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ABSTRACT We study the multimodal and mixmodal data-driven supervised structural sparse subspace
learning problem in this paper, and present the α-structural regularization based hierarchical locality
analysis (α-SRHLA) model. Unlike most existing sparse subspace learning models that merely constrain
the cardinalities of the subspace basis vectors, the present α-SRHLA model takes into account the structural
correlations of the original data variables and generates ‘‘variable groups’’ for sparse subspace learning. As a
result, the sparsity is induced in the scale of the variable group instead of the single variable, i.e., ‘‘structural
sparsity’’. In addition, the α-SRHLA considers the ‘‘hierarchical locality’’ of multimodal andmixmodal data,
and derives the weighted local affinity correlations in both data-level and class-level. This helps to reveal
the intrinsic distribution characteristics of the considered multimodal and mixmodal manifold structures.
A series of experiments on normal andmultimodal data classification,multimodal andmixmodal digit as well
as face recognition verify the effectiveness of the present α-SRHLA model in dealing with both multimodal
and mixmodal data.

INDEX TERMS Dimensionality reduction, sparse subspace learning, structural sparsity, multimodal and
mixmodal data, face recognition.

I. INTRODUCTION
Supervised learning, as an efficient way that incorporates
the information of label supervision with data distribution,
can decrease the temporal and computational burden of the
learning processes. In the past few years, numbers of super-
vised learning models have been presented such as [1]–[7],
but most existing models might not always obtain satisfying
results when dealingwithmultimodal (i.e., samples within the
same class have separated clusters) and mixmodal (i.e., some
samples from different classes have relatively closer distances
than those from the same class) data, as the hierarchical dis-
tribution properties (i.e., different distribution properties are
shown in within-class and between-class scales) exhibited in
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multimodal or mixmodal data are sometimes neglected in the
context of feature extraction.

In real applications, problems involving data with both
multimodality and mixmodality are frequently encountered.
For example, fulfilling multi-class data classification by uti-
lizing a series of ‘‘one-versus-rest’’ binary data classification
tasks induces within-class multimodality. Besides, separat-
ing odd and even numbers from 0-9 upon the handwritten
digit images follows between-class multimodal properties as
images of different odd/even numbers have the same labels.
For the between-class mixmodality, when the face images
have noises (e.g., different illuminations or decorations), data
samples from different classes might be located more adja-
cently in the Euclidean space, whereas those of the same class
might be separated with each other [8]. Moreover, the hand-
writing recognition task also follows mixmodal rules as the
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same handwriting contents written by different people are
with different class labels, but in the original space, these data
samples share comparatively close Euclidean distances.

To tackle the aforementioned multimodal and mixmodal
data-driven problems, a locality preserving discriminant anal-
ysis (LPDA) model was proposed in [9], which is concerned
with the hierarchical locality (i.e., the different local geo-
metric information in within-class and between-class scales)
of data with complex distributions, and efficiently derives
the inhered characteristics of both multimodal and mixmodal
data. The LPDA model is designed for nonsparse scenarios,
where all data variables are treated without discrimination,
and the low-dimensional projections are correlated with all
the original data variables. However in practice, it is also
desirable to find a few variables in a more interpretable way
during the learning process, especially for the cases where
the variables have physical meanings, e.g., gene analysis, face
recognition, etc [10].

An efficient way to achieve this is to impose sparsity regu-
larization on the learning models to extract sparse subspaces
[11]–[14]. Through learning sparse subspaces, merely a sub-
set of the original data variables matter during the dimension-
ality reduction processes, and thus the most discriminative
features can be yielded. Inspired by this, the problem of
sparse subspace learning has raised increasing interests, and
several efficient models that explore sparse subspaces have
been proposed [15]–[18]. For example, the unified sparse
subspace learning (USSL) model determines the sparse sub-
spaces in a framework of l1-regularization based regression
[19]. In [20], the discriminant locality preserving projec-
tion in terms of l1-norm maximization (DLPP-L1) was used
along with sparsity for locality preserving analysis. In addi-
tion, the sparse locality preserving projection (spLPP) model
[21], the supervised discriminative sparse PCA (SDSPCA)
model, the sparse local discriminant projections (SLDP)
model [22], the online sparse supervised learning of extreme
learning machine (ELM) model [23], and the sparse local-
ity preserving discriminant analysis (SLPDA) model [9]
were also devised for different problems. Most of the
existing models utilize l1- or lα-regularization in sparse
subspace learning. Particularly, the l1-regularization-based
models (e.g., [19]–[21], etc) utilize l1-norm to convexly sur-
rogate the l0-norm, and thus can be solved efficiently. The
lα-regularization-based models (e.g., [24]–[26], etc) invoke
non-convex lα (0 < α < 1) quasi-norms, which have
been verified to perform more efficiently and robustly in
inducing sparsity because the lα-norm is closer to the
l0-norm [25], [27], [28].

Notice that the sparsemodels asmentioned above all aim to
decrease the cardinality (i.e., the nonzero elements’ amount)
of the subspace basis vectors. However, in many applications,
it might not be enough to merely constrain the cardinality of
the subspace without considering the structural interrelation
of the data variables. For instance, the sense organs on face
images usually act as important roles in recognition, where
the pixels contained in these organs on a face image are

actually correlated with each other. If one merely decreases
the cardinality of the basis vectors in the derived subspace
without emphasizing on the pixel composition, it might be
difficult to physically interpret the face recognition process.
In genetics, specific biological characters are usually domi-
nated by a set of genes, instead of a single one. It is desirable
to find groups of genes to interpret the biological expressions.
In these cases, making use of l1- or lα-regularization might
not always be very efficient to encode such structural interre-
lations [29]. Recently, several sparse subspace learning mod-
els that take into account the structural sparsity (i.e., sparsity
encoding of the structural correlations of the data variables)
were presented, such as the structured sparse PCA (SSPCA)
method [30], the supervised principal coefficients embed-
ding (SPCE) model [31], the simple linear iterative clustering
superpixel-based l2,1-norm robust principal component anal-
ysis (SURPCA21) model [32], the structural sparse locality
preserving projection (SSLPP) model [24], and the dictionary
learning algorithm based on the structural sparse preserving
(SSP-DL) model [33], etc. However, most of these models
emphasize more on the data-level locality, and thus might not
always efficiently deal with the data involving properties of
multimodality or mixmodality.

Due to the above considerations, here we intend to develop
an α-structural regularization based hierarchical locality
analysis (α-SRHLA) model that can incorporate both the
‘‘structural sparsity’’ and the ‘‘hierarchical locality’’ into con-
sideration. Our method exploits the ‘‘hierarchical locality’’
of data and can capture the local affinity information of
the samples within a same class (i.e., data-level locality) as
well as the local geometric correlations of different classes
(i.e., class-level locality). This allows for the extraction of
the inherent nonlinear distribution characteristics in the con-
sidered multimodal or mixmodal data samples. Furthermore,
we take the benefit of the non-convex lα-based structural
norm to introduce the α-structural-regularization into sparse
subspace learning scenarios, encoding the structural inter-
relations of the data variables. An efficient algorithm are
proposed to solve the non-convex optimization problem. The
derived sparse subspace will be with not only small cardi-
nality, but also the desired ‘‘sparse pattern’’, and the sparsity
will arise in the scale of variable group instead of the single
variable, i.e., the ‘‘structural sparsity’’. To evaluate the effi-
ciency of the present model, both multimodal and mixmodal
experiments are conducted for data classification, digit and
face recognition. Followings are the key features of our study.

1) Our α-SRHLA model utilizes the α-structural regular-
ization, which differs from many existing sparse mod-
els in adopting l1- or lα-regularizations. The present
SHLPA model induces structurally sparse subspaces
with desired ‘‘sparse patterns’’, which benefits for the
preservation of the structural correlations of the origi-
nal variables and facilitates a better interpretation of the
feature extraction procedure.

2) The proposed α-SRHLA model can better deal with
multimodal and mixmodal data. The α-SRHLA model
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preserves the ‘‘hierarchical locality’’ of data, which
differs from many existing supervised learning models
that merely consider the data-level locality. Through
exploiting the local affinity information in both
data-level (i.e., samples within a same class) and
class-level (i.e., different classes) sclaes, the multi-
modal and mixmodal data manifold can be effectively
learned.

3) For the structural regularization, different grouping
approaches are provided in our model to generate struc-
tural sparsity in the scale of variable group instead of
the single variable. Simulations for various multimodal
and mixmodal classification/recognition tasks verify
that discriminative structurally sparse subspaces can be
extracted when the variables have structural interrela-
tions with each other.

In the rest of the paper, Section 2 states the problem con-
sidered in this work. Section 3 introduces the proposed α-
SRHLA model. Then, we test it by a series of classification
and recognition experiments in Section 4, with the conclu-
sions given in Section 5.

II. PROBLEM STATEMENT
Suppose that the training data matrix XXX ∈ Rp×a is consti-
tuted by the p-dimensional samples xxx i’s for i = 1, . . . , a
from C different classes. We aim to exploit the intrin-
sic characteristics inhered in the training data to deter-
mine a low-dimensional subspace. For later use, let XXX =
[XXX (1), . . . ,XXX (C)] be the training data that follows multimodal
and mixmodal distributions, where XXX (c)

=

[
xxx(c)1 , . . . ,xxx

(c)
ac

]
indicates the data matrix for the cth class, ac denotes the size
of this class, and c = 1, . . . ,C .

The sparse supervised learning task considered in this
paper is to find a mapping matrix��� = [ωωω1, . . . ,ωωωq] ∈ Rp×q

(q� p), whose column vectors determine the basis vectors of
the low-dimensional sparse subspace. The learned subspace
is expected to be able to seize the intrinsic distribution char-
acteristics of the multimodal and mixmodal data, with sparse
patterns reflecting the structural correlations of the original
data variables. By linearly mapping the data into the learned
subspace, i.e., setting

YYY =���TXXX , (1)

we can have a low-dimensional representation YYY =

[YYY (1), . . . ,YYY (C)] of the original high-dimensional training
data matrix XXX . Similarly, testing data samples can be linearly
projected into the subspace in an inductive way for subse-
quent classification or recognition tasks. For better under-
standing, the flowchart of the proposed α-SHLPA model is
given in Fig. 1.

A. USSL(UNIFIED SPARSE SUBSPACE LEARNING) [19]
TheUSSL framework can be applied towards the graph-based
subspace learning methods like locality preserving projection
[34], LDA [35], etc, with the sparse solutions computed by

FIGURE 1. The flowchart of the α-SRHLA model.

a l1-norm regularizer as follows:

min
ωωω
‖yi −ωωωTxxx i‖ + λ‖ωωω‖1,

where λ is the sparsity parameter.

B. SLPDA(SPARSE LOCALITY PRESERVING DISCRIMINANT
ANALYSIS) [9]
The SLPDAmodel aims to yield the nonlinear characteristics
of the data structure in an lα-regularization scheme, with its
objective function defined as:

min
���=[ωωω1,...,ωωωq]

q∑
j=1

a∑
i=1

(
ωωωTj xxx i − yji

)2
+ γ

q∑
j=1

‖ωωωj‖α,

where 0 < α < 1, γ ≥ 0 is the sparsity parameter,
��� = [ωωω1, . . . ,ωωωq] is the mapping matrix, and the projection
matrix YYY = (yji) is determined by the locality preserving
discriminant analysis [9].

III. THE α-STRUCTURAL REGULARIZATION BASED
HIERARCHICAL LOCALITY ANALYSIS (α-SRHLA)
For multimodal and mixmodal data, merely considering the
data-level locality like most existing methods might be insuf-
ficient to capture the complex distribution characteristic.
On the other side, simply constraining the cardinality of the
learned subspaces might not always effectively describe the
structural correlations of the original data variables. In view
of this, herewe propose anα-SRHLAmodel that incorporates
the ‘‘hierarchical locality’’ with ‘‘structural sparsity’’ and is
hence capable of dealing with the multimodal and mixmodal
cases.

The α-SRHLA model consists of two steps, i.e., projec-
tion learning and sparse subspace learning. To be specific,
in the projection learning step, the α-SRHLA model aims
to learn the low-dimensional projections that preserve the
‘‘hierarchical locality’’ of themultimodal andmixmodal data.
Then in the step of sparse subspace learning, the structural
correlations of the data variables are taken into account to
induce structurally sparse subspaces with desired ‘‘sparse
pattern’’ (i.e., the derived sparsity reflects the structural corre-
lations between variables). Considering the efficiency of the
non-convex penalties (e.g., lα quasi-norms with 0 < α < 1)
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in inducing sparsity, we will make use of non-convex regular-
ization [24], [25]. Through recursively conducting the steps
of projection learning as well as sparse subspace learning,
subspaces capturing the intrinsic distribution characteristics
of the considered data with multimodal and mixmodal prop-
erties can be yielded.

A. PROJECTION LEARNING
The projection learning procedure is to get low-dimensional
projections that capture the hierarchical local characteristics
of multimodal and mixmodal data. To this end, we introduce
the within-class and between-class affinity matrices as fol-
lows. For the cth class, let xxx(c)i denote the data sample indexed
by i, then the within-class affinity matrixWWW (c) encoding the
data-level locality of this class is defined by

Wij
(c)
=


exp

−
∥∥∥xxx(c)i − xxx(c)j ∥∥∥ 2

θ (c)
2

, if
∥∥∥xxx(c)i − xxx(c)j ∥∥∥ 2 < ε(c),

0, otherwise,

where i, j = 1, . . . , ac, c = 1, 2, . . . ,C , θ (c) is the heat
kernel parameter, ε(c) measures the size of the data-level local
geometric affinity of the cth class. Similarly, the between-
class weight matrix WWW capturing the class-level locality is
defined by

Wc1c2 =

 exp
[
‖eeec1 − eeec2‖

2

θ2

]
, if ‖eeec1 − eeec2‖

2 < ε,

0, otherwise,

where c1, c2 = 1, . . . ,C , θ and ε are the kernel and
class-level locality parameters respectively,

eeec1 =
1
ac1

ac1∑
t=1

xxx(c1)t , eeec2 =
1
ac2

ac2∑
t=1

xxx(c2)t ,

computed as the mean vectors, are respectively the represen-
tatives of the ac1 and ac2 samples for the c1th and c2th classes.

By using the within-class affinity matricesWWW (c), we define
SSSW and sw as below to measure the weighted covariances
of the original and projected samples from the same class
respectively:

SSSW =
C∑
c=1

XXX (c)LLL(c)
[
XXX (c)

]T

=

[
XXX (1), . . . ,XXX (C)

]LLL
(1) . . . 0
...

. . .
...

0 . . . LLL(C)


XXX

(1)

...

XXX (C)

 (2)

and

sw =
C∑
c=1

yyyTLLL(c)yyy

= yyyT

LLL
(1) . . . 0
...

. . .
...

0 . . . LLL(C)

yyy (3)

where yyy = XXXTωωω denotes the 1-dimensional projection of the
data matrix XXX , LLL(c) is the Laplacian matrix determined by

LLL(c) = DDD(c)
−WWW (c),

and DDD(c)
∈ Rac×ac is a diagonal matrix with each of its

diagonal entries computed as D(c)
ii =

∑
jWij

(c). Besides,
we introduce an auxiliary matrix TTT 1 as

TTT 1 = diag
[
LLL(1), . . . ,LLL(C)

]
∈ Ra×a,

and thus the within-class scatter matrices SSSW and sw can be
reformulated by

SSSW = XXXTTT 1XXXT , sw = yyyTTTT 1yyy.

Evidently, TTT 1 encodes the local geometric information
in the data-level scale, and thus SSSW and sw capture the
locality-preserved within-class distances in the original space
and the low-dimensional subspace respectively.

Moreover, we compute the Laplacian matrix LLL = DDD −
WWW with the diagonal matrix determined by Dc1c1 =∑

c2 Wc1c2 , and introduce another auxiliary matrix TTT 2 =

diag
[

111(a1)
a1

, . . . ,
111(aC )
aC

]
∈ Ra×C to formulate SSSB and sb that

describe the weighted covariances of the original and pro-
jected samples from different classes as follows:

SSSB = EEELLLEEET = XXXTTT 2LLLTTT T2XXX
T , (4)

where

EEE = [eee1, . . . ,eeeC ]

=

[
XXX (1), . . . ,XXX (C)

]
111(a1)
a1

0 . . . 0
...

. . .
...

0 . . . 0 111(aC )
aC

 ,
111(ac) = [1, . . . , 1] ∈ Rac , and

sb = yyyTTTT 2LLLTTT T2 yyy.

Clearly, sb indicates the weighted separability between the
projected samples from different classes, i.e., the weighted
between-class separability in the derived subspace.

Now, we are ready to formulate the projection learning as
the following optimization problem:

max
yyy

sb
sw

i.e., max
yyy

yyyTTTT 2LLLTTT T2 yyy

yyyTTTT 1yyy
, (5)

which maximizes the weighted between-class separability
and minimizes the locality-preserved within-class distances.
If data follows within-class multimodal distributions, the pro-
jections of the samples from the same/different modalities
within a same class will be assigned with larger/smaller
weights by TTT 2LLLTTT T2 so as to maintain such local geometric
correlations in the low-dimensional subspace. Similarly, for
mixmodal data, the locality in class-level scale is preserved by
TTT 1, with larger/smaller values given to the farther/closer pairs
of classes to facilitate the aggregation/separation of their pro-
jections. In this way, the learned projection yyy achieved by (5)
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can well seize the hierarchical distribution characteristics of
multimodal and mixmodal data.

In this setting, the generalized eigenvectors corresponding
to the first q largest eigenvalues of the following generalized
eigenvalue problem

TTT 2LLLTTT T2 yyy = λTTT 1yyy, (6)

determine the row vectors of the expected low-dimensional
projection matrix YYY ∈ Rq×a. Each element yit in YYY indicates
the projection of the data sample xxx i onto the direction of the
column vector ωωωt in the mapping matrix ��� for t = 1, . . . , q
and i = 1, . . . , a.

Similarly, the column vectors of the mapping matrix��� can
be determined by the optimization problem:

max
ωωω

ωωωTSSSBωωω
ωωωTSSSWωωω

, (7)

which can be solved by finding the generalized eigenvectors
ωωω1, . . . ,ωωωq corresponding to the first q largest eigenvalues of
the following generalized eigenvalue problem:

SSSBωωω = λSSSWωωω. (8)

Usually, the generalized eigenvector solution to (8) cap-
tures the hierarchical locality of multimodal and mix-
modal data with non-sparse pattern, and its relation to the
low-dimensional projection matrix YYY yielded by (6) is as
follows.
Lemma 1: For linear dimensionality reduction, the opti-

mal solution to (7) equals to the largest generalized eigen-
value solution to (6).

Proof: The optimal solution to (7) can be determined by
computing the largest generalized eigenvalue of (8). Insert (2)
and (4) into (8) yields

XXXTTT 2LLLTTT T2XXX
Tωωω = λXXXTTT 1XXXTωωω.

Recall in (3) that XXXTωωω = yyy, the conclusion of Lemma 1 thus
follows.

Lemma 1 indicates that for linear dimensionality reduction,
the first step of the proposed α-SRHLAmodel, i.e., projection
learning, can derive low-dimensional projections that seize
the characteristics of the multimodal and mixmodal data in a
non-sparse subspace. To find sparse subspaces and facilitate
better interpretation for the feature extraction process, below
we will take into account the structural interrelations of the
data variables to learn a mapping matrix ��� with structurally
sparse pattern.

B. SPARSE SUBSPACE LEARNING
The sparse subspace learning procedure is to learn a sparse
subspace with the desired sparse pattern by using the
low-dimensional projection matrix YYY ∈ Rq×a. To derive
structurally sparse subspaces with desired sparse patterns,
it is required to take into account the structural correlations
between all the original data variables in order to generate the
grouping rule O = {O1, . . . ,Of }, with any Oi ⊆ {1, . . . , p}

and ∪Oi∈OOi = {1, . . . , p}. Variables correlated with each
other can be set into a group and regarded as an entire
structural variable. Based on the grouping, the structural reg-
ularization is defined by

Nα(ωωωt ) = α

√√√√∑
O∈O

(√∑
j∈O

(dOj × ωjt )
2
)α

=

∥∥∥ (‖dddO ◦ωωωt‖2) ,O∈O ∥∥∥α,
where 0 < α < 1, ωjt is the jth entry of ωωωt , dddO ◦ ωωωt means
element-wise multiplication, and

dOj =

{
1, j ∈ O,
0, otherwise.

Then, we impose the α-structural penalty Nα(ωωωt ) on the
subspace basis vector ωωωt ∈ Rp and consider the following
penalized least-square problem:

min
���∈Rp×q

q∑
t=1

a∑
i=1

(
ωωωTt xxx i − yit

)2
+ β

q∑
t=1

Nα(ωωωt ), (9)

where ��� = [ωωω1, . . . ,ωωωq] ∈ Rp×q is the mapping matrix
to be determined, yit is the element in the ith row and tth
column of YYY , β is the sparsity parameter. Benefiting from
the regrouping, solving (9) will induce sparsity in the scale
of the variable group instead of the single variable. And the
loadings for the variable groups are sparse, whereas those for
the variables within a group are nonsparse. This is referred to
as ‘‘structural sparsity’’. In this manner, the resulting struc-
turally sparse subspaces can be with the corresponding sparse
patterns that characterize the structural correlations between
the data variables. To solve (9), we introduce the following.
Lemma 2 [30]: Suppose that α ∈ (0, 2) and γ = α

2−α , for
any δδδ ∈ Rp, we have

‖δδδ‖α = min
zzz∈Rp

1
2

p∑
i=1

δ2i

zi
+

1
2
‖zzz‖γ ,

with the minimum value achieved by zi = |δi|2−α‖δδδ‖α−1α for
i = 1, . . . , p.
Clearly, Lemma 2 transforms the non-convex regulariza-

tion of δδδ into an optimization problem upon another vari-
able zzz, which makes it possible for us to find the optimal
solution to (9) by utilizing the univariate search technique
[30]. According to Lemma 2, the non-convex α-structural
regularization imposed on ωωωt can be reformulated as

Nα(ωωωt ) = min
πππ t∈Rf

1
2

[
||πππ t ||γ +

∑
O∈O
||ωωωt ◦ dddO||22(π

O
t )
−1
]
,

(10)

where γ = α
2−α ∈ (0, 1), 0 < α < 1,555 = [πππ1, . . . ,πππq] ∈

Rf×q, with each of its entries defined by

πOt =

∥∥∥dddO ◦ωωωt∥∥∥2−α
2
·

∥∥∥(‖dddO ◦ωωωt‖2),O∈O ∥∥∥α−1
α

, (11)
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for O ∈ O, t = 1, . . . , q. This along with (10) transforms
the optimization problem (9) into the following:

min
���∈Rp×q,555∈Rf×q

q∑
t=1

a∑
i=1

(
ωωωTt xxx i − yit

)2
+
β

2

q∑
t=1

(
‖πππ t‖ γ + (ωωωt )T diag[φφφt ]ωωωt

)
, (12)

where each entry in φφφt is calculated as

φit =
∑

O∈O,i∈O

(
dOi
)2(

πOt

)−1
, (13)

and diag[φφφt ] ∈ Rp×p is a diagonal matrix that takes φφφt
as its diagonal, with the other elements set as 0. To solve
the optimization problem (12), we alternatively update the
variables with the following steps:

1) We first optimize the matrix555, with ωωωt ’s taking fixed
values. The initial value of ��� is set as the solution
yielded from the projection learning step. By utilizing
Lemma 2, the closed-form solution of πOt can be read-
ily determined by

πOt
(k)
=

∥∥∥dddO ◦ωωω(k−1)
t

∥∥∥2−α
2

×

∥∥∥ (∥∥∥dddO ◦ωωω(k−1)
t

∥∥∥
2

)
, O∈O

∥∥∥α−1
α

,

where O ∈ {O1, . . . ,Of }, t = 1, . . . , q, and k is
the iteration round index. To avoid possible numerical
instability, during the optimization process, we add a
small constant σ (0 < σ � 1) to πOt as follows:

πOt
(k)
← πOt

(k)
+ σ.

2) Then, we turn to optimize the mapping matrix���, with
555 taking a fixed value of the solution in the last opti-
mization round. As the objective function in (12) is
continuously differentiable with respect toωωωt , based on
the BCD method [36], ωωωt can be optimized by

ωωω
(k)
t ←

(
XXXXXXT +

β

2
diag[φφφ(k)t ]

)−1
×XXXYYY Teeet , (14)

where φφφt is determined by (13), t = 1, 2, . . . , q.
Algorithm 1 provides the details of the α-SRHLA opti-

mization. For linear dimensionality reduction, to compare
the results obtained from the projection learning and sparse
subspace learning processes, we give the following result.
Theorem 1: Let the column vectors of YYY T ∈ Rq×a be the

generalized eigenvectors of (6) corresponding to the first q
largest generalized eigenvalues, when β tends to 0, the solu-
tions to the sparse subspace learning problem (9) are the
generalized eigenvector solutions to (7) corresponding to the
same eigenvalues.

Proof: For the optimization problem (12), we firstly set
its derivative with respect to ωωωt as 0, and arrive at(

XXXXXXT +
β

2
diag[φφφt ]

)
ωωωt = XXXYYY Tµµµt , (15)

where µµµt = [0, . . . , 1, . . . , 0]T ∈ Rq sets its tth entry as 1
and the others 0. If the rank of the data matrix XXX is r, the SVD
of XXX can be written as

XXX = UUUSSSVVV T ,

where UUU ∈ Rp×p and VVV ∈ Ra×a are both orthogonal
matrices, the diagonal elements of SSS ∈ Rp×a are the singular
values of data matrix XXX. Suppose that the first r diagonal
elements of SSS are positive, according to [37], the pseudo
inverse of XXX can be derived by

XXX+ = VVVSSS+UUUT ,

where SSS+ takes the reciprocals of the r positive singular
values, i.e., the first r diagonal entries of XXX in proper orders,
and then be transposed into size of a×p. From (15), it follows
that (

XXX+XXXXXXT +
β

2
XXX+diag[φφφt ]

)
ωωωt = XXX+XXXYYY Tµµµt .

Taking the SVD of matrices XXX and XXX+ , it can be further
obtained that(

VVVSSS+SSSVVV TXXXT +
β

2
XXX+diag[φφφt ]

)
ωωωt = VVVSSS+SSSVVV TYYY Tµµµt .

(16)

Let VVV = [AAA,BBB] with AAA ∈ Ra×r and BBB ∈ Ra×(a−r), it can
thus be verified that AAATAAA = III r and BBBTBBB = IIIa−r with III r and
IIIa−r as identity matrices. This together with (16) leads to the
following

[AAA BBB]
[
III r

000a−r

] [
AAAT

BBBT

]
XXXTωωωt +

β

2
XXX+diag[φφφt ]ωωωt

= [AAA BBB]
[
III r

000a−r

] [
AAAT

BBBT

]
YYY Tµµµt ,

and hence(
AAAAAATXXXT +

β

2
XXX+diag[φφφt ]

)
ωωωt = AAAAAATYYY Tµµµt . (17)

By taking β → 0 on both the left and the right of the
equation (17), we have

AAAAAATXXXTωωωt = AAAAAATYYY Tµµµt .

As XXXT = AAAZZZ1 for some ZZZ1 ∈ Rr×p, it can be yielded that

AAAAAATXXXT = AAAAAATAAAZZZ1 = AAAZZZ1 = XXXT . (18)

Besides, for linear dimensionality reduction, since the column
vectors inYYY T are within the space spanned by the row vectors
of XXX, it can be derived that YYY T = AAAZZZ2 for some ZZZ2 ∈ Rr×q

and hence AAAAAATYYY T = YYY T . By utilizing (17) and (18), we have

XXXTωωωt = YYY Tµµµt .

This along with Lemma 1 completes the proof of Theorem 1.
The computational complexity of the α-SHLPA model is

mainly due to the eigenvector and the inversion computation
in (8) and 14. Since the rank of SSSB is no more than C − 1,
the complexity of the eigenvector computation for (8) based
on the Gram-Schmit method is O(pC2). The inversion com-
putation occupies O(p3) complexity.
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Algorithm 1 α-SRHLA
INPUT: Training data matrix XXX , σ > 0, β > 0, variable
grouping O = {O1, . . . ,Of }.
Determine YYY by (6).
Initiate���(0) and555(0) respectively by Eqs.(7) and (11).
WHILE convergence is not obtained
FOR t = 1 to q, O = O1 to Of

πOt
(k)
=
∥∥dddO ◦ωωωt (k−1)∥∥2−α2

∥∥∥ ∥∥dddO ◦ωωωt (k−1)∥∥2, O∈O ∥∥∥α−1α

πOt
(k)
← πOt

(k)
+ σ

END FOR
WHILE convergence is not obtained

φit
(k)
=
∑

O∈O,i∈O
(
dOi
)2(
πOt

(k)
)−1

FOR t = 1 to q

ωωω
(k)
t ←

[
XXXXXXT + β

2 diag[φφφ
(k)
t ]
]−1
×XXXYYY Tµµµt

END FOR
ENDWHILE

ENDWHILE
OUTPUT:���(k).

IV. EXPERIMENTS
In this section, in order to evaluate the proposed α-SRHLA
model, experiments for normal and multimodal data classifi-
cation, multimodal and mixmodal digit as well as face recog-
nition are respectively performed. For comparison, we choose
the LDA model, the LPDA model, the USSL model, and
the SLPDA model, where the USSL model is conducted for
the supervised LDA and LPDA learning procedures respec-
tively. In the present α-SRHLA model, for WWW (c), we use
k (c) = ac − 1 to denote the locality of the cth class,
where ac is the number of this class [38]. Similarly for
WWW , the locality parameter kB is set as kB = C − 1. For
the sparsity parameter γ , in experiments, values from the
set {0.001, 0.01, 0.1, 1, 10, 100, 1000} will be tested alter-
natively and better results are reported. According to [25]
that better performance of the lα-regularization is usually
achieved by α = 0.5, α in our α-SRHLA model is thus
assigned as 0.5. The parameters utilized by the other models
follow from [9], [19], and [35], respectively.

A. PARAMETER TESTING EXPERIMENTS
In the parameter-testing experiments, digit recognition on
the United States Postal Service (USPS) database are
conducted. The USPS database is constituted by the
automatically-scanned digit images of the envelopes from
USPS and has 9,298 images of different sizes and orienta-
tions. Here we resize the training and testing images into
16× 16 pixels.

In our experiments, the training set is constituted by
randomly-selected 4500 images, among which the same
number of images for ‘‘1’’ to ‘‘9’’ are selected. Another
1500 images are randomly chosen for testing. We first apply
the proposedmodels to learn subspaces and thenmap the test-
ing images into the learned subspaces with low-dimensional

FIGURE 2. Parameter testing: Average error rates of the digit recognition
obtained by different values of (a) the structural sparsity parameter and
(b)regularization parameter.

representations. Then, we fulfill the recognition task by using
k-nn classifier (k = 5).
Firstly, experiments upon the structural sparsity parameter

β are conducted, which are tested respectively by choosing
values from {β = 0.1, 0.5, 1, 10} for fair comparison. The
regularization parameter α is set as 0.5. The obtained aver-
age results of the α-SRHLA model are reported in Fig. 2a.
We proceed to perform experiments upon the regularization
parameter {α = 0.2, 0.5, 0.8} and report the achieved results
in Fig. 2b, with β set as 1. It can be seen from the results that
in this digit recognition trial, better performance is achieved
when the structural sparsity parameter takes the value of 1.
For the regularization parameter α, clearly from Fig. 2b,
better results are attained at α = 0.5. The results also indicate
that compared with the structural sparsity parameter, the reg-
ularization parameter performsmore robustly in experiments.

B. MULTIMODAL DATA CLASSIFICATION
TheWine dataset1 is firstly selected to evaluate the efficiency
of the proposed α-SRHLAmodel in dealing with both normal
and multimodal data classification. In the Wine dataset, there
are 178 data samples dropping into 3 classes, which are from
13-dimensional space. To test the multimodal data classifica-
tion performance of the considered models, preprocess upon
the Wine database is taken to make it multimodal. To be
specific, we gather the second and the third classes of samples
together to let the samples in the gathered class share the same
labels. For the proposed α-SRHLA model, since the ‘‘Ash’’
feature is correlated with the feature of ‘‘Alcalinity of ash’’,
and the sixth feature also has correlations with the eighth one,
we generate the following groupings for all 13 data variables
in the α-structural regularization:

O =
{
{Alcohol}, {Malic acid}, {Magnesium},

{Flavanoids}, {Proanthocyanins},

{Color intensity}, {Hue},

{OD280/OD315 of diluted wines}, {Proline},

{Ash,Alcalinity of ash},

{Total phenols,Nonflavanoid phenols}
}
.

1http://cmp.felk.cvut.cz/pub/cmp/articles/Franc-TR-2004-08.pdf
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FIGURE 3. Multimodal data classification: The recognition comparison of subspaces derived by (a) LDA, (b) LPDA,
(c) USSL1, (d) USSL2, (e) SLPDA, and (f) α-SRHLA.

TABLE 1. The ratios of average between-class distances and within-class distances for data classification.

Through the supervised learning processes conducted by
the all compared models, the classification results in the
learned 2-dimensional subspaces are shown in Fig.3. We fur-
ther compute the ratio of the average between-class distances
and the within-class distances to evaluate the classification
performance of the selected models as follows:

ratio =

∏
c
ac

∑
c1,c2∈{1,...,C}

√
‖eeec1 − eeec2‖2

C !
∑

c∈{1,...,C}

∑
i∈{1,...,ac}

√
‖xxx(c)i − eeec‖

2
,

and compare the considered models in Table 1.
From the classification results in Table 1 and Fig. 3, it can

be seen that the LDA and USSL1 (USSL sparse learning
for LDA) model achieve mixed results in the multimodal
case. This is because the LDA model considers the global
instead of the local geometric correlations of the samples,
which for the multimodal case, facilitates the aggregation
of the samples from the second and third classes. As to
the LPDA, USSL2 (USSL sparse learning for LPDA), and
SLPDA models, it can be seen from the results that these
models work well in the multimodal cases. This indicates
that preserving the hierarchical local affinity information of
both within-class and between-class scenarios are of benefit
to deal with multimodal data. Compared with other sparse

models, the sparsity achieved by present α-SRHLA model is
induced in the scale of the variable group. From the results
in Table 1, Fig. 3f, it can be seen that our α-SRHLA model
gives competitive performance in the experiments. This veri-
fies the efficiency of incorporating ‘‘structural sparsity’’ with
‘‘hierarchical locality’’.

C. MULTIMODAL AND MIXMODAL HANDWRITING
RECOGNITION
In this part, handwriting recognition experiments are carried
out upon the United States Postal Service (USPS) database2

and MNIST database.3 The USPS database is constituted by
the 9298 digit images ranging from 1 to 9 on the envelops of
USPS, and the MNIST database consists of 70, 000 images
of handwritten digits. Different sizes and orientations are
included in both databases. To test all selected models in
dealing with multimodal and mixmodal data, we firstly pre-
process the selected training data to be with multimodal
and mixmodal properties respectively. Inspired by [29] that
the ±π/4-orientation grouping rules (shown in Fig. 4) for
the variables helps to improve the robustness for struc-
tural regularization, we adopt such grouping method for the

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
3http://yann.lecun.com/exdb/mnist/
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FIGURE 4. The ±
π
4 -orientational structural grouping rule (left) and the

induced the diamond-shaped sparse patterns (right).

α-SRHLA model and generate the diamond-shaped sparse
patterns shown in Fig. 4.

1) MULTIMODAL SITUATION
To test the considered models for multimodal data, two tasks
are respectively carried out, i.e., USPS-eo (separating the
even and odd digits) and USPS-sl (separating the large and
small numbers). For each case, binary labels are established.
Clearly, data under the same labels might follow multi-
modal distributions. The supervised learning process upon
the USPS-eo multimodal data is illustrated by Figure 5(a).

For each of theUSPS-eo andUSPS-sl experiments, we ran-
domly choose 1500 digit images from the USPS database to
comprise the training set, and then select another 1500 images
to test the learned subspaces. Alternatively, the training
images are tackled by our α-SRHLA model and the others.
Then, the testing digit images are mapped into the sub-
spaces learned by the all considered models to determine the
low-dimensional projections. To classify the projections in
the learned subspace, the k-nn classifier for k = 5 is utilized
to derive the estimated labels for testing samples. In each
set of experiments, a total number of 20 trails are made to
obtain the average recognition result. In Fig. 6, the average
recognition error rates for USPS-eo and USPS-sl tasks are
respectively shown in subfigures (a) and (b) under different
subspace dimensions of 5 to 50.

Clearly from Figs. 6(a) and (b), the proposed α-SRHLA
model performs better in most cases when compared with
the others. For instance of setting the subspace dimension-
ality as 10 in USPS-eo experiment, the achieved recogni-
tion error rates of the LDA, SLPDA, USSL1, USSL2, and
α-SRHLA models are 14.8%, 4.5%, 8.7%, 4.1%, 4.1%, and
3.3% respectively. This means that when incorporating the
locality in the data-level scale with that in the class-level
scale, the manifold characteristics for the considered data
with multimodal andmixmodal distributions can be captured.
Compared with LPDA and SLPDA, our α-SRHLA model
works better, which indicates that taking into account the
structural correlations of variables in learning sparse sub-
spaces facilitates the achievement of more discriminative
subspaces.

2) MIXMODAL SITUATION
We proceed to carry out experiments for mixmodal data,
which is generated by assigning the digit images from the

same database by the same labels. To be specific, we firstly
randomly choose 900 images including the same amount
of digits for ‘‘1’’ to ‘‘9’’ from the USPS database, and
label these samples as the same. Then, we choose another
database, i.e., MNIST database, and select the same amount
(900 images) of digit images by the same way as the above.
Labels for the samples from the MNIST database are the
same. In this manner, binary labels are generated. Although
images for the same digits from different databases might
have closer Euclidean distance in the original image space,
these samples are with different labels, and thus follow mix-
modal distribution characteristics. The graphical description
of the supervised learning task upon USPS-MNIST mix-
modal data is illustrated by Fig. 5(b).

The proposed α-SRHLA model and the other compared
models are applied alternatively for the mixmodal data.
By utilizing the k-nn (k = 5) classifier, each set of experiment
is conducted for 20 times to achieve the average recognition
performance. The results are reported in Fig. 6(c), which
indicates that in most cases, the present α-SRHLAmodel out-
performs than the others. For example, in the USPS-MNIST
experiment, the average recognition error rate achieved by
our α-SRHLA model is 3.5% when the subspace dimension-
ality is 10, whereas those of the LDA, SLPDA, USSL1, and
USSL2 are 6.5%, 5.75%, 6.0%, and 4.9% respectively.

D. MULTIMODAL AND MIXMODAL FACE RECOGNITION
In this section, to verify the present model in dealing with
multimodal and mixmodal face recognition tasks, experi-
ments for both multimodal and mixmodal cases are made.
As introduced before, the multimodal and mixmodal proper-
ties are frequently encountered in face recognition tasks, such
as recognizing face images of different genders, different
regions, or different ages. On the other hand, between-class
mixmodality might happen when recognizing face images
with noises such as wearing glasses, having decorations, etc.

To test the proposed α-SRHLA model, multimodal and
mixmodal face recognition experiments are carried out upon
two databases including Yale [35], which is constituted by the
face images of 15 persons, and the Extended Yale-B [39] face
database that is comprised by 16128 images for 28 persons.
For the Extended Yale-B database, all the front-pose images
are selected for experiments.

To simulate multimodal face recognition tasks, for the
selected database, we generate several multimodal classes by
aggregating together the face images for different persons
into a single class. For example, for the Extended Yale-B
database, we randomly select 16 from the original 28 indi-
viduals and combine the images of any two from the selected
16 individuals into a class, generating 8 multimodal classes.
Similarly for the Yale database, 5 multimodal classes are
established. Upon the generated multimodal classes in the
preprocessed database, 50% images will be abandoned in
order to guarantee that the size of all classes are the same.
For the preprocessed database, various proportions of the
face images are selected for training. Then, multimodal and
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FIGURE 5. The supervised learning procedures of (a) USPS-eo multimodal and (b) USPS-MNIST mixmodal
tasks.

FIGURE 6. Handwriting recognition: Comparisons of the different models for (a) USPS-eo multimodal case, (b) USPS-sl multimodal case,
(c) USPS-MNIST mixmodal case.

FIGURE 7. Multimodal and mixmodal face recognition for Yale database: Comparisons of different models for (a) 64% training, (b) 55%
training, and (c) 45% training scenarios.

mixmodal face recognition experiments are conducted upon
the rest of the face images.

1) FACE RECOGNITION ON THE YALE DATABASE
We first carry out the face recognition experiments upon
the preprocessed Yale database, testing the efficiency of the
proposed α-SRHLA model in dealing with multimodal and
mixmodal data. Note that the randomly-chosen face images
are cropped into 32× 32 pixels. From the regrouped images,
we respectively choose 6, 7, and 8 images of each class for
training in a random way and utilize the rest of the images for
testing. For each model in each case, the supervised learning
process are conducted for 20 times to derive the average

recognition accuracies upon subspace dimensionality of 5 to
50. The k-nn classifier for k = 5 is adopted to finish the
recognition task. For the present α-SRHLAmodel, the±π/4
orientational grouping rule shown in Fig. 4 is applied to
induce the ‘‘diamond-shaped’’ sparse patterns. In Fig. 7,
the obtained results for the proposed α-SRHLA model and
the other models under different training proportions are
shown.

2) FACE RECOGNITION ON THE EXTENDED YALE-B
DATABASE
To be specific, 50%, 60%, and 70% images in both multi-
modal and normal classes are randomly chosen to supervisely
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FIGURE 8. Multimodal and mixmodal face recognition for extended Yale-B database: Comparisons of the different models for (a) 70%,
(b) 60%, and (c) 50% training scenarios.

learn the low-dimensional subspaces. The other images are
utilized for testing based on the k-nn classifier with k = 5.
In each scenario, 20 trails are made to obtain the aver-
age results. In the proposed α-SRHLA model, the ±π/4
orientational grouping rule is adopted. Fig. 8 provides the
achieved results of all the models for different subspace
dimensionalities.

It can be concluded from Figs. 7 and 8 that the present
α-SRHLA gives more accurate recognition results in most
experiments for multimodal and mixmodal face recognition.
For example for the Extended Yale-B Database, when the
training proportion is 70%, the best average recognition result
for the α-SRHLAmodel is 88.3%,whereas those correspond-
ing of the LDA, LPDA, USSL1, USSL2, and SLPDA mod-
els are 76.7%, 79.2%, 77.3%, 84.2%, 86.7% respectively.
This verifies that incorporating the ‘‘structural sparsity’’ with
‘‘hierarchical locality’’ facilitates the achievement of more
discriminative subspaces, as well as the improvement of the
robustness for the multimodal andmixmodal face recognition
tasks.

V. CONCLUSION
This paper proposes an α-SRHLAmodel to learn structurally
sparse subspaces upon data with complex distribution proper-
ties, i.e., multimodal and mixmodal. The merit of our model,
comparedwithmost existing data studies, is incorporating the
‘‘hierarchical locality’’ with ‘‘structural sparsity’’, which can
better extract the hierarchical distribution features of multi-
modal and mixmodal data in sparse subspace learning scenar-
ios. Experimental evaluations including normal/multimodal
data classification as well as multimodal/mixmodal digit and
face recognition verify the validity of such incorporation.

The proposed optimization approach considers both
data-level and class-level local geometric information, facili-
tating themaintaining of the local correlations for multimodal
samples, as well as the separation of mixmodal ones. In
particular, the non-convex α-structural regularization method
is effective in preserving the structural correlations between

data variables and can successfully yield the optimal struc-
turally sparse subspace with desired sparse pattern.
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