0.9578  0.9231
EEMD-LSTM ~ 0.9577 09195 0.9428 0.8942  0.9512  0.9094
EEMD-ARIMA  0.9445 0.8934 0.9083 0.8212  0.9357 0.8767

EEMD-MLP, EEMD-LSTM and EEMD-ARIMA, all the val-
ues are far greater than Z,,2(Zp 005 = 2.58, Zp.o25 = 1.96).
Hence, at the 1% significance level, the difference compared
the combined model with the individual model is significant.
Hence, the established combination model is remarkably
superior to other comparative models.

4) FORECASTING EFFECTIVENESS

This part is mainly used to verify the prediction efficiency of
the developed model. The forecast effectiveness of the model
can be obtained not only by the average prediction error, but
also by the mean variance of prediction accuracy [59]. The
next section gives the main idea of prediction validity.

The k-th order prediction efficiency unit is obtained by

n

mt = > QiAf, where Q; is the discrete probability dis-
tributionl_alnd A; is the prediction accuracy at time #, and

n

> Qi =1, 0; > 0. An exception is that Q; is defined as Q; =
i=1

%, i=1,2,---,n,when the previous information of Q; can’t
be known under certain circumstance.

Afterwards the k-th order prediction efficiency is judged
by H (ml, m2, ... ,mk), among which H is a continuous
function, and it has a series of unit. The 1-order predic-
tion efficiency is obtained asH (m') = m! in the case of
H (x) = x be the continuous function of one variable. Then if
H(x,y) = x(1 — \/y — x?) represents a continuous function

of two variables, H (m', m*) = m! (1 - \/’”2_—(’”1)2> is

called the 2-order prediction efficiency.

In this section, the prediction effectiveness is applied to
assess and compare the prediction accuracy of the developed
combination model and other comparison models. If the pre-
diction effective value of the model is large, the prediction
ability of the model is relatively effective. The mean value of
the three datasets is presented in Table 10.

The specific details in Table 10 shows, on the one hand, the
predicted effective results of the combined model is always
higher than the predicted effective value of other models,
regardless of 1-order or 2-order. Hence, the proposed com-
bination model is obviously more effective than the whole
other comparative models. On the other hand, the results show
that the prediction validity value of EEMD-MLP model is
slightly lower than that of other comparison models, which is
level at the second effective model compared with the other
comparison models.
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Algorithm 1 MOPSO

Input:

y§0) = O1),y9@), - -, yO(g))-the training samples

¥ =0+ 1).y%g+2). -, yO(g+ ))-the testing samples
Output: 0

j;; ) = 6O(g + 1), yO(g +2), -, yO(qg + 1))-the forecasting data
Parameters:

t - the current iteration number
d - the number of dimension
J - currently evolving particles

1 /*Initialize the population P and archive set A. */

2 /* Calculating the density information of particles in the archive set. */
3 /*Calculation of particle set A/ better than Pj:inA;. */

4 FOR k =1 TO |A;|

5 A=A+ {Ap Ak < Pj¢, Ak € Ar}

6 /*Calculating the particle set GJ with the lowest density in AJ.*/

7 G = min{Density(Ay), k = 1,2, ..., |A], Ay € A}

8 /*Update particle position and velocity in the population.*/

9 IF |G| > 1 THEN g;, = Rand{G/}

10 FORi=1TOd

11 /fCalculate pqsition range‘[x;')t, )'cj’t] and speeq range [v]’j’t, 17]’:,{]*/

12 v = xwvj +aRip), = x; ) + c2Ra(gj; — xj,))

13 x;;+1 = x;,t + le',t+l

14 xi ;41 Cross-border handling

15  /*Update archive set.*/

16 IFA; = ® THEN

17 FORk=1TO |P;41|

18 A1 = A1 + {Prrt1|Prrtt < Pigp10rPr gy <> Pig1,i=1,2, ..., |Pryal, i # k)
19 ELSE

20 FOR k=1 TO |P; |

21 Ayt = A H {Proiit Pt < AjgorPr oy <> A, i=1,2, ..., |Pyal, i #k}
22 ENDIF

23 /[*Output particle information in archive set.*/

5) FORECASTING EFFECTIVENESS

The bias-variance architecture is selected to assess the effec-
tiveness of the combination model and other single models.
The validity of prediction model is a comprehensive stan-
dard to measure the accuracy and stability of forecasting
model. When evaluating the validity of the forecasting model,
the accuracy and stability of the forecasting model are very
significant. No matter accuracy or stability, it is not enough to
consider only one standard. The average difference between
the observation value y, and the prediction value y, on all
the observation and prediction data is the composition of the
absolute value of Bias(y). This indicates that if the absolute
value of Bias(y) is small, the predict ability of the prediction
model is more accurate. In terms of variance, the smaller the
Var(9), the more stable the prediction results of the prediction
model. Therefore, the bias values in Table 11 indicate that
the bias absolute value of other models is greater than the
absolute deviation value of the combined model, indicat-
ing that the combination model show more accuracy than
other models. The values of variance analysis show that the
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TABLE 11. The definition of MOPSO parameters.

Bias- Combined EEMD- EEMD- EEMD-
Variance model MLP LSTM ARIMA

Bias 0.0036 0.0588 0.0456 0.1714
Variance 0.1123 0.1162 0.1455 0.3100

combination model has the most stabilization performance.
The results show the combined model is the most accurate
and stable model in wind speed forecasting, and its prediction
effect is obviously superior to that of a single model.

V. CONCLUSION

With the increasing demand of renewable energy for pollution
free energy, the requirement for renewable energy utilization
and management into the electric system is also increasing.
It should be noted that in the field of prediction, accuracy and
stability should be equally important. Therefore, it is imper-
ative to develop a technology which could obtain satisfac-
tory accuracy and stability simultaneously. Nevertheless, as a
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result of the randomness and intermittence of wind speed, it is
hard to get both the accuracy and stability by a single model.
In order to conquer this tricky issue, this paper develops a
combined model on the basis of EEMD-MLP, EEMD-LSTM
and EMD-ARIMA model, and uses the MOPSO algorithm
to calculate the weight of the combined model of wind speed
prediction. Specially, in each EEMD-ANN model, the EEMD
is selected to process the wind speed sequence to improve the
prediction performance.

In view of the prediction performance, in dataset A,
the mean value of MAPE of the EEMD-MLP, EEMD-LSTM
and EMD-ARIMA and combined model are 4.2318%,
3.7391%, 5.5545% and 3.5271%, respectively. In dataset B,
the mean value of MAPE for these models is 5.7187%,
5.1124%, 9.2347% and 5.0176%, respectively. In dataset C,
the mean value of MAPE of above models are 4.8838%,
4.2168%, 6.4343% and 4.0142%, respectively. Moreover,
the error fluctuation of each prediction point of the wind
speed combination model is the minimum, which shows that
the combination model could enhance the accuracy and sta-
bility of the prediction. In this paper, one of the deep neural
networks LSTM is adopted to wind speed prediction, and
the LSTM is the recycle neural network (RNN) optimized
algorithm. Furthermore, to enhance the accuracy and stability
of wind speed predicting, a deep multi-layer perceptron is
given. They all take a good express in forecasting accuracy
and stability.

An example based on power grid shows that improving
the prediction accuracy and stability is of great significance
for wind power grid connection. The combination model
has higher precision and steady performance, which can be
used in electric system dispatching and has a wide range of
economic and social benefits. For instance, timely adjust the
scheduling plan, reduce the system reserve capacity, ensure
the power quality, reduce environmental pollution, etc. For
the future development direction, the combination prediction
model proposed in this study can be applied to stock index
prediction, traffic flow prediction, power load prediction and
product sales prediction, as well as other forecasting fields.
At the same time, flexibility can obtained according to the
required accuracy and stability.

APPENDIX
The pseudo code of MOPSO.
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