
Received January 8, 2020, accepted March 3, 2020, date of publication March 13, 2020, date of current version March 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980581

An Explainable Artificial Intelligence Model for
Clustering Numerical Databases
OCTAVIO LOYOLA-GONZÁLEZ 1, ANDRES EDUARDO GUTIERREZ-RODRÍGUEZ 2,
MIGUEL ANGEL MEDINA-PÉREZ 3, RAÚL MONROY 3,
JOSÉ FRANCISCO MARTÍNEZ-TRINIDAD 4,
JESÚS ARIEL CARRASCO-OCHOA 4,
AND MILTON GARCÍA-BORROTO 5
1Tecnologico de Monterrey, Puebla 72453, Mexico
2Tecnologico de Monterrey, San Antonio Buenavista 50110, Mexico
3Tecnologico de Monterrey, Estado de Mexico 52926, Mexico
4Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico
5Instituto Superior Politécnico José Antonio Echeverría, Habana 11901, Mexico

Corresponding author: Miguel Angel Medina-Pérez (migue@tec.mx)

ABSTRACT Nowadays, the international scientific community of machine learning has an enormous
campaign in favor of creating understandable models instead of black-box models. The main reason is that
experts in the application area are showing reluctance due to black-boxmodels cannot be understood by them,
and consequently, their results are difficult to be explained. In unsupervised problems, where experts have
not labeled objects, obtaining an explanation of the results is necessary because specialists in the application
area need to understand both the applied model as well as the obtained results for finding the rationale behind
each obtained clustering from a practical point of view. Hence, in this paper, we introduce a clustering based
on decision trees (eUD3.5), which builds several decision trees from numerical databases. Unlike previous
solutions, our proposal takes into account both separation and compactness for evaluating a feature split
without decreasing time efficiency andwith no empirical parameter to control the depth of the trees.We tested
eUD3.5 on 40 numerical databases of UCI Machine Learning Repository, showing that our proposal builds a
set of high-quality unsupervised decision trees for clustering, allowing us to obtain the best average ranking
compared with other popular state-of-the-art clustering solutions. Also, from the collection of unsupervised
decision trees induced by our proposal, a set of high-quality patterns are extracted for showing the main
feature-value pairs describing each cluster.

INDEX TERMS Explainable model, clustering, unsupervised decision trees, numerical databases.

I. INTRODUCTION
Pattern recognition is about classifying objects, i.e., assigning
labels to objects [1]. If there is no previous knowledge about
the labels of any object in the database, the process of group-
ing objects in clusters according to some predefined criterion
is named clustering [2]. Clustering is one of the most impor-
tant techniques in pattern recognition. It has been widely
studied and applied in many areas [3], [4], such as computer
vision [5], information retrieval [6]–[8], marketing [9], and
bioinformatics [10].

In general, clustering algorithms differ from one another in
the specific clustering criterion they use or how this criterion
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is measured. One of the most used clustering criteria assumes
that objects of the same cluster should be more similar than
objects from different clusters [1], [3]. The similarities among
objects are determined using a comparison function [11],
which is usually a distance function [12].

There is plenty of work about clustering in the litera-
ture including k-means [13], EM [14], DBSCAN [15], Pair-
wise Clustering [16], Kernel k-means [17], DENCLUE [18],
x-means [19], Minimum-entropy Clustering [20], Normal-
ized Cut [21], k-medoids [22], SVM Clustering [23], ABC
Clustering [24], and PathXP [25]. A recent review of cluster-
ing algorithms appears on [26].

In different application areas, such as agriculture, bioin-
formatics, text processing, and web mining, users need some
explanation about clustering results more than just a list
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of objects for each cluster [27]–[30]. For example, on text
processing, conventional text clustering techniques do not
explain the resulting clusters in terms of the features (words),
which is a piece of vital information to understand the topics
associated with each cluster [29], [31]. On the other hand,
in the context of web mining [32], applying traditional clus-
tering algorithms becomes a laborious and time-consuming
process, involving expertise in possibly different domains for
getting an explanation of the results. For these applications,
a clustering approach based on unsupervised decision trees
helps in the interpretation of the results [33].

There are several clustering proposals not based on deci-
sion trees, such as k-means [13], EM [14], DBSCAN [15],
k-medoids [22], and SVM Clustering [23]. However, cluster-
ing based on unsupervised decision trees has the following
characteristics: a) no object distance measure is required; b)
the object set in the internal nodes is split searching for highly
separated and compact groups according to a split evaluation
measure; and c) unsupervised trees allow describing the clus-
tering results.

In this paper, we introduced a clustering proposal based on
a collection of unsupervised decision trees. Our proposal does
not require a parameter that controls the number of objects in
the leaf nodes, and also it automatically stops expanding a
branch if the new child nodes are evaluated worse than the
best evaluation computed in that branch. Also, an important
advantage of our proposal is that it provides patterns associ-
ated with each cluster, describing the whole database with a
few patterns, which is useful in practical applications. In gen-
eral, patterns are relations between objects’ descriptions and
their values. Moreover, our proposal uses a traditional clus-
tering ensemble algorithm for grouping objects in all leaves
of the generated trees. From our experimental results, we can
conclude that our clustering proposal obtains the best position
in the Friedman’s ranking against other popular state-of-the-
art clustering solution, by using 40 numerical databases taken
from the UCI Machine Learning Repository [34].

The remainder of the paper is organized as follows.
Section II provides preliminaries of decision tree induction
and pattern-based machine learning. Section III reviews solu-
tions proposed for clustering. Section IV introduces the new
algorithm for pattern-based clustering. SectionV presents our
experimental setup as well as discusses the performance of
our proposal against other popular state-of-the-art clustering
solutions on 40 numerical databases. Finally, Section VI
provides the conclusions that emerge from this research and
our future work.

II. PRELIMINARIES
Since in this paper we propose a clustering algorithm based
on building several decision trees, from which several pat-
terns can be extracted, in this section, we briefly describe the
procedure for inducing decision trees (Section II-A), some
concepts and procedures related to the contrast pattern topic
(Section II-B), and a brief introduction to data clustering
(Section II-C).

A. DECISION TREE INDUCTION
Decision tree (DT) algorithms have been used in several
practical applications, such as bioinformatics [35], blood
pressure prediction [36], agriculture [37], and travel time
prediction [38], among others. The main reasons are that DTs
have shown accurate results, and they provide a model easy
to be interpreted by experts in the application area [39].

For inducing a decision tree, there are two main
approaches: top-down and bottom-up [40]. As the top-down
is the most used [40], and it also will be used by our proposal,
we will focus on describing it in a general way.

The top-down approach starts building a root node, which
contains all objects of a training database D. After that,
the root node is split into P partitions (usually named
as children nodes) and repeats this procedure recursively
over the children nodes until some stopping criterion is
met [40], [41].

From a set of features and splitting criteria, the induction
procedure can generate several split candidates S [40], [41],
for numerical features the most used is:

• For each feature fi containing a set of valuesV belonging
to fi, the following candidates splits can be generated:

– Binary properties as possible by using fi ≤ cj and
fi > cj, according to a collection of cut points
C , which is generated by computing the midpoint
between every two values appearing V , where the
objects belonging to different classes [40], [41].

After generating many candidate splits at each node,
a measure H for selecting the best candidate split is exe-
cuted. This measure aims to reward with the highest value
to the candidate split that better separates the problem’s
classes (usually called as pure nodes). Opposite, this mea-
sure should penalize those candidate splits producing impure
nodes [40], [41].

At the end of the induction process, a pruning method U
can be executed for obtaining a new decision tree, improving
its performance. The main idea is to remove those nodes from
the tree that dot not contribute to obtaining better performance
and generating a decision tree less complicated and thus more
comprehensible to experts in the application area [40], [41].

Finally, pseudocode for inducing a decision tree was stated
in Algorithm 1. Also, more information about decision tree
induction is stated in Section III and Section IV.

B. NUMERICAL PATTERNS
Nowadays, there is a great interest in the development of
eXplanaible Artificial Intelligence (XAI) models [39]. The
main idea is to provide both accurate and explainable models
for experts in the application area. Pattern-based Machine
Learning has proven to be an approach showing an accurate
and explainable model in several practical applications, such
as visitor analysis on websites [42], understanding the crimi-
nal behavior [43], bot detection [44], and detecting pneumatic
failures on temporary immersion bioreactors [45]; among
others.
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Algorithm 1 BuildDT - Pseudocode for Inducing a Deci-
sion Tree
input : D(-) a database.
output: DT(-) a decision tree.

DT← the root node, containing all the objects in the
database D;
if stop criterion == true then

DT.leaf=true;
return DT;

end
foreach featurei ∈ {1 · · · |feature|} do

Generate all possible candidate splits S for the
featurei;

end

Compute the quality of all candidate splits S by using a
measure for assessing split candidate;
H ← Select the candidate split, from S, with the highest
quality value;
DS← Partitions of the database D based on the
candidate split H ;

DT.Children = BuildDT(DS);

return DT

In this research, we follow the notion of pattern intro-
duced in [39], [43], [44], [46], [47], a pattern is an expres-
sion defined in a certain language that describes a set of
objects. Usually, a numerical pattern is represented by a
conjunction of relational statements (a.k.a items), each one
of the form [fi#vj], where vj is a value in the domain of
feature fi and # is a relational operator from the set {≤, >}.
For example, a pattern describing a set of sick patients can
be written in a logical form as: [temperature ≤ 39] ∧
[heart_rate > 110]. The support (or cover) of a pattern is the
ratio of the number of objects described by the pattern in the
dataset [44], [46], [47].

A good strategy to extract patterns is using decision trees
due to the following reasons:

• The local discretization performed by a decision tree
with numeric features has proved better results than
using a priori global discretization [47], [48].

• Decision trees contain a small proportion of can-
didate features even in longer tree paths, which
reduces the search space of potential patterns signifi-
cantly and generate a small collection of high-quality
patterns [47]–[49].

• Pattern mining algorithms based on decision trees can
handle missing values by introducing a penalizing factor
in the measure for evaluating candidate splits [47].

Therefore, in this research, we will obtain a set of good
patterns from a collection of trees, very useful for clustering
datasets of different contexts.

FIGURE 1. An example of input data for clustering is shown in (a). The
seven clusters to be found ideally is shown in (b), which were denoted by
seven different colors. Notice that clusters have differences regarding
shape, size, and density. Unfortunately, none of the available clustering
algorithms can detect all these clusters.

FIGURE 2. An example of clustering four figures into two groups by using
the beholders’ insight. Usually, there is no consensus on how the
figures should be grouped by either their size (red-dashed horizontal
line) or geometrical shape (blue-dashed vertical line).

C. DATA CLUSTERING
The goal of data clustering (a.k.a unsupervised classification)
is to discover the natural grouping of a set of unlabeled
objects, similar to experts can do [3]. However, data cluster-
ing is an arduous task due to clusters can differ in terms of
their shape, size, and density; and the presence of noise in
the data makes the detection of the clusters even more chal-
lenging (see Fig. 1). For example, Fig. 2 shows four figures,
we have asked 38 people, separately, how can they cluster
these figures into two groups by using a line? One-half of
these people prefer to cluster the figures taking into account
the size (red-dashed horizontal line) and the other half by
the shape (blue-dashed vertical line). Notice that using data
clustering algorithms can produce different and undesired
results when knowledge of experts in the application area is
bypassing.

An ideal data clustering can be defined as a set of objects
where they are compact and isolated while more similar they
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are. A cluster is a subjective notion based on the eyes of the
beholder and whose significance and interpretation require
knowledge of the application area (Fig. 2). It is easy for
humans to cluster objects represented in two and possibly
three dimensions, but it is complicated for them to create
clusters using objects represented by more than three dimen-
sions. It is this challenge, along with the unknown number
of clusters for the given data that has resulted in several
approaches for data clustering [3].

Currently, there are thousands of clustering algorithms
proposed, which can be divided into two groups: hierarchical
and partitional [3].

• Hierarchical clustering algorithms aim to find nested
clusters, either following an agglomerative approach or
using a top-down approach.

– The agglomerative approach starts a cluster for each
object and merging the most similar pair of clusters
successively to form a cluster hierarchy.

– The top-down approach starts with all the objects
in one cluster and recursively dividing each clus-
ter into smaller clusters, similar to a decision tree
induction procedure.

• Partitional clustering algorithms aim to find all the clus-
ters simultaneously as a partition of the data and do
not impose a hierarchical structure. They depend on a
similarity matrix with size n× n, where n is the number
of input objects. One of the most prominent partitional
clustering algorithms is k-means [50], which has shown
good clustering results in several contexts [3].

Partitional clustering algorithms rely on a distancemeasure
for grouping the input objects, which biases the clustering
results. Ideally, a distancemeasure should be conformed from
the interaction between experts in the application area and
mathematics specialists due to experts have the known about
the problem to solve and provide important information on
how should be the comparison between objects. However,
in practice, authors use different distance functions proposed
for general purposes, and they select the best one according to
the best clustering results obtained from several experiments.
Also, it is known that partitional clustering algorithms obtain
different results when the distance measure is changed [39].

A clustering approach showing good results is the one
based on a collection of clustering algorithms, where each
one represents a different partition of the input data [3]. There
exist three main ways for building a collection of clustering
algorithms, which combine their partitions for obtaining a
final data clustering: (i) applying different clustering algo-
rithms [51], (ii) applying the same clustering algorithm but
using different values of parameters [52], and (iii) com-
bining of different data representations and clustering algo-
rithms [53]. As was stated by Jain [3], by using a collection
of clustering algorithms, it is possible to obtain good data
clustering results even when the clusters are not compact and
well separated.

Commonly, compactness and separation are two measures
to take into account for finding good data clustering. Usually,
experts desire to obtain compact and well-separated clusters
avoiding the data overlapping because the explanation of
overlapped groups is an arduous task [50].

Based on those mentioned above, we hypothesized that
building a collection of unsupervised decision trees (using
different values of parameters), which takes into account
the compactness and separation measures, then, we can
obtain a clustering algorithm showing an explanation for each
obtained group and reaching better results than other popular
state-of-the-art clustering algorithms.

Throughout this section, we have stated a brief introduction
to the decision tree induction procedure and pattern-based
machine learning as well as some terms and concept for
data clustering, which will be used throughout the document.
In the next section, we present a set of papers related to our
proposal.

III. PREVIOUS WORKS
As our paper introducing a clustering algorithm based on
decision trees for numerical databases, we focus this section
on review those clustering solutions based on decision trees
for numerical data.

An unsupervised decision tree represents a hierarchical
clustering. The internal nodes of these trees, including the
root node, are decision nodes, which contain a feature-value
item assigned to each child node, while leaf nodes represent
clusters of objects. The primary purpose of an unsupervised
decision tree algorithm is to induce a tree structure where
each node represents a good cluster according to a specific
criterion. Algorithms which induce supervised decision trees
like C4.5 [41], can be modified to induce unsupervised trees,
but the split evaluation criteria must be defined according
to unsupervised quality measures, i.e., criteria that do not
use class-label information. For example, after discretizing
numerical features, the splits in a tree could be evaluated
based on entropy [33] as follows:

H = −
∑
i

ni log ni, (1)

where ni is the frequency of each bin in the discretized
numerical feature. To induce an unsupervised decision tree,
at every decision node, the data is split based on a single
feature. In this case, the feature that reaches the maximum
value in (1) is selected for splitting. Then, the objects in the
node are partitioned into subsets based on the selected feature,
and each subset is allocated into a child node. The induction
process ends when, for every feature, the value of (1) is less
than a user predefined threshold.

In 1987, Fisher proposed COBWEB, a hierarchical clus-
tering based on a tree structure [54]. COBWEB is induced
by merging nodes in hierarchical clustering. COBWEB fol-
lows a bottom-up approach by using a merging procedure.
COBWEB takes two nodes and combines them if the result-
ing partition has better quality than they have separately;
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consequently, a new node is created, and the probabilities of
the feature-value pairs in that node are updated. The two orig-
inal nodes are made children of the newly created node [54].
COBWEB was proposed for nominal data; consequently,
Gennari et al. proposed CLASSIT, an extended version of
COWEB, but for numerical data [55].

In 1998, Blockeel et al. proposed CLUS, a hierarchi-
cal clustering algorithm based on unsupervised decision
trees [56]. CLUS uses a distance function p (any distance can
be used) between objects for computing the prototype of a
cluster Ki as p(Ki). The authors proposed (2) for measuring
the distance between two clusters Ki and Kj.

d(Ki,Kj) = d(p(Ki), p(Kj)) (2)

CLUS induces an unsupervised decision tree by using (2)
for splitting the nodes recursively until a stopping criterion is
met. The number of leaf nodes of the induced decision tree
corresponds to the total of clusters found [56].

In 2001, Breiman proposed to create a collection of dif-
ferent decision trees for improving the results obtained by
one induced decision tree [57]. The most crucial property of
classifier ensembles is diversity. The main reason is that a
collection of nearly identical classifiers cannot outperform
any of their components [57]. One of the most prominent
approaches suggested by Breiman for creating a collection
of different decision trees is Random Forest [57]. Random
Forest builds 120 different decision trees by selecting a ran-
dom subset of features in each induction; the size of the subset
is log2(| Features |). However, Random Forest was proposed
for nominal and numerical databases on supervised problems.

In 2011, Shi and Horvath proposed a variant of Random
Forest for building unsupervised decision trees by using the
Euclidean distance for evaluating the candidate splits [58].
The authors used the unsupervised decision trees for cluster-
ing on tumor marker data. The authors proposed to weight
each feature according to its relation and dependency with
other features. Shi andHorvath generated a study for knowing
the impact of building from 1 to 5,000 unsupervised decision
trees. From this study, the authors stated that a collection
of 250 decision trees presented the best performance.

In 2018, Kruber et al. proposed a modification of the
RandomForest algorithm for clustering traffic situations [59].
The authors proposed to use a data-adaptive similarity mea-
sure for assessing the candidate splits. After building a col-
lection of unsupervised decision trees, the authors proposed
to use a hierarchical clustering approach for generating the
final clusters. Although Kruber et al. showed good clustering
results, the main drawback of this proposal is that it uses a
proximity matrix, which depends on the dataset size, produc-
ing a high computational cost.

In 2019, Madhyastha et al. proposed URerF, a variant of
Random Forest for building several unsupervised decision
trees to approximately learn geodesic distances in linear
and nonlinear manifolds with noise [60]. URerF operates
on low-dimensional sparse linear combinations of features,
rather than the full observed dimensionality. URerF was

tested on both nominal and numeric databases showing good
performance for clustering. The authors did not explore any
theoretical claims associated with the tested clustering algo-
rithms. Indeed, they did not even assess whether any of these
algorithms approximate the precise geodesic.

In 2015, Gutierrez-Rodríguez et al. proposed a clustering
algorithm (called PCN) for numerical databases based on an
explainable artificial intelligence (XAI) model, which fol-
lows the rationale behind the Random Forest solution [46].
PCN introduced UD3, an algorithm for inducing a binary
unsupervised decision tree recursively by computing the fea-
ture split, which maximizes the separation of the means of the
nodes (clusters). PCN induces several unsupervised decision
trees by using UD3, and it considers the induced trees as
hierarchical clusters and combines them by using the CPC
[61] algorithm to generate the final clusters.

An advantage of PCN is that it builds trees efficiently, its
time complexity fulfills: O

(
mn log2 (n)

)
≤ C ≤ O

(
mn2

)
where n is the number of objects and m is the number of
features (typically m << n). PCN has shown better results
than obtained by other popular state-of-the-art clustering
algorithms, such as COWEB,CLUS, andCPC; among others.

However, PCN has three significant drawbacks. First,
UD3 evaluates a feature split as the separation of the means.
Considering only the separation of the means may cause very
different points distributions to produce the same mean as
illustrated in Fig. 3. Second, UD3 requires a parameter that
controls the number of objects in the leaf nodes, and the
authors do not provide any automatic algorithm to compute
this parameter. Third, as we shall show in the experiment
section, there are some databases where PCN cannot compute
the clusters.

Based on the reviewed literature, we hypothesized that
UD3 [46] could be improved without sacrificing efficiency.
Themain idea is to create a new split evaluation criterion, tak-
ing into account both compactness and separation [3]. In this
way, in the next section, we propose a new algorithm for
inducing unsupervised decision trees differentiating among
the three examples shown in Fig. 3. Unlike UD3, our proposal
does not require a parameter that controls the number of
objects in the leaf nodes, and it automatically stops expanding
the branches.

IV. PROPOSED ALGORITHM: UD3.5
Some motivations for clustering data based on unsupervised
decision trees are: (i) they are faster to build; (ii) the function
for measuring splits can assess specific criteria of clustering
allowing partition the data as desired; and (iii) the resulting
clusters can be explained by the paths from the roots to the
leaves of the trees [46].

A. UD3
As we stated in Section III, a recent research [46] proposes to
build binary unsupervised decision trees (UD3) based on the
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FIGURE 3. Three examples of one-dimensional points clustering where UD3 [46] determines that are equally good when the first example should receive
a higher evaluation.

following split evaluation criterion for features:

Q(fj, lm, rm) =
|lm− rm|
vnj − v1

, (3)

where:

• fj =
{
v1, v2, . . . , vnj

}
is a sorted set of nj val-

ues of a one-dimensional feature. For example,
in Fig. 3, for the Case 1 is represented as fj =
{v1 = 1, v2 = 3, v3 = 5, v4 = 11, v5 = 13, v6 = 15}.

• lm and rm are the mean values of the left and the right
clusters respectively. For example, in Fig. 3, the values
of lm and rm for the three cases are:

– Case 1: lm = (1 + 3 + 5)/3 = 3 and rm = (11 +
13+ 15)/3 = 13.

– Case 2: lm = (1 + 2 + 6)/3 = 3 and rm = (11 +
13+ 15)/3 = 13.

– Case 3: lm = (1 + 2 + 6)/3 = 3 and rm = (10 +
14+ 15)/3 = 13.

A drawback of Q (3) is that it does not take into account
the compactness of the clusters in the left and right nodes (i.e.,
the distance between objects in the same cluster). An example
of the undesirable behavior ofQ (3) is that it returns the same
evaluation (0.714) for the three splits shown in Fig. 3. A good
split evaluation criterion should evaluate better case 1, where
clusters, in the left and right nodes, are more compact than
those in cases 2 and 3. A more accurate alternative is the
silhouette index [62], but its evaluation for all possible split
values in a feature is costly: O(n3). However, the evaluation
of Q (3) is very efficient since if the feature values are sorted,
and the means of the clusters can be dynamically updated
while iterating for every possible split value with a time
complexity of O(n log(n)) (see Algorithm 2 for an example
of pseudocode).

B. UD3.5
In order to take into account the compactness and separation
of the clusters, in the left and right child nodes, without
sacrificing the efficiency of (3), we propose the following
evaluation criterion:

Q1(fj, k, lm, rm)

=
(k − 1) ∗ (l1+ l2) /2+ (nj−k + 1) ∗ (r1+ r2)/2

nj
,

(4)

where:
• fj =

{
v1, v2, . . . , vnj

}
is a sorted set of nj values of a

one-dimensional feature.
• k is the index of a value in fj which tags the beginning of
the right cluster in a one-dimensional feature. In Fig. 3,
the value of k is 4 for the three cases and the obtained
clusters are:
– Case 1: {{v1 = 1, v2 = 3, v3 = 5}, {v4 = 11,
v5 = 13, v6 = 15}}.

– Case 2: {{v1 = 1, v2 = 2, v3 = 6}, {v4 = 11,
v5 = 13, v6 = 15}}.

– Case 3: {{v1 = 1, v2 = 2, v3 = 6}, {v4 = 10,
v5 = 14, v6 = 15}}.

• lm and rm are the mean values of the clusters in the left
and right child nodes, respectively.

• (l1+ l2) /2 evaluates the compactness and separabil-
ity of the cluster, in the left child node, where l1 =
Q2 (v0, lm, rm) and l2 = Q2 (vk−1, lm, rm) (see (5)).
Here the compactness of the left cluster is measured
based on the closeness of its extreme values (v0 and
vk−1) with respect to the mean (lm) of this cluster. The
separation with respect to the right cluster is measured
based on the distance of v0 and vk−1 with respect to the
mean (rm) of the right cluster. The functionQ2 is defined
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as follows:

Q2(v,m1,m2) =
|v− m2| − |v− m1|

max {|v− m2| , |v− m1|}
, (5)

where v is a feature value, m1 is the mean of the cluster
to which v belongs, and m2 is the mean of the cluster
to which v does not belong. Q2 returns a value in the
interval [−1, 1]. A result closer to 1 indicates that v
is closer to the mean of its cluster than its distance to
the mean of the other cluster. A result closer to −1
indicates that v is closer to the mean of the cluster to
which it does not belong.Q2 is inspired on the silhouette
index [62] but Q2 has less computational complexity.
Computing the silhouette index [62] of a single value v
has a time complexity of O(n) because v is compared
with every element in every cluster. The time complexity
of computing Q2 for a single value v is O(1) because it
is constant no matter the number of the elements in the
clusters.
The evaluation of (l1+ l2) /2 for the examples in Fig. 3
is as follows:

– Case 1: (Q2 (1, 3, 13)+ Q2 (5, 3, 13)) /2 ≈ 0.792.
– Case 2: (Q2 (1, 3, 13)+ Q2 (6, 3, 13)) /2 ≈ 0.702.
– Case 3: (Q2 (1, 3, 13)+ Q2 (6, 3, 13)) /2 ≈ 0.702.

• (r1+ r2) /2 is the evaluation of the right cluster where
r1 = Q2 (vk , rm, lm) and r2 = Q2

(
vnj , rm, lm

)
(see

(5)). Here the compactness of the right cluster is mea-
sured based on the closeness of its extreme values (vk
and vnj ) with respect to the mean (rm) of this cluster.
The separation with respect to the left cluster is mea-
sured based on the distance of vk and vnj with respect
to the mean (lm) of the left cluster. The evaluation of
(r1+ r2) /2 for the examples in Fig. 3 is as fallows:

– Case 1: (Q2 (11, 13, 3)+ Q2 (15, 13, 3)) /2 ≈

0.792.
– Case 2: (Q2 (11, 13, 3)+ Q2 (15, 13, 3)) /2 ≈

0.792.
– Case 3: (Q2 (10, 13, 3)+ Q2 (15, 13, 3)) /2 ≈

0.702.

• (k−1) and (nj−k+1) are the number of elements in the
left and the right clusters respectively. Multiplying the
clusters evaluations by the number of elements favors
balanced clusters, i.e., clusters with approximately the
same number of elements.

Unlike the split evaluation criterion proposed in [46],
which produces the same value for the three cases in Fig. 3,
our function Q1 produces different values for the three cases
(case 1: ∼ 0.792, case 2: ∼ 0.747, and case 3: ∼ 0.702)
boosting the cluster of the case 1 and penalizing the cluster
of the case 3 which is in concordance with the separability
and compactness concepts [1], [3].

In order to build UD3 [46], its authors require a minimum
support threshold that controls the depth of the tree. This
threshold depends on the database, and the authors do not
provide any automatic procedure to compute it. Our proposal

Algorithm 2 UD3.5
Data: T - A database described by a set of features F .

branchEval - The best evaluation (initially 0)
found in the branch.
Result: The root node of the unsupervised decision tree.
Build the current node N of the tree with all the objects
in T
if N is the root node of the tree then

foreach feature fj ∈ F do
Sort the values vk ∈ fj in ascendent order

Select randomly a subset F
′

⊂ F of log2(|F |)+ 1
features
bestGlobalEval = 0, bestFeature = null, and
bestValue = 0
foreach feature fj =

{
v1, v2, . . . , vnj

}
∈ F

′

do
leftSum = v1, rightSum = v2
foreach feature value vk ∈ fj, k = 3..nj do

rightSum = rightSum+ vk
bestEval = 0, bestK = 0, bestLeftMean = 0, and
bestRightMean = 0
foreach feature value vk ∈ fj, k = 2..nj do

if vk 6= vk−1 then
leftMean = leftSum/(k − 1)
rightMean = rightSum/(nj − k + 1)
eval = Q1(fj, k, leftMean, rightMean) (see
(4))
if eval > bestEval then

bestEval = eval, bestK = k ,
bestLeftMean = leftMean, and
bestRightMean = rightMean

leftSum = leftSum+ vk
rightSum = rightSum− vk

globalEval = 0
foreach feature value vk ∈ fj, k = 1..bestK − 1 do

globalEval = globalEval +
Q2(vk , bestLeftMean, bestRightMean) (see (5))

foreach feature value vk ∈ fj, k = bestK ..nj do
globalEval = globalEval +
Q2(vk , bestRightMean, bestLeftMean)

globalEval = globalEval/nj
if globalEval > bestGlobalEval then

bestGlobalEval = globalEval, bestFeature = fj,
and bestValue = vbestK

if bestGlobalEval > branchEval then
branchEval = bestGlobalEval
NLeftChild = UD3.5({o|o ∈ T ∧ bestFeature(o) <
bestValue}, branchEval).
NRightChild = UD3.5({o|o ∈ T ∧ bestFeature(o) ≥
bestValue}, branchEval).

return N

(UD3.5) does not require this parameter because it splits
a node if the found clusters evaluate better than the best
evaluation found in their branch according to (4). Algorithm 2
shows a pseudocode of UD3.5.
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C. COMPLEXITY ANALYSIS OF UD3.5
Before building the tree, UD3.5 sorts all the values for each
feature in the database in ascending order. If we assume the
worst-case scenario where every object has a different feature
value, then the time complexity of sorting the features is
O(mn log n), where m is the number of features, and n is the
number of objects. Q1 evaluates four times the function Q2
which time complexity is O(1). Hence, the time complexity
of Q1 for a single value of k is O(1) because it is constant,
no matter the number of the elements in the clusters. Com-
puting Q1 for all possible k in a feature of n values has a time
complexity ofO(n) because since the feature values are sorted
before building the tree, the means of the clusters can be
dynamically updated while iterating for every possible split
value. Once UD3.5 finds the best split value for a feature,
the final evaluation of the feature, used for the stop criterion,
is computed by accumulating the evaluation of Q2 for every
value in the feature (O(n)). UD3.5 evaluates log2 m features
at every level; therefore, the time complexity of selecting the
best feature isO(n log2 m) for the first level. Since the features
can be repeated, the time complexity for building all levels
of the tree is O(ln log2m), where l is the depth of the tree.
If we do not consider the stopping criterion, there will be
l = n − 1 levels in the worst case (skewed binary tree), and
there will be l = log2 n levels in the best case (balanced
tree). Given that the time complexity of sorting the values
of the m features is O(mn log n); if we assume that n ≥ m,
the overall time complexity C of UD3.5 for building a tree is
O
(
mn log2 n

)
≤ C ≤ O

(
n2 log2 m

)
which is lower than the

time complexity of UD3 for the worst-case scenario (see [46]
for further details about the time complexity for UD3).

Fig. 4 shows an example of fourwell-defined clusters of 2D
points, which our proposal UD3.5 correctly identifies. The
previous work [46] fails to identify the clusters because it
relies only on the separation of the means of the clusters
without considering the compactness of the clusters with
respect to the means.

D. eUD3.5
Building just only one tree for UD3.5 may discard features,
which could be useful for finding a good clustering. There-
fore, we propose to build 100 different trees, as suggested
in [57], by selecting the best feature to split from a random
subset of features. We select a trade-off between the best tree
(the one which selects the best splits from all features) and
the generation of all possible trees, because the former is
unique, and the latter is unfeasible in practice due to its time
complexity. For each obtained tree, we consider its leaf nodes
as clusters that we combine in order to obtain the number of
clusters (k), specified by the user.
The previous work proposed in [46] uses CPC [61] to

combine the clusters, but there are some databases that CPC
cannot cluster due to some overlapping constraint among the
seeds are not fulfilled. On the other hand, CPC has a high time
complexity: O(p2n) according to [61] where p is the number

of clusters to be combined and n is the number of objects.
Taking into account that the number of trees is constant, if we
consider the worst-case scenario where every tree has a leaf
for every object, then the time complexity of CPC is O(n3).
In this paper, in order to combine the clusters obtained

from the trees, we propose to use a less complex but effective
technique previously reported in the state-of-the-art literature
[1], [3]. The cluster ensembles algorithm can be summarized
as follows:

1) Every time a pair of objects (oi, oj) coincides in a
cluster, we increment the value of a similarity matrix
s at position (i, j). A high value of s[i, j] indicates that
the objects oi and oj are very likely to be in the same
resulting cluster.

2) Once we fill the matrix s, we apply k-means [13] to
cluster the objects using the matrix s as the measure
of similarity between objects (the user specifies the
number of clusters).

Let us assume the worst-case scenario for our algorithm,
i.e., having only two clusters for every tree; then, since the
number of generated trees is constant, the time complexity
for filling the similarity matrix s is O(n2). Since the number
of iterations of k-means is constant, and we do not compute
any distance measure between objects (we use the similarity
matrix s to compare the objects), the time complexity of
k-means is O(kn). Taking into account that k ≤ n, we can
conclude that the time complexity of combining the clusters
obtained from the trees is O(n2), which is lower than the time
complexity of CPC.

In summary, in this section, we have proposed a new
algorithm (UD3.5) for building unsupervised decision trees.
Based on our example in Fig. 4 and the complexity analysis
section, we can conclude that UD3.5 improves the partitions
created by UD3 [46] without sacrificing efficiency. Also,
UD3.5 is based on a new split evaluation criterion that takes
into account both compactness and separation [3] of the clus-
ters; hence it can differentiate among the three examples in
Fig. 3. Unlike UD3, our proposal does not require a parameter
that controls the number of objects in the leaf nodes. Also,
UD3.5 automatically stops expanding a branch if the new
child nodes are evaluated worse than the best evaluation
computed in that branch. Additionally, for creating diversity,
we build 100 different unsupervised decision trees by using
the same feature selection strategy of Random Forest [57] and
our proposal, UD3.

In the next section, our proposal is assessed over 40 numer-
ical databases taken from the UCI Machine Learning
Repository [34].

V. EXPERIMENTAL FRAMEWORK
This section shows the experiments designed to evaluate
the performance of the proposed algorithm. For our experi-
ments, we used 40 well-known databases taken from the UCI
Machine Learning Repository [34]. Table 1 shows, for each
database, its name in the repository (Database), the number
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FIGURE 4. Synthetic 2D points with the clusters computed by our proposal (UD3.5) and by the algorithm (UD3) proposed in [46].

of objects (# objects), the number of features (# features), and
the number of classes (# classes).

We evaluated the ensemble explained in Section IV-D,
which is based on our UD3.5 algorithm (we named eUD3.5 to
our ensemble). We also evaluated the clustering algo-
rithm (PCN) based on UD3 [46] and CPC [61] because it
has shown better results than other popular state-of-the-art
clustering algorithms based on unsupervised decision trees,
such as COWEB [54], CLASSIT [55], and CLUS [56]. More-
over, we evaluated URerF [60] because, as far as we know,
it is the most recent clustering algorithm using a collection

of decision trees. Additionally, we tested three of the most
popular clustering algorithms not based on decision trees:
k-means [13], EM [14], and DBSCAN [15], because they
have shown good results on numerical databases regarding
several clustering proposals.

To execute the clustering algorithms mentioned above,
we leveraged the scikit-learn library [63] for executing
DBSCAN, and the scikit-learn library jointly with the code
published by [60] (at https://sporf.neurodata.io) for executing
URerF. Also, we have used the Weka Data mining tool [64]
for executing both k-means and EM. Additionally, we have
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TABLE 1. Description of the databases used in our experiments.

used the implementation of UD3 and PCN provided by their
authors [46]. Consequently, we have modified the source
code provided by [46] for creating our implementations of
UD3.5 and eUD3.5. All tested clustering algorithms were
executed by using the parameter values recommended by
their authors.

We followed the experimental protocol of [46], which used
F-measure [65] to evaluate the clustering results. F-measure
evaluates the dependence between C classes in the database
and K clusters built by the clustering algorithms as follows:

F − measure(C,K ) =
∑
ci∈C

| Ci |
| T |

max
kj∈K
{F(ci, kj)}, (6)

where

F(ci, kj) =
2 ∗ Recall(ci, kj) ∗ Precision(ci, kj)
Recall(ci, kj) ∗ Precision(ci, kj)

(7)

and | T | represents the number of objects in the database, C
is the set of classes, K is the set of clusters, Recall(ci, kj) =
nij/ | ci |,Precision(ci, kj) = nij/ | ki |, and nij is the number
of objects of the class ci ∈ C belonging to cluster kj ∈ K .
Finally, to determine the statistical significance of differ-

ences among the clustering results, we applied the Friedman

test [66]. After, if the Friedman test outputs statistical dif-
ferences, we will apply the Finner dynamic post-hoc, as was
proposed by [67] for knowing which are these differences.
We compared the results considering a level of significance
α = 0.05.

A. EXPERIMENTAL RESULTS
Table 2 shows the results obtained by the six tested clus-
tering algorithms where the name of the database and
the F-measure value associated with each tested clustering
algorithm are shown. From this table, we can notice that
DBSCAN achieves the best results (10 victories) against
the remaining tested clustering algorithms. Notice that PCN
achieves an F-measure value of 0.0 in 9 databases because
the algorithm computes some seeds in which overlapping
constraints are not fulfilled. However, it is essential to note
that the number of victories does not determine if a clustering
algorithm is better than the remaining ones; for knowing this,

TABLE 2. F-measure reached by the testing clustering algorithms in the
databases shown in Table 1. The best result for each database appears in
bold. Notice that for the iris database, both eUD3.5 and PCN shared the
best result.
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FIGURE 5. Violin plot showing all results obtained from all tested clustering algorithms.

a group of statistical methods and measures must be applied
as shown in Table 4.

In Fig. 5, we show a violin plot from our obtained results
for more details. In general, a violin plot is a combination
of the box plot with a kernel density plot. In the violin plot,
we can find more information than the box plot. Inside the
violin figure, we have the minimum and maximum values,
the median (the white dot inside the thin black line inside
the violin), and the first and third quartiles (top and bottom
side of the thick black line, respectively, inside the violin)
for the F-measure. We can get an idea of how consistent the
results are because quartiles closer to the median indicate
lower variability in the results. F-measure values from the thin
black line inside the violin to the point outside in the border
of the violin are considered outliers. The best possible value
for F-measure is 1.0, which corresponds to perfect clustering.
A violin plot can show the statistics mentioned above, and it
also shows the entire distribution of the data (the form of the
violin figure).

From Fig. 5, we can see that our proposal and k-means
obtain the best medians (see the dashed cyan line) regarding
the remaining tested clustering algorithms. However, notice
that our proposal obtains the lowest variability in the results
because it has its quartiles closer to the median (see dashed
red and blue lines). Also, it is important to highlight that
our proposal, URerF, k-means, EM, and DBSCAN follow
a normal distribution for their outputs. However, notice that
PCN follows a multi-modal distribution for their outputs,
i.e., a distribution with more than one peak. Those models
outputting results that follow a multi-modal distribution are
complicated to interpret because, naturally, by using a new set

TABLE 4. Statistical results for all the tested clustering algorithms,
considering all the tested databases.

of databases, they would get a set of values where the mean
and the median can change drastically [68].

Table 4 shows the average F-measure, the standard devi-
ation (SD), the average ranking according to the Friedman’s
test, and the unadjusted p-value of the Finner’s procedure for
all tested clustering algorithms, considering all the databases
stated in Table 1. This table is ordered according to the
average of Friedman’s ranking value.

After applying the Friedman’s test, it outputs a p-value
of 0.479406, accepting the null hypothesis (all analyzed
clustering algorithm have a similar performance from a
statistical point of view). However, from Table 4, we can
see that our proposal reached the best ranking maintaining
the second-best average F-measure (slightly surpassed by
k-means).

As we saw throughout this section, our proposal (eUD3.5)
and k-means have shown similar performances. However,
one advantage of eUD3.5 with respect to the other clustering
algorithms is that it can describe the computed clusters by
means of the patterns extracted from every decision tree.
For example, Table 3 shows the more general patterns that
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TABLE 3. The patterns that eUD3.5 uses to describe the three clusters that it computes by using the iris database, taken from the UCI Machine Learning
Repository [34].

eUD3.5 computes when clustering the iris database, see
Section II for more details about pattern-based clustering.
From Table 3, we can see that cluster1 can be explained by
using P1, cluster2 by using P3, and cluster3 by using P11
because they are covering 100% of objects belonging to each
cluster. Notice that these patterns are short and easy to be
understood by an expert in the application area.

From these results, we can conclude that eUD3.5 improves
the F-measure and efficiency of PCN, which is the cluster-
ing algorithm most related to our work. Also, eUD3.5 can
describe all the obtained clusters through the patterns asso-
ciated with each cluster. Another important conclusion is
that our proposal can achieve an average F-measure result
similar to k-means, and our proposal does not require any
distance measure. Notice that those machine learning models
containing distance measures are very hard to explain and to
be understood by experts in practical domains [39].

VI. CONCLUSION AND FUTURE WORK
The clustering algorithms based on unsupervised decision
trees provide an easy way for describing each cluster by
following the path from the root to the leaves.

In this paper, we proposed eUD3.5, a new algorithm for
inducing a collection of diverse unsupervised decision trees.
eUD3.5 relies on a new split evaluation criterion, which
improved the performance of PCN without sacrificing effi-
ciency. Also, our proposal reached the best position in Fried-
man’s ranking compared with other popular state-of-the-art
clustering algorithms.

Unlike other state-of-the-art clustering algorithms based on
decision trees, our proposal does not require a parameter that
controls the number of objects in the leaf nodes, and also it
automatically stops expanding a branch if the new child nodes
are evaluated worse than the best evaluation computed in that
branch.

An important advantage of our proposal is that it can
provide patterns associated with each cluster, describing the

whole database with a few patterns by keeping those which
are more general. This kind of description is useful in some
applications (e.g., medicine, biotechnology, psychology, and
banking sector) where the specialists analyze the clusters
for accepting or rejecting some hypothesize, for designing
further studies, and ultimately explaining the phenomena.

As future work, we will focus on extending our pro-
posal to deal with both categorical and numeric features,
large databases, and dynamic data. We also plan to use our
algorithm for discovering the structure of small classes and
use this information within supervised classifiers in order to
improve the classification accuracy on imbalanced databases.
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