
Received January 10, 2020, accepted February 8, 2020, date of publication March 13, 2020, date of current version April 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980236

Ensembling Artificial Bee Colony With
Analogy-Based Estimation to Improve Software
Development Effort Prediction
MUHAMMAD ARIF SHAH 1,2, DAYANG NORHAYATI ABANG JAWAWI 1,
MOHD ADHAM ISA 1, MUHAMMAD YOUNAS 3, ABDELZAHIR ABDELMABOUD 4,
AND FAUZI SHOLICHIN 1
1Department of Software Engineering, Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2Department of IT and Computer Science, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur 22620, Pakistan
3Department of Computer Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
4Department of Information Systems, King Khalid University, Abha 62529, Saudi Arabia

Corresponding authors: Muhammad Arif Shah (arif.websol@gmail.com) and Muhammad Younas (younas.76@gmail.com)

This work was supported by the Universiti Teknologi Malaysia (UTM) through UTM-TDR Research under Grant 06G23.

ABSTRACT Analogy-Based Estimation (ABE) is one of the promising estimation models used for
predicting the software development effort. Researchers proposed different variants of the ABE model, but
still, the most suitable procedure could not be produced for accurate estimation. In this study, an artificial
Bee colony guided Analogy-Based Estimation (BABE) model is proposed which ensembles Artificial Bee
Colony (ABC) with ABE for accurate estimation. ABC produces different weights, out of which the most
appropriate is infused in the similarity function of ABE during the stage of model training, which are later
used in the testing stage for evaluation. There are six real datasets utilized for simulating themodel procedure.
Five of these datasets are taken from the PROMISE repository. The predictive performance is improved for
BABE over the existing ones. The most significant of its performance is found on the International Software
Benchmarking Standards Group (ISBSG) dataset.

INDEX TERMS Analogy based estimation, cost estimation, artificial bee colony, software development,
project management.

I. INTRODUCTION
Estimating the software development effort is a paramount
and chaotic activity in project management. Planning and
controlling a software project become unmanageable without
accurate estimates. The effort prediction models have been
successful in estimating the development effort of a software
project as compared to the unreliable estimates practiced in
the industry. Time and budget are the nitty-gritty of a software
project due to the rapid evolution of software-dependent hard-
ware technology and rapid change in customer requirements.
Moreover, as opposed to other types of projects, the nature of
software projects is intangible due to which, the effort cannot
be measured until work on the project is initiated [1].

Researchers have been working for decades to accurately
estimate software development effort for effective planning

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao Liu .

and controlling software projects. The estimation process
progressed from very simple assumptions to complex tech-
niques. Today, the estimation methods can be divided into
two broader categories of Algorithmic models and Non-
Algorithmic models. According to Jones [2], the manual rule
of thumb is the very first algorithmic estimation method
which was initiated in 1950. The users of quality software
increased due to which regression techniques and linear
equations-based estimationmodels were brought forward [3].
According to Jones [2], Barry Boehm, Joe Aron, and Larry
Putnam are the founding fathers of estimation methods for
software. Interactive Productivity and Quality (IPQ) was the
first automated estimation tool presented in 1973 by the
researchers of IBM. Barry Boehm as one of the most contrib-
utor to estimationmodel producedCOCOMOandmany other
estimation algorithms which are quite prominent until yet [4].
Estimation of Resources-Software EstimatingModel (SEER-
SEM) and Putnam Lifecycle Management (SLIM) models

58402 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0090-3333
https://orcid.org/0000-0001-8300-8523
https://orcid.org/0000-0002-0049-8510
https://orcid.org/0000-0003-4161-7843
https://orcid.org/0000-0001-6265-5035
https://orcid.org/0000-0003-2780-2639
https://orcid.org/0000-0001-8400-5754

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

also followed the guidelines of COCOMO [3]. Function Point
(FP) was another method introduced to measure and predict
the size of the software project [5]. Prior to FP, the Lines Of
Code (LOC) estimation method was used in all the studies
but FP was found a much more accurate and general-purpose
estimation method because it focuses on measuring the func-
tionalities rather than the number of lines or statements in a
program. The swift advancements in software development
methodologies guided to bring about COCOMO II which
is an extended version of COCOMO [6]. The COCOMO II
model used FP to measure the size of a software project based
on functionalities rather LOC.

Non-Algorithmic estimation models use the completed
projects for estimation as opposed to algorithmic models.
Algorithmic models are usually unable to handle the intan-
gible and dynamic nature of a software project. It becomes
burdensome and difficult to estimate the development effort
of software due to lack of information in the early stage of
a project which led researchers to develop non-algorithmic
estimation models. The expert judgment methods were prof-
fered as some of the researchers felt the need for expert
opinion in the estimation process [7]. There were several
studies observed to have the guidelines of expert judgment
analyzed [8], [9].

Classification And Regression Tree (CART) is another
very prominent non-algorithmic estimation method that is
used to construct a regression tree based on the past project
information where the amount of effort applied is represented
by leaves. The targeted project’s features determine the path
to be traversed from root to leaf.

Analogy-Based Estimation (ABE) is a commonly used
non-algorithmic model that estimates the cost of a targeted
project by comparing and finding the most related project
from the pool of past projects [10]. Comparison among
projects is performed based on similar features such as FP,
the type of application, LOC. Some of the researchers showed
interest in considering interval rather fixed value for estima-
tion due to disparities in estimates.

Different soft-computing techniques such as Neural Net-
work, Fuzzy Logic, Particle Swarm Optimization (PSO),
Nearest Neighbors, Genetic Algorithm (GA), etc. are also
adopted for increasing the estimation accuracy of software
development effort [1], [11]–[17]. The optimization tech-
niques focus to improve the feature selection or attribute
weighting in the similarity function of ABE. Most of the
optimization algorithms are inspired by nature, such as PSO
mimics the bird flocking and fish schooling behavior. Firefly
Algorithm is inspired by the attraction behavior of fireflies
matting. Ant Colony Optimization is motivated by the behav-
ior of simulated ants. Artificial Bee Colony (ABC) algorithm
represents the bees’ behavior of food search. According to
Cao et al. [18] ABC is a popular optimization algorithm due
to better performance of search optimization and fewer con-
trol parameters. According to a comparative study conducted
by Bao and Zeng [19], ABC performs better than Differential
Evaluation (DE), PSO, GA in terms of accuracy. This study

focuses on optimizing the feature weights to improve ABE
by ensembling ABC with it as to the best of our knowledge,
the impact of ABC on feature weighting of ABE has not been
studied.

The background and related works are presented in the
introduction section, moreover, the related work of ABE
and ABC is presented in their respective sections. The rest
of the paper is organized as Section II and III, explain the
ABE and Artificial Bee Colony (ABC) algorithm respec-
tively. Section IV includes details of the proposed model. The
results are shown in Section V followed by the conclusion in
Section VI.

II. ESTIMATION BY ANALOGY (ABE)
ABE or EBA was introduced as the non-algorithmic estima-
tion method by Shepperd and Schofield [10]. It estimates the
effort of a new project by comparing it with the historical
projects. There are usually four parts of ABE,

1) Historical Projects
2) Similarity Function
3) Solution Function
4) Associated Retrieval Rule

Each of which can be described as:

1) Collecting the data of previous projects to form a his-
torical dataset.

2) Selecting the project’s appropriate features.
3) Retrieving the data of past projects to find similari-

ties with the target project. The weighted Manhattan
Distance and Weighted Euclidean Distance are usually
preferred at this stage.

4) To estimate the software development effort of the
target project.

A. SIMILARITY FUNCTION
In ABE, similarity function is used to compare the features
of two projects. Euclidean Similarity (ES) and Manhattan
Similarity (MS) are the two prominent similarity functions
used by ABE to find out the similarity between target and
past projects [10]. The ES is shown in Equation 1.

Sim
(
p, p′

)
=

1∣∣∣√∑n
i=1 wiDis (fi,fi

′)+ δ

∣∣∣δ = 0.0001

Dis (fi, fi)=

(fi−f
′
i) if fi and f

′
i are numerical or ordinal

0 if fi and f ′i are nominal and fi = f ′i
1 if fi and f ′i are nominal and fi 6= f ′i


(1)

where p and p′ represent the projects to be compared,wi is the
weight allocated to the features which can range between 0
to 1. δ is used to retrieve a non-zero result. fi and f′i repre-
sent the project features while n determines the number of
features.
There are many similarities between MS and ES, but

MS calculates the absolute difference between features.

VOLUME 8, 2020 58403

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

MS function is shown in Equation 2.

Sim
(
p, p′

)
=

1[∑n
i=1 wiDis

(
fi, f ′i

)
+ δ

]δ = 0.0001

Dis
(
fi, f ′i

)
=


∣∣fi − f ′i ∣∣ if fi and f ′i are numeric or ordinal
0 if fi and f ′i are nominal and fi = f ′i
1 if fi and f ′i are nominal and fi 6= f ′i

(2)

where p and p′ represent the projects to be compared,wi is the
weight allocated to the features which can range between 0 to
1. δ is used to retrieve a non-zero result. fi and f i′ represent the
project features while n determines the number of features.

B. SOLUTION FUNCTION
Once the K most similar projects are chosen, it becomes
possible to predict or estimate the effort of target
project according to the selected attributes or fea-
tures. The Closest Analogy [20], the median [21], average
and the inverse weighted mean of the most similar project
are the most common solution functions [22]. Median refers
to themedian or effort forK > 2 similar projects, mean refers
to the average of effort for K > 1. In estimation, the portion
of each project is adjusted by the inverse distance weighted
mean by Equation 3.

CP =
K∑

K=1

Sim(p, pk)∑n
i=1 Sim(p, pi)

Cpk (3)

where the new project is depicted by p, pk shows the most
similar project at kth, Cpk illustrates the value of effort of kth
pk and the total number of the projects is denoted by K.

III. ARTIFICIAL BEE COLONY
Dervis Karaboga developed the Artificial Bee Colony (ABC)
algorithm which reflects the honey foraging behavior of
honey bees [46]. In ABC, bees show up a swarm or collective
intelligence to solve a particular optimization problem using
employed bees, onlooker bees and scout bees [47], [48].
Employed bees are responsible for the food sources allocated
where each bee is associated with an individual food source
that makes the number of food sources and employed bees
equal. Employed bee dances in the hive after it visits the
food source. The food sources are exploited by the employed
bees and the information of the nectar amount is passed on to
the onlooker bees. Onlooker bees and employed bees remain
same in number. The information received from employed
bees is utilized to exploit the food sources and the neigh-
borhood. This continues until the food sources are exhausted.
Once the food source is exhausted, its employed bee becomes
a scout to search for the newly available food sources. The
quality of the solutions of the food source is determined
by the nectar information. The onlooker bees mostly select
the food source based on the increased amount of nec-
tar information. The fundamental ABC steps can be seen
in Figure 1.

FIGURE 1. The workflow of artificial bee colony algorithm.

IV. RELATED WORKS
Numerous studies focused on the correlation coefficient to
improve ABE which is utilized for feature selection and
weighting. Features of the projects with strong correlation
are considered as the most similar features and are given
high weight whereas low weights are assigned to the features
with low correlations and are considered as less similar. The
uncorrelated features are marked as dissimilar and are elimi-
nated from the set of historical projects. This method has been
shown as a positive improvement to ABE by some of the stud-
ies [23], [24]. Another weighting technique, known as Rough
Set Analysis (RSA) [25] is also used for feature selection to
improve the performance of ABE [26]–[28]. RSA analyzes
dependencies between features, where the condition features
are considered as independent and decision features depict
the role of dependent features. In RSA, feature dependency
analysis produces numerous subsets of features called reducts
or classes. The most relevant feature is retrieved by taking
the intersection of all the reducts. The weighting criteria
of RSA is developed based on the existence of features in
core sets, and the frequency of decision rules and reducts.
Gray Theory is also one of the non-algorithmic estimation
approaches, in which gray depicts the concept of fuzziness,
known and unknown information is represented by white and
black respectively [29]. It is a statistical method to find the
level of similarity between two projects by comparing their
features. Since it also practices a comparison method, it was
adopted to improve the ABE performance [14], [30], [31].

Solution function is one of the vital parts of ABE because it
significantly affects the performance of estimation accuracy.
Accordingly, several researchers tried to apply adjustment
expressions to enhance the solution function. Adjustment
expressions are used to refine the solution function for better
estimates [11], [32], [33].

Researchers greatly utilized Search-Based Software Engi-
neering (SBSE) using metaheuristic searching methods
such as Genetic Algorithm (GA), Simulated Annealing,
Particle Swarm Optimization (PSO) [34] and Differential

58404 VOLUME 8, 2020

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

Evaluation (DE) [16], [17] for optimizing the performance
of ABE. Further studies that used SBSE for increasing the
software development effort prediction. There are different
optimization methods used to adjust feature weights in the
solution function of ABE. The most common optimization
method used for calculating feature weights in the ABE
model is GA [11], [26]–[28], [35]. Huang and Chiu [35] used
GA to find the best parameter in his defined linear and non-
linear equations. The parameters involved in the linear and
non-linear equations was concluded as a positive improve-
ment in the ABE’s performance. Kumari and Pushkar [36]
used GA for multi-criteria-based project selection. There
have been combined several techniques with GA to enhance
the effort estimation accuracy such as Gray Relational Sim-
ilarity technique [30], regression methods [37] and Linear
adjustment [33].

PSO has also been used bymany researchers to improve the
software development effort estimation. Lin and Tzeng [38],
Sheta et al. [39], and Hari and Reddy [40] used PSO to
improve the performance of the COCOMO estimationmodel.
PSO is considered computationally better than GA in selec-
tive cases as claimed by Bardsiri et al. [34]. Wu et al. [41] and
Bardsiri et al. [42] employed PSO for weight optimization in
the similarity measures of the ABEmodel. Bardsiri et al. [42]
used PSO in combination with GA, Neural Networks, GA
and Fuzzy Logic to design a localized effort estimation model
Liu et al. [43] adopted PSO to improve estimation by mini-
mizing the errors at the training stage. Azzeh et al. [44] used
PSO for the identification of optimal decision variable so the
tradeoff among different evaluation measures is presented.
PSO has shown good results due to high convergence but
the main goal in software development effort estimation is
to improve the accuracy. Artificial Bee Colony is said to have
good results in optimization accuracy then PSO [19].

The optimization targets or the fitness functions hold a
significant role in estimation due to the highly uncertain
nature of software projects. A detailed study on the impact
of fitness function on the estimation accuracy was conducted
by Ferrucci et al. [45] which concluded that the estimation
accuracy could significantly be improved by selecting the
appropriate and optimized performance metrics.

Artificial Bee Colony (ABC) has been used for a num-
ber of optimization problems in different domains. In some
recent studies, ABC has been adopted and modified for
software cost estimation. Sharma and Pant [49] Introduced
the Halton sequence for initial distribution in ABC and
applied the algorithm to handle the problems of predict-
ing the cost model parameters. Gharehchopogh and Dizaji
[50] proposed a hybrid of ABC, Chaos Optimization and
Bees Colony for software cost estimation in contrast to
the traditional COCOMO model. Khuat and Le [51] used
Teaching-Learning with ABC for parameter optimization
to overcome the limitations of the COCOMO II model.
Gharehchopogh et al. [52] tried to measure the depended
among the COCOMO factors using ABC for predicting the
effort and cost of software projects. Pratama and Sarno [53]

proposed to use ABC for optimizing and calibrate parameters
of COCOMO II for accurate effort estimation. Rao et al. [54]
hybridized ABC with local search to propose Multi-Layer
Perceptron Neural Network (MLPNN) for classifying ranked
attributes in the COCOMO dataset. Khuat and Le [55] pro-
posed a directed artificial bee colony for tuning the model
parameters values based on the actual effort of NASA
datasets. Gharehchopogh et al. [56] hybridized ABC with
Genetic Algorithm (GA) and claimed that introducing GA
based ABC improves the performance of software estimation
models.

Feature selection or optimizing the attribute selection from
large datasets is one of the applications of ABC. Gharehcho-
pogh et al. [56] combined ABC with Ant Colony Optimiza-
tion (ACO) to reduce the global search and eliminate the
stagnation behavior of ants by employed bees. Bees exploita-
tion is used by ants to find the best subset of feature and
the best ant; the subsets of features produced by ants are
adopted by the bees as food sources. Reisi et al. [57] proposed
feature weighted artificial bee colony for clustering the big
data to improve the clustering quality by allocating different
importance values to each feature. Hancer et al. [58] used
fuzzy mutual information to design multi-objective ABC for
selecting and filtering out the right attributes. Yavuz and
Aydin [59] presented an angle modulation technique used
with ABC for eliminating the problem of subset feature
selection by reducing the high dimensional optimization to
4-dimensional continues optimization; the study claimed to
have improved the classification accuracy. Kuo et al. [60]
combined Support Vector Machine and Decision Tree with
ABC for optimizing feature selection and parameters for rule
extraction Ozturk et al. [61] implemented the new solution
generation procedure through gene inspired components to
enhance discreet ABC for handling the selection of similar
cases. Wang et al. [62] introduced equivalence word set to
ABC for feature selection and to filter redundant information
from a large pool of data. Wang et al. [63] improved the
initialization and scout bee steps of ABE for optimizing the
classification performance and to optimize feature subset
selection. Hancer et al. [64] proposed binary and continuous
representations of ABC for feature selection using multi-
objective artificial bee colony which was integrated with
genetic operators and sorting procedures.

V. ARTIFICIAL BEE COLONY GUIDED ANALOGY-BASED
ESTIMATION (BABE)
This section explains the working of our model. The training
stage of BABE is discussed in Section B and the testing stage
is explained in Section C . A group of training set projects
and basic projects are infused in our model to train the model
for predicting effort ofthe target project. The ABE part of
it is adjusted by feature weights which are considered as
the candidate parameters and the ABC part calculates the
feature weight to reduce the value of MMRE which indicates
lowering the estimation error for the training set. The trained
BABE model received the test data for development effort

VOLUME 8, 2020 58405

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

estimation. Figure 2 and Figure 3 presents the flow of the
training stage and testing stage respectively, whereas Algo-
rithm 1, shows the Pseudo-code of BABE.

A. PERFORMANCE MEASURE
There have been used several methods for evaluating the per-
formance of estimation methods in primary studies. Accord-
ing to the results of this study, the most prominent of them
are Relative Error (RE), Mean Relative Error (MRE), Mean
Magnitude of Relative Error (MMRE), and Percentage of Pre-
diction (PRED). The computational equation of RE, MRE,
MMRE, and PRED are shown in Equation 4, 5 and 6 simul-
taneously [10].

RE = (Estimated − Acutal)/Actual) (4)
MRE = |Estimated − Actual| /(Actual) (5)

MMRE =
∑

MRE/N (6)

PRED (X) =
A
N

(7)

AE = Estimated − Acutal (8)

EF =
PRED (25)
1+MMRE

(9)

MAR =

∑N
i=1 AEi
N

(10)

SA = 1−
MAR

MARp0
(11)

1 =
MAR−MARp0

Sp0
(12)

In Equation 6 and 7, N represents the number of projects,
A represents the projects with MRE >= X. The level of
X is usually kept at 0.25 in software development effort
estimation. The main aim of all the effort estimation models
is to increase PRED and decrease MMRE. Evaluation Func-
tion (EF) is another evaluation matric that was proposed by
Araújo et al. [65] to accurately checkthe validity of predic-
tion. EF in Equation 9 is designed by combining MMRE and
PRED to improve the performance of evaluation in estimation
models.

The MRE is considered and claimed as biased by many
studiesbecause of its asymmetric distribution. Since both
MMRE and PRED are based on MRE, they are also
categorized as biased performance measures [66], [67]. Mean
Absolute Error (MAE) on the other side does not pro-
duce asymmetric distribution. It canbe calculated by Equa-
tion 8 and 10. However, Itcould not be used in its form
as it is very difficult to interpret due to non-standardized
residuals Shepperd and MacDonell [67] introduced Standard
Accuracy (SA) as in Equation 11 (where Mean Absolute
Residual(MARP0) shows the mean of random guessing for
a large number of executions) which was later improved by
Langdon et al. [68] that helps to estimates the effect size
as shown in Equation12 (where Spo indicates the sample
standard deviation for the random guessing). SA tests the pre-
diction model if it generates the understandable predictions,
in the other case the prediction model is not stated as useful.
SA quantifies the reliability of an estimation model. The

TABLE 1. 3-fold cross-validation for DABE.

negative values of SA are unacceptable whereas zero indi-
cates that the estimation model is less reliable. The estimated
results produced by predictive models are verified by the
Effect Sizeas it checks and compares the model effectiveness
with random guessing. Effect Size (1) categorizes values
in large (0.8), medium (0.5) and small (0.2). If the value
is greater then or equal to 0.5 the results are considered as
favorable [44], [67].

B. TRAINING STAGE OF BABE
The ensembled estimation model is designed based on the
weight adjustment of features by incorporating the flavor of
ABC in the similarity function of ABE. The ‘effort’ feature
of the datasets is taken as the target feature or the depen-
dent feature and the rest of the features are grouped as the
independent feature for development effort estimation. In the
training stage, the total set of projects is divided into three
different sets such as basic project sets, training project sets,
and testing project sets. The first two are utilized for model
training purposes and the third step is left for model testing
purpose or evaluation motives. Training and testing projects
are compared with the basic projects to find suitable weights
from training projects and to evaluate the estimation model
accuracy through testing projects.

In the execution of this activity, a project from the training
set is taken as the targeted project (which is removed from
the total set) which is passed through the weighted similarity
function such as Euclidian or Manhattan. The optimized
weights generated (ranged from 0 to1) by the Employee
Bees, Onlooker Bees, and Scout Bees, are assigned to the
independent features from the similarity function. A compar-
ison between the removed project and the basic project set is
performed to identify the most similar or closest by analogy
project.

The most similar project found through similarity func-
tion is then dealt with the solution function of ABE to pre-
dict the development effort using the closest analogy, mean,
median or inverse weighted mean. The development effort
calculated by this solution function is then evaluated byMRE.
The flow of these events is recursively repeated while each
estimation is performed for all the training projects.

The goal of all software estimation models is to reduce
MMRE and increase PRED(0.25) which leads this study to
adjust BABE for minimizing the value of MMRE. MRE
values calculated from the earlier step are passed through the
ABC part of the BABE model. The produced weights are

58406 VOLUME 8, 2020

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

TABLE 2. Dataset employed from PROMISE Repository and their statistical information.

FIGURE 2. Training stage of BABE.

considered as the optimized weights if the stopping criterion
is met. The optimized weights are infused in the similarity
function to be used in the testing stage rest of the weights are
reiterated in the training stage. Figure 2 depicts the complete
procedure of the training stage of the BABE model.

C. TESTING STAGE
The testing stage uses training set projects to determine the
performance of the BABE model’s accuracy. The testing
stage is almost similar to the training stage except for projects
accompanied by the basic projects are from the testing set
rather than the training set and it uses the generated optimized

weights instead of producing these weights as done in the
training stage. Further, the optimized weights produced in
the training stage are utilized and infused in the similarity
function for the purpose of model evaluation in the testing
stage. Figure 3 shows the complete procedure of the training
stage of the BABE model.

D. EVALUATION
The performance evaluation will be too much expectant if the
accuracy is calculated based on the projects which are used
during the model implementation. It may lead to a biased

VOLUME 8, 2020 58407

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

FIGURE 3. The Testing Stage of BABE.

model evaluation for estimation accuracy as the errors would
always be low [34]. Therefore, a cross-validation method is
used for pragmatic accuracy evaluation which divides the
complete data into a number of train and test sets. The training
sets contain the estimation results of datasets which are used
during the model implementation. In the testing step, the esti-
mation accuracies are evaluated using some unseen datasets.
In the stage of testing, the estimation accuracies of all train-
ing sets and testing sets are combined for cross-validation.
A three-fold cross-validation approached is adopted in this
paper for evaluating the realistic accuracy of the model,
as shown in the subsequent section.

1) CROSS-VALIDATION
There should be three main steps involved in the process of
cross-validation, such as basic sets, training sets and test-
ing sets. The basic, training and testing sets are randomly
selected from the dataset which can be taken for n-fold cross-
validation. 3-fold cross-validation should be preferred when
the dataset is divided into three main groups. All data samples
are partitioned into three groups on random bases, out of
which two are grouped together in the training group/set,
while the third sample is taken as the training set. These
groups are formed three times to entertain all possible com-
binations.

In this study, a 3-fold kind of approach is adopted as shown
in Table 1. There are six arrangements formulated in the
proposed model as shown in Table 1, where ‘set’ reflects
the basic group, which means the whole dataset. There are
three subsets (set1, set2, set3) selected from ‘set’ as basic,
train, and test sets. The number of projects in each set is the
same. The performance is measured at each stage for two
separate arrangements, the mean of which is considered as

the resultant stage. The mean value calculated on the results
of three stages determines the final results.

2) DATASET DESCRIPTION
There are six datasets used in this study to evaluate the
performance of BABE. Five of these datasets are publicly
available such as Desharnais, China, Maxwell, Nasa93, and
Cocomo81 as shown in Table 2. The Desharnais dataset
is based on Canadian projects. China dataset contains Chi-
nese software projects. The Nasa93 and Cocomo81 datasets
include Software projects from the United States. The
Maxwell dataset is composed of Finnish banking projects.
According to Dejaeger et al. [47] the datasets can be grouped
into categories such as project data, development features,
size features, environment features. Statistical information
of six public datasets is shown in Table 2. Effort values of
the datasets are unevenly distributed as determined by the
skewness values of effort up to 6.6 [47], [48].

International Software Benchmarking Standard Group
(ISBSG) is an Australia based organization, which collects
information about software projects from around the world.
The ISBSG Release 11 dataset is used in this study. This
dataset contains information of 5052 projects. There are
numerous attributes describing each software project of this
dataset. The project attributes for this data are collected from
24 countries. The United States has made a major contri-
bution with 31% of all the projects. Following the USA,
Japan, Australia, and Finland are the three countries whose
contribution to it is a double-figure of percentages such as
17%, 16%, and 10%.

VI. EXPERIMENTAL RESULTS
Estimation problems need data preprocessing before the
model execution because the training quality can seriously be
affected. This study normalizes all the independent features

58408 VOLUME 8, 2020

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

Algorithm 1 Pseudo-Code of BABE
Algorithm: BABE
Input: f : Objective Function

Begin:
Step1: Collect the data of previous projects to form a historical dataset.
Step2: Select the project’s appropriate features.

Sim
(
p, p′

)
=

1[√∑n
i=1 wiDis

(
fi, f ′i

)
+ δ

]δ = 0.0001

Dis
(
fi, f ′i

)
=


∣∣fi − f ′i ∣∣ if fi and f ′i are numeric or ordinal
0 if fi and f ′i are nominal and fi = f ′i
1 if fi and f ′i are nominal and fi 6= f ′i

Step2.1: Find suitable weights for feature selection
Step2.1.1: Initialize the food source

xij = x minj+ rand(0,1) (x maxj− x minj)

where j represents the food source position from 1 toD (Search Space Dimensionality), x min j and x max j shows
the lower bound and upper bound of j; i indicates the food source index from 1 to SN (Population size)

Step2.1.2: The employed bees treat their food source

vij = xij + ϕij(xij−xkj)

where j shows the randomly selected position, xi depicts the current food source, xk represents theselected food
source for the current food source. Vi is the treated food source by the jth parameter of xi and the randomly
generated values ranging −1 to 1 is shown by ϕij.

Step2.1.3: The greedy selection is applied in xi and vi., the employed bee memorizes vi as the current sourceand leaves xi if
f (υi) > f (xi).

Step2.1.4: A probability value is assigned to each food source

pi =
fitnessi∑SN
i=1 fitnessi

where SN shows the size of population and fitness i depicts the value of food source xi.
Step2.1.5: The food source is selected by each of the onlooker bees in a probabilistic way and starts searching in a similar

manner to the phase of employed bee
Step2.1.6: A new source is generated by the scout bee using Step2.1.1 if the limit value determines any exhausted food source
Step2.1.7: Step2.1.2 to Step2.1.6 are repeated until the stopping criterion is met (the maximum number of cycles)
END

Output: The Optimal Target Weight is Selected for the Testing Stage

ranging from 0 to 1 for producing the same effect on effort
feature. PRED and MMRE are used to compare the accu-
racy of BABE model. There are 5 values ranging from 1 to
5 implemented to the solution function e.g. to the inverse
weighted mean (Equation 3). The results produced by k
Nearest Neighbor (kNN) are recorded, and so, to evaluate
the effects of similarity function on the estimation process
Euclidean similarity is used.

The results retrieved from the simulation procedure and
the analysis performed on those results are discussed in this
section. The simulation was conducted to retrieve the most
appropriate adjustment for ABE through (k value, similarity
measure, solution function, etc.) and the evaluation measures

such as MMRE, PRED (0.25) and SA. Eventually, these
performance measures were used to select the most accurate
variant of ABE as a software development effort estimation
model. BABEwas found as themost appropriate model based
on accurately estimated results. Desharnais and Maxwell
datasets were taken to perform the experimental procedure.
The generalization error for both the datasets can be seen
in Table 3 and Table 4. For Euclidian Distance, K=3 was
the most significant value as computed by MMRE. The K
value at ‘5’ produced the most significant configuration for
ABE inverse weighted mean on both the datasets. Therefore,
the Desharnais and Maxwell datasets were evaluated by SA
too, to confirm the most significant configuration for ABE.

VOLUME 8, 2020 58409

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

TABLE 3. Results of BABE on Desharnais Dataset.

TABLE 4. Results of BABE on Maxwell Dataset.

TABLE 5. SA results for Desharnais.

The test results were evaluated against average, standard
deviation, minimum and maximum values for SA. The SA
results for Desharnais are shown in Table 5. The best values
of SA as maximum and average fall at k=3, with average
(39.652) and maximum (92.362) in the training stage. In the
testing stage, the most suitable values occurred at k=3 with
average (61.651) and maximum (91.956).

TABLE 6. Solution Function results for Desharnais for best k value.

TABLE 7. SA results for Maxwell for best k value.

SA values for the Maxwell dataset are shown in Table 7.
The best SA values fall at k=3 with average (51.495) and
maximum (97.542) in the training stage. In the testing stage,
the most suitable values fall at k=3 with the average (53.329)
and maximum (96.621). All the solution functions are not
covered at k=1 and k=2 in the implementation,therefore,
these values are not used in the comparison. The simu-
lation was performed on SA for Desharnais and Maxwell
datasets to further support the solution function against best
k value. SA was selected as the benchmark for analyzing the
results due to is the capability of generalization. Average,
Standard Deviation, Minimum and Maximum of SA values
of the solution functions (Inverse Weighted Mean, Mean
and Median) for Desharnais dataset are shown in Table 6.
The maximum and average SA occurred as 67.544 and
31.997 respectively. The Minimum, Maximum Average and
Standard Deviation of SA values of the solution functions
(Inverse Weighted Mean, Mean and Median) for Maxwell
dataset can be seen in Table 7. The maximum and average SA
occurred as 97.151 and 62.558 respectively. It should be noted
that the results are generated from the selected projects, all the
projects from data may affect the results and performance of
our proposed solution.

VII. DISCUSSION
This section concludes that ES at k=3 for solution func-
tion is the most appropriate configuration for ABE based
on the analysis performed in this section. The comparison
and summary of the results for ABE, GAABE, DABE-3,
PSO-ABE, and BABE can be seen in Table 9. The SA
values for the BABE model on each dataset are as, China

58410 VOLUME 8, 2020

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

TABLE 8. Solution Function results for Maxwell.

TABLE 9. Precision Values for Friedman Statistical Analysis.

(Training: 96.003, Testing: 97.62), Cocomo81 (Training:
96.821, Testing: 99.201), andNasa93 (Training: 97.014, Test-
ing: 96.180). The 1 values of this model for training and
testing on China, Cocomo81 and Nasa93 are (0.228 and
0.213), (0.245 and 0.143) and (0.257 and 0.169) respectively.
The detailed results analysis shows improvements in the esti-
mation of BABE as compared to the existing models.

Figure 4 shows the percentage improvement of BABE
against the existing models. It showed 2%, 1%, 5% and
88% improvement against PSOABE, DABE, GAABE,
and ABE respectively on the Nasa93 dataset. On the
Cocomo81 dataset, it showed 11%, 7% and 75% against
PSOABE GAABE and simple ABE.

Its performance is found at par with DABE on the
COCOMO81 dataset. On China dataset, it showed improve-
ments of 5%, 1%, 12% and 87% against PSOABE, DABE,
GAABE, and simple ABE respectively. It showed a per-
centage decrease of 6% against PSOABE and GAABE on
the Desharnais dataset, whereas an improvement of 1% and
84 percent are found against DABE and simple ABE. On the
Maxwell dataset, BABE showed 2%, 1% and 84% improve-
ments against PSOABE, DABE, and simple ABE whereas it
showed a 4% percentage decreased against GAABE. On the
ISBSG dataset, which is the largest among all of the provided,
it showed 19%, 5%, 25%, and 40% improvement against
PSOABE, DABE, GAABE, and simple ABE respectively,
which is quite a significant improvement.

FIGURE 4. Percentage improvement of BABE against the existing models.

The results revealed that the type and size of the dataset
do affect the performance of weight optimization models
for ABE. BABE showed significant performance on the
ISBSG dataset which shows its supremacy on the existing
weight optimization-based estimation models for ABE on
the selected projects. Since the results on different datasets
produced are different there has been a statistical analysis per-
formed for validating the performance of the BABE model.

VIII. STATISTICAL PERFORMANCE EVALUATION
The software engineering datasets are heteroscedastic (there
is a non-constant variance of subpopulations), therefore, non-
parametric statistical tests are conducted for evaluating the
estimation models’ performance. Before conducting these
non-parametric tests, the null hypothesis must be formu-
lated which helps to evaluate the opposite situations of the
alternate hypothesis. Ho represents the null hypothesis. This
non-parametric test helps in statistical computation which
rejects a hypothesis at a given significance (α) level. The
smallest value of α concludes the null hypothesis rejection.
This level indicates the p-value, which shows the probability
of achieving at least as high as was expected conclusion while
the null hypothesis is true. Instead of α, it is recommended
to use p-value, because it can evidently estimate the result
significance (the lower value of p shows the higher valida-
tion against the null hypothesis [69]. Pair wise and multiple
comparisons are two major classifications of non-parametric
tests. Multiple comparisons method is recommended to be
used if there are more than two algorithms considered [70],
[71]. To correlate the prediction models’ results, various non-
parametric tests can be performed. Friedman and Wilcoxon
Signed tests belong to the two different classes of parametric
tests. Friedman is used for analyzing multiple comparisons
while the Wilcoxon Signed test conducts pair wise compar-
isons [70], [72]. The following null hypothesis is assumed.

VOLUME 8, 2020 58411

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

TABLE 10. Friedman Test Statistics.

TABLE 11. Mean Ranks of Algorithms.

TABLE 12. Descriptive Statistics of Friedman Test.

Ho: The existing imputation techniques used with ABE are
equivalent to or better than the proposed ones

Multiple comparisons tests are performed for statistical
analysis. For the Friedan test, at first, the original results are
transformed into ranks which ranks each algorithm according
to each dataset. The algorithmwith the best values is assigned
rank 1, the second-best is assigned rank 2 and so on. The
Friedman test by Demšar [71] and García et al. [72] is utilized
in this study for testing the null hypothesis. For the Kth
predictionmodels andN datasets the ranks (rji). The Friedman
statistics as Equation 13 was obtained. The Chi-Square value
is represented by x2f in Equation 14.

F
F=(N − 1)x2F

/
N (K − 1)− x2F

(13)

where

x2F =
12N

k(k + 1)

∑
j

R2j −
k(k + 1)2

4

 (14)

Table 13 (in appendix) provides the range of Chi-square
values against the values of the Degree of Freedom (DF).

TABLE 13. Threshold values for rejecting Ho.

DF is equal to K-1, therefore, in the experiments performed,
the value of K = 5 and the value of DF = 4.
The related studies considered the sigma value of x2f as

0.01 or less. According to the Chi-square table (Table 13)
the x2f the value should be greater than 13.277. The Friedman
test statistics can be seen in Table 10. The Chi-square value
is computed as 15.733 which shows that the null hypoth-
esis is rejected. The test ranks of each model are shown
in Table 11 and the descriptive statistics of the Friedman Test
are shown in Table 12.

Once a null hypothesis is rejected, the second task is to
identify the best and worst-performing algorithm. This infor-
mation can be derived from the ranks in Table 11. According
to Table 11, BABE is the best performing estimation model
followed by DABE. ABE ranked lowest of the available
models for comparison.

IX. CONCLUSION
Estimating the accurate software development effort estima-
tion has been a challenge because of the complex and incon-
sistent nature of the software project. To estimate the cost of
a targeted project, comparison with the past projects is per-
formed. In this regard, ABE is the most widely adopted effort
estimation model but even it is a widely used comparison-
based estimation model, it still some time produces incorrect
estimation results. The BABE model was produced in this
study which ensembles ABC with ABE for feature weight

58412 VOLUME 8, 2020

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

optimization and accurate effort estimation by comparing the
targeted project with the historical projects. The proposed
model works in a two-stage environment based on the testing
stage and training stage. In the training stage of BABE,
the most appropriate weights are calculated which are then
used in the testing stage for evaluating the estimation accu-
racy of the BABE model. There are six real datasets used in
this study with the performance MMRE, PRED (0.25), SA
and 1 performance metrics. Based on the SA and 1 values
computed for this model, it can be concluded that the pro-
posed model is more accurate than the existing development
estimation model. In future works, it is intended to propose
and combine missing data imputation techniques with the
model in this study to strive for further improvement.

APPENDIX
See Table 13.

REFERENCES
[1] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi,

‘‘A flexible method to estimate the software development effort based on
the classification of projects and localization of comparisons,’’ Empirical
Softw. Eng., vol. 19, no. 4, pp. 857–884, Aug. 2014.

[2] C. Jones, Estimating Software Costs: Bringing Realism to Estimating.
Osborne, Kansas: McGraw-Hill, 2007.

[3] B. W. Boehm and R. Valerdi, ‘‘Achievements and challenges in cocomo-
based software resource estimation,’’ IEEE Softw., vol. 25, no. 5,
pp. 74–83, Sep. 2008.

[4] B. Boehm, ‘‘Constructive cost model,’’ in Software Engineering Eco-
nomics. 1981.

[5] A. J. Albrecht and J. E. Gaffney, ‘‘Software function, source lines of code,
and development effort prediction: A software science validation,’’ IEEE
Trans. Softw. Eng., vol. SE-9, no. 6, pp. 639–648, Nov. 1983.

[6] B. W. Boehm, R. Madachy, and B. Steece, Software Cost Estimation With
Cocomo II With Cdrom. Upper Saddle River, NJ, USA: Prentice-Hall,
2000.

[7] N. Dalkey and O. Helmer, ‘‘An experimental application of the DELPHI
method to the use of experts,’’ Manage. Sci., vol. 9, no. 3, pp. 458–467,
Apr. 1963.

[8] K. Moløkken and M. Jørgensen, ‘‘Expert estimation of Web-development
projects: Are software professionals in technical roles more optimistic
than those in non-technical roles?’’ Empirical Softw. Eng., vol. 10, no. 1,
pp. 7–30, Jan. 2005.

[9] M. Jørgensen and T. Halkjelsvik, ‘‘The effects of request formats on
judgment-based effort estimation,’’ J. Syst. Softw., vol. 83, no. 1, pp. 29–36,
Jan. 2010.

[10] M. Shepperd and C. Schofield, ‘‘Estimating software project effort using
analogies,’’ IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–743,
Nov. 1997.

[11] Y. F. Li, M. Xie, and T. N. Goh, ‘‘A study of project selection and feature
weighting for analogy based software cost estimation,’’ J. Syst. Softw.,
vol. 82, no. 2, pp. 241–252, Feb. 2009.

[12] R. Bhatnagar, V. Bhattacharjee, and M. K. Ghose, ‘‘Software development
effort estimation–neural network Vs. regression modeling approach,’’ Int.
J. Eng. Sci. Technol., vol. 2, no. 7, pp. 2950–2956, 2010.

[13] M. A. Ahmed, M. Omolade Saliu, and J. AlGhamdi, ‘‘Adaptive fuzzy
logic-based framework for software development effort prediction,’’ Inf.
Softw. Technol., vol. 47, no. 1, pp. 31–48, Jan. 2005.

[14] M. Azzeh, D. Neagu, and P. I. Cowling, ‘‘Fuzzy grey relational analysis
for software effort estimation,’’ Empirical Softw. Eng., vol. 15, no. 1,
pp. 60–90, Feb. 2010.

[15] A. Idri, F. A. Amazal, and A. Abran, ‘‘Accuracy comparison of analogy-
based software development effort estimation techniques,’’ Int. J. Intell.
Syst., vol. 31, no. 2, pp. 128–152, Feb. 2016.

[16] T. R. Benala and R. Mall, ‘‘DABE: Differential evolution in analogy-based
software development effort estimation,’’ Swarm Evol. Comput., vol. 38,
pp. 158–172, Feb. 2018.

[17] A. Khatibi Bardsiri and S. M. Hashemi, ‘‘A differential evolution-based
model to estimate the software services development effort,’’ J. Softw.,
Evol. Process, vol. 28, no. 1, pp. 57–77, Jan. 2016.

[18] Y. Cao, Y. Lu, X. Pan, and N. Sun, ‘‘An improved global best guided
artificial bee colony algorithm for continuous optimization problems,’’
Cluster Comput., vol. 22, no. S2, pp. 3011–3019, Mar. 2019.

[19] L. Bao and J.-C. Zeng, ‘‘Comparison and analysis of the selection mecha-
nism in the artificial bee colony algorithm,’’ in Proc. 9th Int. Conf. Hybrid
Intell. Syst., 2009, pp. 411–416.

[20] F. Walkerden and R. Jeffery, ‘‘An empirical study of analogy-based soft-
ware effort estimation,’’ Empirical Softw. Eng., vol. 4, no. 2, pp. 135–158,
1999.

[21] L. Angelis and I. Stamelos, ‘‘A simulation tool for efficient analogy based
cost estimation,’’ Empirical Softw. Eng., vol. 5, no. 1, pp. 35–68, 2000.

[22] G. Kadoda, M. Cartwright, L. Chen, andM. Shepperd, ‘‘Experiences using
case-based reasoning to predict software project effort,’’ in Proc. EASE
Conf., Keele, U.K., 2000, pp. 1–22.

[23] J. W. Keung and B. Kitchenham, ‘‘Optimising project feature weights
for analogy-based software cost estimation using the mantel correla-
tion,’’ in Proc. 14th Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2007,
pp. 222–229.

[24] J. Wen, S. Li, and L. Tang, ‘‘Improve analogy-based software effort
estimation using principal components analysis and correlation weight-
ing,’’ in Proc. 16th Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2009,
pp. 179–186.

[25] Z. Pawlak, ‘‘Imprecise categories, approximations and rough sets,’’ in
Rough Sets. Springer, 1991, pp. 9–32.

[26] J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter, ‘‘A flexible method for
software effort estimation by analogy,’’ Empirical Softw. Eng., vol. 12,
no. 1, pp. 65–106, Jan. 2007.

[27] J. Li and G. Ruhe, ‘‘Analysis of attribute weighting heuristics for analogy-
based software effort estimation method AQUA+,’’ Empirical Softw. Eng.,
vol. 13, no. 1, pp. 63–96, Feb. 2008.

[28] J. Li andG. Ruhe, ‘‘Decision support analysis for software effort estimation
by analogy,’’ in Proc. 3rd Int. Workshop Predictor Models Softw. Eng.
(PROMISE, ICSE Workshops), May 2007, p. 6.

[29] D. Ju-Long, ‘‘Control problems of grey systems,’’ Syst. Control Lett.,
vol. 1, no. 5, pp. 288–294, Mar. 1982.

[30] C.-J. Hsu and C.-Y. Huang, ‘‘Comparison of weighted grey relational
analysis for software effort estimation,’’ Softw. Qual. J., vol. 19, no. 1,
pp. 165–200, Mar. 2011.

[31] Q. Song and M. Shepperd, ‘‘Predicting software project effort: A grey
relational analysis based method,’’ Expert Syst. Appl., vol. 38, no. 6,
pp. 7302–7316, Jun. 2011.

[32] M. Jørgensen, U. Indahl, and D. Sjøberg, ‘‘Software effort estimation by
analogy and ‘regression toward mean,’’’ J. Syst. Softw., vol. 68, no. 3,
pp. 253–262, 2003.

[33] N.-H. Chiu and S.-J. Huang, ‘‘The adjusted analogy-based software effort
estimation based on similarity distances,’’ J. Syst. Softw., vol. 80, no. 4,
pp. 628–640, Apr. 2007.

[34] V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi,
‘‘Increasing the accuracy of software development effort estimation using
projects clustering,’’ IET Softw., vol. 6, no. 6, pp. 461–473, 2012.

[35] S.-J. Huang and N.-H. Chiu, ‘‘Optimization of analogy weights by genetic
algorithm for software effort estimation,’’ Inf. Softw. Technol., vol. 48,
no. 11, pp. 1034–1045, Nov. 2006.

[36] S. Kumari and S. Pushkar, ‘‘A genetic algorithm approach for multi-criteria
project selection for analogy-based software cost estimation,’’ in Compu-
tational Intelligence in Data Mining, vol. 3. Springer, 2015, pp. 13–24.

[37] A. L. I. Oliveira, P. L. Braga, R. M. F. Lima, and M. L. Cornélio,
‘‘GA-based method for feature selection and parameters optimization for
machine learning regression applied to software effort estimation,’’ Inf.
Softw. Technol., vol. 52, no. 11, pp. 1155–1166, Nov. 2010.

[38] J.-C. Lin and H.-Y. Tzeng, ‘‘Applying particle swarm optimization to
estimate software effort by multiple factors software project clustering,’’
in Proc. Int. Comput. Symp. (ICS), Dec. 2010, pp. 1039–1044.

[39] A. F. Sheta, A. Ayesh, and D. Rine, ‘‘Evaluating software cost estimation
models using particle swarm optimisation and fuzzy logic for NASA
projects: A comparative study,’’ Int. J. Bio-Inspired Comput., vol. 2, no. 6,
pp. 365–373, 2010.

[40] C. V. M. K. Hari and P. V. G. D. Prasad Red, ‘‘A fine parameter tuning for
COCOMO 81 software effort estimation using particle swarm optimiza-
tion,’’ J. Softw. Eng., vol. 5, no. 1, pp. 38–48, Jan. 2011.

VOLUME 8, 2020 58413

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

[41] D. Wu, J. Li, and Y. Liang, ‘‘Linear combination of multiple case-based
reasoning with optimized weight for software effort estimation,’’ J. Super-
comput., vol. 64, no. 3, pp. 898–918, Jun. 2013.

[42] V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khat-
ibi, ‘‘A PSO-based model to increase the accuracy of software devel-
opment effort estimation,’’ Softw. Qual. J., vol. 21, no. 3, pp. 501–526,
Sep. 2013.

[43] Q. Liu, X. Chu, J. Xiao, and H. Zhu, ‘‘Optimizing non-orthogonal space
distance using PSO in software cost estimation,’’ in Proc. IEEE 38th Annu.
Comput. Softw. Appl. Conf., Jul. 2014, pp. 21–26.

[44] M. Azzeh, A. B. Nassif, S. Banitaan, and F. Almasalha, ‘‘Pareto effi-
cient multi-objective optimization for local tuning of analogy-based
estimation,’’ Neural Comput. Appl., vol. 27, no. 8, pp. 2241–2265,
Nov. 2016.

[45] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, ‘‘Genetic programming
for effort estimation: An analysis of the impact of different fitness func-
tions,’’ in Proc. 2nd Int. Symp. Search Based Softw. Eng., Sep. 2010,
pp. 89–98.

[46] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007.

[47] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens, ‘‘Data mining
techniques for software effort estimation: A comparative study,’’ IEEE
Trans. Softw. Eng., vol. 38, no. 2, pp. 375–397, Mar. 2012.

[48] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan, ‘‘The promise repository of empirical software engineering
data,’’ Tech. Rep., Jun. 2012.

[49] T. K. Sharma and M. Pant, ‘‘Halton based initial distribution in artificial
bee colony algorithm and its application in software effort estimation,’’ in
Proc. 6th Int. Conf. Bio-Inspired Comput., Theories Appl. (BIC-TA), 2011,
pp. 80–84.

[50] F. S. Gharehchopogh and Z. A. Dizaji, ‘‘A new approach in software cost
estimation with hybrid of bee colony and chaos optimizations algorithms,’’
Magn. Res. Rep., vol. 2, pp. 1263–1271, Nov. 2014.

[51] T. T. Khuat and M. H. Le, ‘‘Applying teaching-learning to artificial bee
colony for parameter optimization of software effort estimation model,’’
J. Eng. Sci. Technol., vol. 12, no. 5, pp. 1178–1190, 2017.

[52] F. S. Gharehchopogh, I. Maleki, A. Kamalinia, and H. M. Zadeh, ‘‘Arti-
ficial bee colony based constructive cost model for software cost estima-
tion,’’ J. Sci. Res. Develop., vol. 1, no. 2, pp. 44–51, 2014.

[53] R. Y. Pratama, R. Sarno, and Sholiq, ‘‘Optimizing COCOMO II parameters
using artificial bee colony method,’’ in Proc. 11th Int. Conf. Inf. Commun.
Technol. Syst. (ICTS), Oct. 2017, pp. 125–130.

[54] P. S. Rao, K. K. Reddi, and R. U. Rani, ‘‘Optimization of neural network
for software effort estimation,’’ in Proc. Int. Conf. Algorithms, Methodol.,
Models Appl. Emerg. Technol. (ICAMMAET), Feb. 2017, pp. 1–7.

[55] T. T. Khuat and M. H. Le, ‘‘Optimizing parameters of software effort
estimation models using directed artificial bee colony algorithm,’’ Infor-
matica, vol. 40, no. 4, 2016.

[56] F. S. Gharehchopogh, I. Maleki, and A. Talebi, ‘‘Using hybrid model of
artificial bee colony and genetic algorithms in software cost estimation,’’
in Proc. 9th Int. Conf. Appl. Inf. Commun. Technol. (AICT), Oct. 2015,
pp. 102–106.

[57] M. Reisi, P. Moradi, and A. Abdollahpouri, ‘‘A feature weighting based
artificial bee colony algorithm for data clustering,’’ in Proc. 8th Int. Conf.
Inf. Knowl. Technol. (IKT), Sep. 2016, pp. 134–138.

[58] E. Hancer, B. Xue, M. Zhang, D. Karaboga, and B. Akay, ‘‘A multi-
objective artificial bee colony approach to feature selection using fuzzy
mutual information,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
May 2015, pp. 2420–2427.

[59] G. Yavuz and D. Aydin, ‘‘Angle modulated artificial bee colony algorithms
for feature selection,’’ Appl. Comput. Intell. Soft Comput., vol. 2016,
pp. 1–6, Feb. 2016.

[60] R. J. Kuo, S. B. L. Huang, F. E. Zulvia, and T. W. Liao, ‘‘Artificial bee
colony-based support vector machines with feature selection and param-
eter optimization for rule extraction,’’ Knowl. Inf. Syst., vol. 55, no. 1,
pp. 253–274, Apr. 2018.

[61] C. Ozturk, E. Hancer, and D. Karaboga, ‘‘Dynamic clustering with
improved binary artificial bee colony algorithm,’’ Appl. Soft Comput.,
vol. 28, pp. 69–80, Mar. 2015.

[62] Y. Wang, L. Feng, and J. Zhu, ‘‘Novel artificial bee colony based feature
selection method for filtering redundant information,’’ Int. J. Speech Tech-
nol., vol. 48, no. 4, pp. 868–885, Apr. 2018.

[63] H. Wang, H. Yu, Q. Zhang, S. Cang, W. Liao, and F. Zhu, ‘‘Parameters
optimization of classifier and feature selection based on improved artificial
bee colony algorithm,’’ in Proc. Int. Conf. Adv. Mech. Syst. (ICAMechS),
Nov. 2016, pp. 242–247.

[64] E. Hancer, B. Xue, M. Zhang, D. Karaboga, and B. Akay, ‘‘Pareto front
feature selection based on artificial bee colony optimization,’’ Inf. Sci.,
vol. 422, pp. 462–479, Jan. 2018.

[65] R. D. A. Araújo, A. L. I. Oliveira, and S. Soares, ‘‘A shift-invariant
morphological system for software development cost estimation,’’ Expert
Syst. Appl., vol. 38, no. 4, pp. 4162–4168, Apr. 2011.

[66] I. Myrtveit and E. Stensrud, ‘‘Validity and reliability of evaluation proce-
dures in comparative studies of effort prediction models,’’ Empirical Softw.
Eng., vol. 17, nos. 1–2, pp. 23–33, Feb. 2012.

[67] M. Shepperd and S. MacDonell, ‘‘Evaluating prediction systems in soft-
ware project estimation,’’ Inf. Softw. Technol., vol. 54, no. 8, pp. 820–827,
Aug. 2012.

[68] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, ‘‘Exact mean abso-
lute error of baseline predictor, MARP0,’’ Inf. Softw. Technol., vol. 73,
pp. 16–18, May 2016.

[69] J. H. Zar, Biostatistical Analysis. New Delhi, India: Pearson Education,
1999.

[70] J. Derrac, S. García, S. Hui, P. N. Suganthan, and F. Herrera, ‘‘Ana-
lyzing convergence performance of evolutionary algorithms: A statistical
approach,’’ Inf. Sci., vol. 289, pp. 41–58, Dec. 2014.

[71] J. Demšar, ‘‘Statistical comparisons of classifiers over multiple data sets,’’
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[72] S. García, A. Fernández, J. Luengo, and F. Herrera, ‘‘Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,’’ Inf. Sci., vol. 180, no. 10, pp. 2044–2064, May 2010.

MUHAMMAD ARIF SHAH graduated from
the Department of Software Engineering, Fac-
ulty of Engineering, School of Computing, Uni-
versiti Teknologi Malaysia (UTM), Johor Bahru,
Malaysia. He is currently an Assistant Profes-
sor of Software Engineering with the Pak-Austria
Fachhochschule Institute of Applied Sciences and
Technology, Haripur, Pakistan. He is also a mem-
ber of the Software Engineering Research Group
(SERG).

DAYANG NORHAYATI ABANG JAWAWI is cur-
rently an Associate Professor and the Deputy Dean
(Academic and Student Development) of the Fac-
ulty of Computing, Universiti Teknologi Malaysia
(UTM), Johor Bahru,Malaysia. She is also amem-
ber of the Department of Software Engineering
and the Software Engineering Research Group
(SERG).

MOHD ADHAM ISA is currently a Senior Lec-
turer with the Department of Software Engineer-
ing, Faculty of Computing, Universiti Teknologi
Malaysia, Johor Bahru, Malaysia.

58414 VOLUME 8, 2020

M. A. Shah et al.: Ensembling Artificial Bee Colony With ABE to Improve Software Development Effort Prediction

MUHAMMAD YOUNAS graduated from the
Department of Software Engineering, Faculty of
Computing, Universiti Teknologi Malaysia, Johor
Bahru, Malaysia. He is currently working as an
Assistant Professor with the Department of Com-
puter Science, Government College University
Faisalabad.

ABDELZAHIR ABDELMABOUD is currently a
Faculty Member with the Department of Infor-
mation Systems, King Khalid University, Saudi
Arabia.

FAUZI SHOLICHIN is currently a Research
Student with the Department of Computer Sci-
ence, Faculty of Computing, Universiti Teknologi
Malaysia, Johor Bahru, Malaysia. He is also a
member of the Software Engineering Research
Group (SERG).

VOLUME 8, 2020 58415

	INTRODUCTION
	ESTIMATION BY ANALOGY (ABE)
	SIMILARITY FUNCTION
	SOLUTION FUNCTION

	ARTIFICIAL BEE COLONY
	RELATED WORKS
	ARTIFICIAL BEE COLONY GUIDED ANALOGY-BASED ESTIMATION (BABE)
	PERFORMANCE MEASURE
	TRAINING STAGE OF BABE
	TESTING STAGE
	EVALUATION
	CROSS-VALIDATION
	DATASET DESCRIPTION

	EXPERIMENTAL RESULTS
	DISCUSSION
	STATISTICAL PERFORMANCE EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	MUHAMMAD ARIF SHAH
	DAYANG NORHAYATI ABANG JAWAWI
	MOHD ADHAM ISA
	MUHAMMAD YOUNAS
	ABDELZAHIR ABDELMABOUD
	FAUZI SHOLICHIN

