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ABSTRACT Brain image classification is one of the most useful and widely needed processes in the
medical system, and it is a highly challenging field. This paper presents a new method for selecting a
significant subset of features as the input to the classifier, called mutual information-accelerated singu-
lar value decomposition (MI-ASVD). This novel algorithm is exploited to design an intelligent system
for classifying MRI brain images into three classes: healthy, high-grade glioma, and low-grade glioma.
The proposed system has six stages: pre-processing, clustering, tumour localization, feature extraction,
MI-ASVD and classification. First, the MR images are smoothed by using enhancement techniques such
as Gaussian kernel filters. Then, local difference in intensity-means (LDI-Means) clustering is employed
to segment and detect suspicious regions. The grey-level run-length matrix (GLRLM), texture, and colour
intensity features are used for tumour feature extraction. Later, a special method including a summation of
feature selection and dimensionality reduction,MI-ASVD, is applied to select themost useful features for the
classification process. Finally, the simplified residual neural network technique is implemented to classify
the MR brain images. Using MI-ASVD provided accurate and more efficacious results in classification
compared with the original feature space and with two other standard dimensionality reduction methods,
principal component analysis (PCA) and singular value decomposition (SVD). It achieved a classification
accuracy of 94.91%, which is better than the two state-of-the-art techniques as well as methods from similar
published studies.

INDEX TERMS Brain image classification, clustering, image processing, machine learning, mutual infor-
mation, PCA, residual neural network (RNN), SVD.

I. INTRODUCTION
The main purpose of brain tumour classification is to cor-
rectly classify MR images to detect which type of tumour is
affecting a patient. Glioma is the brain tumour with the high-
est death rate and occurrence rate. These neoplasms can be
graded as low-grade gliomas (LGGs) and high-grade gliomas
(HGGs) according to their aggressive and infiltrative charac-
teristics [1]. The treatment of a brain tumour depends on the
tumour size, its type, and its growth stage. In the healthcare
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industry, doctors detect the presence of a brain tumour with
the help of various medical imaging techniques [2].

Medical imaging can be defined as a technique used to
create images for clinical research, diagnosis, and treatment.
Magnetic resonance imaging (MRI) is an imaging technique
that uses magnetic fields to capture images. It can provide
reproducible, non-invasive, and quantitative measurements
of tissue, including structural, anatomical, and functional
information [3]. Because of its outstanding soft tissue contrast
and detailed resolution, MRI is the most commonly utilized
modality for brain tumour growth imaging and location detec-
tion. MR brain image classification and tumour detection are
still basedmostly on direct human inspection of these images.
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This visual evaluation and examination by radiologists is
subjective by its nature, and it is time-consuming and prone
to errors and omissions [4]. Therefore, to enhance physi-
cians’ diagnostic capabilities and reduce the time required,
a medical decision-making system for automated brain
tumour detection and classification of MR images has been
developed.

In machine learning, the classification process is defined as
a supervised learning task that infers a link between features
(characteristics of the dataset) and class labels.

The classification of high-dimensional data is based on
these extracted features [5].

However, a large number of features often leads to overfit-
ting, high computational complexity, and low interpretability
of the final model [6]. For better results, the medical decision-
making field has begun to use data mining techniques to
detect the presence of such tumours. Hence, physicians can
use a brain tumour detection system as a second opinion
in addition to their own view in finding the right diagnosis
and treatment of brain tumours [1]. In the data mining field,
the quality of input data determines the quality of the out-
put, e.g., accuracy. The input data to any machine learning
algorithm is approximately expressed by features showing
different properties of the problem. Therefore, the quality
of the feature space is key in solving an image analysis
problem [7].

The objective of this paper is to develop an intelligent sys-
tem that can classify MR brain images more effectively than
existing models into three classes: healthy, high-grade glioma
(HGG) and low-grade glioma (LGG). To achieve this aim,
a novel algorithm named MI-ASVD has been used, which is
a combination of two techniques: mutual information (MI) as
a feature selection method and singular value decomposition
(SVD) as a dimensionality reduction method. This algorithm
has been considered a pre-step for classification process to
improve the classifier performance.

The contributions of this paper can be summarized as
follows:

• A clustering algorithm based on intensity, named
LDI-Means (local difference intensity - means), is used
to perform segmentation.

• A feature selection method based on MI is used to re-
rank the extracted features, which will help the ordinary
SVD technique to work automatically. Hence, there is
no need for the user to specify the number of dimensions
that is needed to reduce the features; this novel method
is named MI-ASVD.

• A simplified version of RNN is used to perform classi-
fication, as shown in Fig. 1.

In addition to the introduction mentioned above, this paper
is structured as follows: Section (II) presents some of the
related literature. Section (III) explains the background the-
ory. Section (IV) describes the methodology. Section (V)
contains the experimental results as well as the discussion.
Finally, the conclusions are addressed in section VI.

FIGURE 1. The block diagram of the proposed system. MI-ASVD is the
novel part of this paper.

II. RELATED LITERATURE
Some of the data mining and machine learning approaches
used to perform feature selection and classification are
explained below:

Battiti [8] introduced a new way to perform feature selec-
tion by using mutual information theory, which is called
MIFS. This algorithm includes calculating the relationships
among each feature and all other features and among each
feature and all classes. Then, another useful subset of fea-
tures is formed by selecting a feature that gives a large
amount of information about the class label. Peng et al. [9]
presented another algorithm, called mRMR, based on MI
theory. It is used to minimize the redundancy and maximize
the relevancy among features. Kumar et al. [10] presented
a principal component analysis - artificial neural network
(PCA-ANN) system to assist radiologists in multiclass brain
tumour classification. It consists of four stages: gradient
vector flow (GVF), feature extraction, feature reduction by
using PCA and classification by using an ANN. Addition-
ally, a multiclass brain tumour classification method using
PCA-ANN was presented by Sachdeva et al. in [11]. Eight
hundred and fifty-six ROIs were obtained by using the
content-based active contour (CBAC). After the CBAC step,
more than one experiment was performed in this study to
check the classification accuracy by using an ANN with and
without PCA. The experimental results showed an increase in
the accuracy from 77 to 91%.

Corso et al. [12] proposed a new method. It combines
two of the most effective approaches to segmentation. The
first approach uses generative model-based techniques, and
the second uses a graph-based affinities method. Then,
the multi-level segmentation by weighted aggregation algo-
rithm (SWA) is used. A study by Fang et al. [13] computed
the value of MI by using the Kozachenko Leonenko infor-
mation entropy estimation method to find robust features.
Then, it factorized the obtained feature matrices to satisfy the
input of the classification stage. The results showed that this
improved method could successfully decrease the number
of dimensions of multidimensional time series for clinical
data. Hoque et al. [14] presented a feature selection method
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based on fuzzy MI with a nondominated solution. This study
selects features according to the fuzzy mutual information
between each feature and class as well as between each fea-
ture and the other features. Additionally, this study presents
a modification of the k-nearest neighbour (KNN) classifier
to classify instances based on distance. A DTI algorithm is
used in a study by Jones et al. [15] to delineate tumour VOIs
by using isotropic and anisotropic properties of the diffusion
tensor. Then, D-SEG spectra are considered within each VOI.
The classification of tumour type using D-SEG spectra is
implemented using an SVM.

More than one experiment was performed in a study by
Zacharaki et al. [16]. This study suggested using conventional
MRI and echo-planar relative cerebral blood volume (rCBV)
maps for distinguishing brain tumour types and the support
vector machine recursive feature elimination (SVM-RFE)
algorithm as a feature subset selection method. Later, multi-
class classification is performed by using an SVM.

Automated detection and segmentation of abnormal brain
tissue from fluid-attenuated inversion recovery (FLAIR)
MRIs was performed in a study by Soltaninejad et al. [17].
The classification is performed with the super-pixel tech-
nique. Two classifiers are used: extremely randomized trees
(ERT) and an SVM. Additionally, Soltaninejad et al. [18]
proposed a novel super-voxel-based learning method. A set
of features, including histograms of texton descriptors, are
computed as a result of using a number of Gabor filters
in different orientations and sizes, and first-order intensity
statistical features are extracted. The extracted features are
used as an input to the random forests (RF) classifier to
perform classification into the categories of tumour core,
oedema or healthy brain tissue.

Dong et al. [19] introduced an automatic brain tumour
detection system using a U-Net-based deep convolutional
neural network. In [20], Bakas et al. identified the best
machine learning methods used to analyse brain tumour
images of MRI scans from 2012 to 2018 for the international
brain tumour segmentation (BRATS) challenge.

III. BACKGROUND THEORY
Applying one of the machine learning or data mining algo-
rithms in anymodel may face a critical risk when dealing with
high-dimensional data or a wide feature space as a result of a
large number of input variables. In general, two possible tech-
niques can be used to overcome this problem. First, feature-
selection algorithms can be used to choose only the most
relevant variables from the original dataset. The second is to
use dimensionality-reduction algorithms that take advantage
of the redundancy of the input data to calculate new variables
to be a new subset of the data [14]. PCA and SVD are themost
widely used algorithms to perform dimensionality reduction.

A. FEATURE SELECTION BASED ON MUTUAL
INFORMATION THEORY
Mutual information is a concept rooted in information theory.
It is a statistical method that calculates howmuch information

FIGURE 2. Principal component analysis in (a) the original feature space
and (b) a reduced-dimension space [23].

each variable has about the other variables [8]. For example,
if A and B are independent, then A includes no information
about B, and their MI is zero. If A and B are the same, then
all information carried by A is shared with B, and knowing A
reveals nothing new about B; accordingly, the MI is the same
as the information carried by A or B alone, which is called
the entropy of A [7], [21], [22].

B. DIMENSIONALITY REDUCTION BASED ON PCA
The feature extraction phase in any system is used for extract-
ing suitable features from a dataset [19]. Sometimes it is
necessary to use a PCA technique for extracting features to
reduce the dimensionality of the dataset.

PCA is a statistical procedure that helps to identify the prin-
cipal directions in which the data are modified. For example,
in Fig. 2(a), assume the axes U and V represent a two-variable
dataset that is measured in the X-Y coordinate system [23].
The main direction in which the data change is the U-axis,
and the second important direction, which is orthogonal to
the U-axis, is the V-axis, as shown in Fig. 2(b).

For each variable, if the (X,Y) coordinate is transformed
into its corresponding (U,V) value, then the data are decorre-
lated, which means that the covariance between the U and V
variables is zero. In other words, PCA can find the axis
coordinate system defined by the main directions of the
variance [24].

The parameter k in PCA represents the number of dimen-
sions that is needed to reduce the features. There are two
important factors related to the selection of k: the first factor
is the average square projection, shown in Eq. (1). The second
factor is the total variation in the data, shown in Eq. (2).

∑m

i=1

∥∥∥x(i) − x(i)approx∥∥∥2 (1)∑m

i=1

∥∥∥x(i)∥∥∥2 (2)

Typically, k is chosen as the sum of the smallest values
that satisfy the condition of Eq. (3). The k value selected
(the number of eigenvalues) gives the difference between the
original features and the reduced features, divided by the
whole feature space; it should be less than or equal to

VOLUME 8, 2020 52577



Z. A. Al-Saffar, T. Yildirim: Novel Approach to Improving Brain Image Classification Using MI-ASVD

FIGURE 3. Singular-value decomposition. (a): standard, based on the SVD
algorithms; (b) and (c): upward and downward evaluation of F Form.

the α value 0.01 [24].∑m
i=1

∥∥∥x(i) − x(i)approx∥∥∥2∑m
i=1

∥∥x(i)∥∥2 ≤ 0.01 (3)

In other words, an α ≤ 0.01 means that 99% of
the variance can be recovered. It is possible to choose
α ≤ 0.05 to retain 95% of the variance or α ≤ 0.10 for 90%.
By using aMATLAB function, an S matrix with a diagonal of
eigenvalues is found and by assuming α ≤ 0.01, then the sum
of the k selected eigenvalues divided by the summation of all
eigenvalues should be greater than or equal to 99%, as shown
in Eq. (4) [25]. ∑k

i=1 Sii∑m
i=1 Sii

> 0.99 (4)

C. DIMENSIONALITY REDUCTION BASED ON SVD
SVD is one of the most popular unsupervised data-mining
algorithms and one of the most appropriate mapping tools
used for mapping a high-dimensionality data space or vector
space to other dimensions. Mathematically, let X be an m
× n matrix and let the rank of X be r. The matrix rank is
the largest number of rows (or columns) where no nonzero
linear combination of rows is the zero vector (a set of such
rows or columns is independent) [26]. Then, matrices U, 6,
and V are calculated as shown in Fig. 3.

SVD is a type of eigenvalue/eigenvector mechanics that
uses a similar process of finding the singular value (eigen-
vector). Additionally, it is used to find the corresponding
singular vectors (eigenvectors), which are mainly yielded by
the matrix decomposition term. The terms ‘singular vector’
and ‘eigenvector’ will be used interchangeably, where the
SVD of matrix A can be written as shown in Eq. (5) [27].

A = USV T (5)

where U is the orthogonal m×mmatrix, and the columns of U
are the eigenvectors of AAT.

V is orthogonal to the n×n matrix, and the columns of V
are the eigenvectors of the AAT matrix. However, S is the
set of diagonal eigenvalues (entities), which are also called
the diagonal sigma values σ1,. . . , σ2 and are computed based
on the square roots of the nonzero eigenvalues of the AAT

and AT A matrices. Both of them are the singular values

TABLE 1. The selected dataset arrangement.

of matrix A, and they occupy the first r places on the main
diagonal of S, where r is defined as the rank of A. Based
on Eq. (5), the connections with AAT can be written as
follows [28]:

AAT =
(
USV T

) (
VSTUT

)
= USSTUT (6)

Similarly, ATA can be written as follows:

ATA =
(
VSTUT

) (
USV T

)
= UTUSST (7)

In Eq. (6), U must be the eigenvector matrix AAT, and
SST is the eigenvalue matrix that is placed in the mid-
dle, which is defined as the m×m matrix with eigenvalues
λ1 = σ

2
1 ,. . . , λr = σ

2.
r .

However, based on the same method and using Eq. (7),
U is defined as the eigenvector matrix for ATA. The diagonal
matrix ST S has the same property λ1 = σ 2

1 ,. . . , λr = σ 2
r ,

which is an n×n matrix.

IV. METHODOLOGY
A. DATASET
MR brain images of low- and high-grade glioma tumours
as well as the healthy brains of 130 patients, are used in
this paper. There are 1467 axial-plane FLAIR MR Images
in the dataset. All images are 256 x 256-pixel 8-bit RGB
(colour images) in JPEG format. This open-access dataset
is one of the most trusted datasets provided by TCIA (The
Cancer Imaging Archive) [29], [30]. Only axial plane FLAIR
MR images are used in this paper because the proposed
system has to be able to achieve classificationwith the highest
possible performance using only one type of MR image,
as in [17], [31]–[33].

In the proposed system, three classes ofMRI brain tumours
are selected for classification. They are healthy, high-grade,
and low-grade. Since the dataset has a different number of
image samples in each class, which makes the dataset imbal-
anced, a random selection of an equal amount of data in each
class is performed in this paper. Then, the selected images are
divided into training, cross-validation, and testing datasets,
as shown in Table 1. The subsets included patients with the
various grades of tumours to ensure the robust performance
of the classifier.

Five-fold cross validation is used. The best way to select
the folds is sampling. The test size is set to a maximum
of twenty percent of the dataset. This near equality allows
for a more accurate evaluation of the resulting classifiers.
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Then, the training set is divided into five folds; each fold
has an equal number of randomly selected images. One
fold is withheld for the validation step. These folds are
used to train and validate the classifier, and the performance
of the trained classifier is evaluated by the votes collected
from each fold. Alternatively, MATLAB can automatically
select the optimal scaling via a heuristic procedure using
subsampling [34], [35].

B. THE FRAMEWORK OF THE PROPOSED SYSTEM
This paper proposes an intelligent system that includes six
stages. A flowchart of the proposed system can be seen
in Fig. 4. The proposed system is run usingMATLAB version
15a on a 2.40-GHz Intel R core (TM) i7-4500U CPU with
16.0 GB of memory (RAM).

The following stages explain the proposed system of this
paper in detail.

1) STAGE 1: PRE-PROCESSING
This stage includes steps to enhance the MR brain images
and prepare them for the second stage, such as using the
skull-removing technique and median and Gaussian filters
to improve the speed and accuracy of diagnostics as well as
tumour detection [36]–[38]; this is shown in Figs. 5 and 6.

2) STAGE 2: CLUSTERING BY LDI-MEANS
Image clustering is a technique used to separate an image into
multiple slices and to find a region of interest. This paper used
the LDI-Means clustering algorithm to segment the region of
the tumour from the rest of the image, as explained in detail
in a previous paper [38]. This method provided good results
in terms of tumour segmentation and region of interest (ROI)
detection for MR brain images. It is shown in Fig. 7.

3) STAGE 3: TUMOUR DETECTION AND LOCALIZATION
This stage includes finding the centre of the irregularity in
terms of x and y values in addition to drawing a boundary
box on the original image around the tumour, as shown
in Fig. 8 [38].

4) STAGE 4: FEATURE EXTRACTION
In general, feature extraction is defined as a process used to
reduce the amount of data required to describe a large set
of data accurately for facilitating decision-making, such as
pattern classification [34].

In many real-time applications, a mathematical equation is
used to differentiate between two images. Two images may
look the same to human eyes, but mathematically, each one
will give a different result [39].

In this paper, 64 features are extracted from the tumour
regions of MR brain images. Then, these features are used
as inputs to the classifiers, which assign them to the class
to which they belong. Accordingly, two types of features
are extracted, which yield the structure of greyscale, sym-
metrical, and texture information for the segmented tumour.
The two types of features are explained as follows:

FIGURE 4. A flowchart of the proposed system in this paper.

a: GREYSCALE FEATURES
Five features are used in this paper: mean, variance, stan-
dard deviation, skewness, and kurtosis; they are defined
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FIGURE 5. The steps of removing non-brain tissues in one image from the
dataset as an example [38].

FIGURE 6. Smoothing and adjustment steps [38].

FIGURE 7. Clustering (segmentation), where the number of
clusters K = 3 [38].

by Eqs. (8)-(12) [40]–[42].

Mean =

∑
x
n

(8)

variance =

∑
(x − mean)2

n− 1
(9)

Standard Deviation =

√∑
(x − mean)2

n− 1
(10)

Skewness =
(

1
variance

)∑m

x=1

∑n

y=1
(f (x, y)

−mean)3 (11)

Kurtosis =
(

1
variance

)∑m

x=1

∑n

y=1
(f (x, y)

−mean)4 (12)

b: TEXTURE FEATURES
Several Haralick texture descriptors are extracted from each
co-occurrence matrix and are computed according to the
statistical properties of the image derived from the GLCM.

FIGURE 8. The position in terms of x and y of the brain tumour in one
image from the dataset as an example [38]. (x = 89.6, y = 131.3).

They are the five features described in Eqs. (13)-(17)
[41], [42].

Entropy = −
∑n

i=1

∑m

j=1
p (i, j) log(p(i, j) (13)

Correlation =
1

(n− 1)

∑ (x − µx)(y− µy)p(x, y)
σxσy

(14)

Contrast =
∑

x,y
|x − y|2 p(x, y)2 (15)

Energy =
∑

x,y
p(x, y)2 (16)

Homogeneity =
∑

x,y

p (x, y)
1+ |x − y|

(17)

Additionally, the grey-level run-length matrix (GLRLM)
feature extraction technique is used to extract 11 features
depending on the derivation of the GLRLM for two-level
high-frequency sub-bands of the discrete wavelet of the
decomposed image. The first feature is for distance 1.
The second is the degree, which is 0, 45, 90, and 135. The
GLRLM feature extraction technique is used to isolate the
relevant features from the tumour region, which leads to a
good understanding of theMRI brain images. Then, the mean
and variance of each feature are computed to extend the total
number of features to 44 features [41].

5) STAGE 5: MI-ASVD
This stage is the most important part of this paper. It describes
a novel method named MI-ASVD. This approach involves
two techniques: feature selection based on MI theory and
dimensionality reduction based on SVD. Additionally, this
paper proposes a development of ordinary SVD that involves
the selection of multiple eigenvalues, which has not been
mentioned previously in the field of machine learning and
data mining dimensionality reduction.

The whole idea of using MI-ASVD is to apply a feature
selection method for re-ranking features and to then use
the ordinary SVD technique as a non-biased thresholding
algorithm; the accelerated SVD is named ASVD. This paper
develops a mathematical MI model to evaluate the whole
feature space. According to distance metric measurements,
this model defines a threshold value of MI scoring that is
based on the descent projection score of the majority feature
score and the cumulative distribution function (CDF) value.
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In general, MI is an information theory approach that
describes and illustrates the relationship between two vari-
ables. Let us assume that Si and Sj are two variables; the
mutual information I (S i; Sj) measures howmuch information
each variable has about the other [36]. The MI of two vari-
ables Si and Sj, whose joint distribution isH

(
Si|Sj

)
, is defined

by Eq. (18) [43]:

I (S i; Sj) = H (Si)− H
(
Si|Sj

)
= H

(
Sj
)
− H

(
Sj|Si

)
(18)

Basically, MI is defined as an absolute value that mea-
sures the information between two variables, as given
in Eq. (19) [41]:

0 ≤ I (S i; Sj) ≤ min(H (Si)− H (Si) ,H
(
Sj
)
) (19)

MI is not a suitable measurement, since it is not based
on a bounded range of the absolute value. However, it can
allow the mutual information to measure the bounded range
by normalizing the triangle inequality (distance metric)
instead of the probability. Hence, let us assume that the
mutual information-based triangle inequality metric deter-
mines the upper estimation of two variables by estimating
the size of the sum of the two variables Si and Sj, as shown
in Eq. (20) [44]. ∣∣Si − Sj∣∣ > ∣∣|Si| − ∣∣Sj∣∣∣∣ (20)

By using the Euclidian distance space, the metric distance
represents the norm of the inner product. Then, the triangle
inequality using MI is defined as a given vector of Si and Sj,
where the inner product 〈Si, Sj〉 is defined in Eq. (21) [43].∥∥Si + Sj∥∥2
= 〈Si + Sj, Si + Sj〉 = ‖Si‖2

+〈Si, Sj〉 + 〈Si, Sj〉 +
∥∥Sj∥∥2 ≤ ‖Si‖2 + 2〈Si, Sj〉

+
∥∥Sj∥∥2 ≤ ‖Si‖2 + 2 ‖Si‖

∥∥Sj∥∥+ ∥∥Sj∥∥2 = (‖Si‖ + ‖Si‖)

(21)

The last norm function is defined based on the
Cauchy–Schwarz inequality. In this case, it becomes an
equality for (dependent) linear variables if and only if the first
variable Si and the second Sj are nonnegative scalar numbers,
as shown in Eq. (22) [43], [45]:

〈Si, Sj〉 + 〈Si, Sj〉 ≤ 2〈Si, Sj〉 (22)

However, the MI is normalized by the possible maximum
mutual score, as Eq. (23) shows [40]:

dCR
(
Si, Sj

)
= 1−

I
(
Si, Sj

)
min(H (Si) ,H

(
Sj
)
)

(23)

Then,

0 ≤ dCR
(
Si, Sj

)
≤ 1 (24)

Hence, the lower-bound range of the mutual scores shares
the possible maximum score that is given by their entropies,

as shown in Eq. (25) [45]:

dCR
(
Si, Sj

)
= 1−

I
(
Si; Sj

)
max(H (Si) ,H

(
Sj
)
)

(25)

It is based on the maximum entropy score for mutual
normalization [44]–[46]. Thus,

1−
min

(
H (Si) ,H

(
Sj
))

max
(
H (Si) ,H

(
Sj
)) ≤ dCR (Si, Sj) ≤ 1 (26)

The MI-based distance metric returns zero if Si = Sj,
because it identifies and indicates features (variables) based
on the maximum possible information gain, and the entropy
is identical, as Eq. (27) shows:

H (Si) = H
(
Sj
)
= I (Si; Si) (27)

Otherwise, it depends on the MI score to indicate the
selected variable such that:{

H (Si) < H
(
Sj
)

H (Si) > H
(
Sj
) (28)

Hence, the distance between two variables d
(
Si, Sj

)
is

based on the maximum entropy, which can be written as
shown in Eq. (29) based on the complexity proposed by
MacKay [44]:

d
(
Si, Sj

)
=
max

(
H (Si) ,H

(
Sj
))

max
(
H (Si) ,H

(
Sj
)) (29)

After applying the chain rules for the tested variable-based
distance entropies d

(
Si, Sj

)
, the MI-based distance metric

can be written as Eq. (30) [45], [47].

H
(
Si|Sj

)
≤ H

(
Sk |Sj

)
+ H (Si|Sk) (30)

where Sk results from applying the chain rules twice on the
tested variables for three sources Si, Sj.

The MI-based distance metric method used in this paper is
defined in Algorithm (1).

Algorithm (1) shows how theMI is calculated by using two
random variables and the Euclidean distance between each
pair of features in the whole tested feature space and based on
the normalized features using the maximum entropy score.

Since the MI-based distance metric has only positive
scores, the threshold value is set to be 0.5 or less to achieve a
smaller distance metric between the selected features, which
is called the closed-interval feature score (semi-closed inter-
val). The empirical distribution function is used to project the
final MI-based distance score and find the final feature space.
CDF is a cumulative distribution function of a real-valued
random variable X as shown in Eq. (31):

FX (x) = D(X ≤ x ∈ Iv ≤ 0.5) (31)

where P(X ≤ x) illustrates the distance of the whole feature
space X , which selects only the values for which the MI score
is less than or equal to x. The distance of X in the semi-closed
interval is shown in Eq. (32):

Selection Threshold =∀XFX (a)FX (b)=D (a < x≤b) (32)
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Algorithm 1 MI-Based Distance Metric Algorithm
Input: Space of all features S
Output: Mutual Scoring I

1. Repeat
2. Calculate the mutual information for x and y

I (X ,Y ) = D (X ,Y ) = max(H(x),H(y))
max(H(y),H(x)) where D is

the Euclidean distance function
3. Find H (X |Y ) ≤ H (Z |Y )+ H (X |Z )

where:
X is the space of the first group of features, Y is the
space of the second group of features and Z is the
result of applying the chain rules twice on the tested
variables with Eq. (30)

4. Call the next two variables
5. Until all the variables of the feature space have been

used
6. Return vector I
7. End

In Eq. (32), the ‘‘less than or equal’’ sign illustrates the
convention of the closest discrete distribution features falling
between the lower bound distance score, which is 0 (‘‘very
close or the same’’), and the upper bound score, which is 0.5
(‘‘fairly close’’). After performingMI scoring, an accelerated
version of SVD is used. ASVD given in Algorithm (2).

6) STAGE 6: CLASSIFICATION BY A SIMPLIFIED RNN
The classification process aims to categorize data into indi-
vidual classes. In a traditional ANN, each layer transfers the
parameters to the next layer. More technically, each layer
uses a feed-forward pass to feed the next layer directly until
eventually many layers are reached. Typically, an ANN is
a universal learning function that gradually increases the
number of layers that are added to the structure. On the other
hand, having a limited number of layers is still a major issue
in the design of ANNs to improve accuracy. Hence, in some
cases, the increase in the number of layers in an ANN results
in a complex learning function that harms the ability of the
universal learning function [48].

In contrast, deep learning is used to increase the number
of layers with a simple learning function as a solution that
increases the layer dimension in theANN structure. TheANN
therefore becomes more complex and deep than the original
simple ANN. On the other hand, if the goal is to increase
the number of layers but still use the simple ANN structure,
it is possible to start at the point of eventual overfitting. This
can show that a deep ANN is learned better than the regular
ANN structure with an overfitting problem [46]. To overcome
these issues, a residual neural network (RNN) is proposed as a
modern ANN structure with the idea of a residual connection.
Simply, an RNN is based on the connection between the
previous layer and new layers. In this case, the simplified
RNN tries to skip a connection from the previous layer to the

Algorithm 2 ASVD Algorithm
Input: Data matrix X
Output: New Dimensions C

1. Repeat
2. Construct the covariance matrix X from the

decomposition according to:
If No. of Features

No. of Samples ≥ 1 then Data← XTX
else Data← XXT

End if
3. Calculate the d-dimensional mean vectors for each

class from X .
XXT =

(
USV T

) (
USV T

)T
= (USV T )(VSUT )

4. Calculate V as an orthogonal matrix(
V TV = I

)
, XXT = US2UT

5. Calculate the scatter matrices (between-class and
within-class scatter X).

6. Calculate 2
√
the eigenvalues of XXT = singular

values of X
7. Compute the eigenvectors (e1,. . .ed ) and the

corresponding eigenvalues (λ1,...,λd ).
8. Order the eigenvectors by decreasing eigenvalues.
9. Select k eigenvectors with the smallest error (square

root) from a d × k dimensional matrixW (where
every column represents an eigenvector).

10. Use this d × k eigenvector matrix to transform the
samples into the new subspace. Y ← X ×W where
(X is an n× d dimensional matrix, and Y is the
transformed n× k dimensional samples in the new
subspace)

11. Until Convergence
12. End

FIGURE 9. Single residual block diagram of a residual neural
network [49].

next layer by avoiding the full connection and the complex
learning function. This is one of the interesting solutions
that retain the expanded neural network structure without an
overfitting issue [48], [49]. The main diagram of the residual
neural network (RNN) is illustrated in Fig. 9 [48].

From Fig. 8, it may be assumed that the difference
between the input and the output (residual) is defined by
Eq. (33) [49], [50]:

F (x) = Output − Input = H (x)− x (33)
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TABLE 2. Architecture of the final classification approach.

where the output is the new set of weights of the previ-
ous layer, and the input is the original set of weights of
the next layer. By rearranging Eqs. (33) and (34) will be
obtained [49], [50]:

H (x) = F (x)+ x (34)

In this case, the residual block is attempting to learn the
true overall output H (x). It can be seen from Fig. 8 above
that RNN tries to learn the residual F(x), since it has the
identity connection (x) that comes from the same input x.
In conclusion, the layers in the original ANN attempts to
learn the outputH (x) only by learning and adjusting weights,
while the residual neural network attempts to learn the true
output F(x) [49].

Conceptually, in the classification step, this paper used a
simplified RNN methodology in a regular expanded neural
network to reduce overfitting and achieve better accuracy.
The input of the training formula consists of examples in the
form of feature vectors with labels assigned to them. The goal
of the classification algorithm is to learn to assign correct
labels to new unseen samples of the general task [51].

The simplified RNN is used as a classifier based on the
standard back-propagation algorithm in this paper, which
contains one input layer, three hidden layers, and one output
layer. The number of input nodes depends on the type of
approach that is used. If a dimensionality reduction approach
(PCA, SVD, or ASVD) is used, this means the input nodes
depend on the total number of dimensions (k) that were
selected before. The total number of output nodes depends on
the total number of class labels, which is three in this paper.

Table 2 shows the simplified RNN architecture. In the
all three hidden layers, every neuron has a sigmoid as an
activation function. In the output layer, SoftMax is the main
activation function. Standardly, the SoftMax activation func-
tion has a unique property that effectively indicates the output
probability for each class in a multi-class classification prob-
lem, where the output is a value in [0-1]. SoftMax can choose
the highest probability for each class, as shown in Eq. (35):

f (s)i =
1∑C
j e

sj
(35)

where sj are the scores that are predicted by the network for
each class in C.

The main optimization function that is used in the pro-
posed simplified RNN design is the cross-entropy loss,

FIGURE 10. The architecture diagram for the classifier (SoftMax) and loss
function (Cross-Entropy loss).

as given in Eq. (36):

Loss =
∑C

i=1
tilog(si) (36)

where ti is the ground truth (label) of each class and si is the
probability score (predicted) for each class.

Since the proposed network is designed for a multi-class
classification problem, the SoftMax activation function with
cross-entropy loss is used (as SoftMax-Entropy loss). The
proposed network is trained to obtain the probability output
over the class (cj) for each tumour image in the training phase
for all classes, as shown in Eq. (37):

f (s)i =
esj∑C
j e

sj
Loss = −

∑C

i=1
tilog(si) (37)

For multi-class classification labelling, one-hot coding is
used; in this case, only the positive classes cp remain in the
loss function (main term). One element in the loss function,
that is, the target vector (ground truth), is as follows:

ti = tp (38)

Based on the target labels, the elements for which the sum-
mation is zero are discarded. According to this assumption,
the optimization loss function is written as follows:

Loss = −log

(
esp∑C
j e

sj

)
(39)

The architecture diagram for both the classifier (SoftMax)
and loss function (Cross-Entropy loss) is shown in Fig. 10.

The proposed network is trained by using the following
parameters:

• The initial learning rate parameter is 0.0001.
• The momentum factor is used to adjust the step size for
the global minimum coverage by setting it to 0.9.

• The learning patch size is 16.
• The epoch size is 20.
• The iteration number for each epoch is 500.
• The dataset is augmented by pre-processing using a
Gaussian filter, as shown in Eq. (40) below:

Kσ (t) = exp
(

1
2σ 2

∑n

i=1
t2i

)
(40)
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TABLE 3. Confusion matrix.

C. EVALUATING PARAMETERS
In general, a confusion matrix is a technique for summariz-
ing the performance of a classification algorithm, as shown
in Table 3 [47].

True Positive (TP) refers to the correct detection of positive
cases, true negative (TN) refers to the correct detection of
negative cases, false positive (FP) refers to the incorrect
classification of positive cases in the negative class and false
negative (FN) refers to the incorrect classification of negative
cases in the positive class.

The evaluation parameters of the MRI classifica-
tion system are calculated by using the following
measures [47], [52], [53]:

Accuracy (Recognition Rate)=
TP+TN

TP+TN+FP+FN
×100

(41)

Sensitivity (Recall) =
TP

TP+ FN
× 100 (42)

Precision (Specificity) =
TN

TN + FP
× 100 (43)

F1−Measurement = 2×
2TP

2TP+FP+FN
(44)

FalseAlarm =
FN

FN + TN
(45)

In this paper, a confusion matrix is 3 × 3.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Four sets of experiments are performed to test the perfor-
mance and robustness of the proposed system. In all exper-
iments, three classes are classified and the simplified RNN is
used as a classifier.

• Experiment 1: using the whole feature space of 64 fea-
tures, which are extracted from the segmented ROIs.

• Experiment 2: using the most significant features
(13 features), which are obtained as a result of
using MI-ASVD.

• Experiment 3: using the PCA technique to decrease the
number of features from 64 to k = 13, 26 and 52.

• Experiment 4: using the SVD technique to decrease the
number of features from 64 to k = 13, 26 and 52.

The experimental results are obtained based on three cri-
teria for comparison. Firstly, with the all features (experi-
ment 1), as shown in Tables 4 and 5. Secondly, with the PCA
and SVD for different values of k (experiments 3 and 4),
as shown in Tables 4 and 5. Thirdly, with some published
studies, as shown in Table 6.

TABLE 4. The classification accuracy.

TABLE 5. The classification performance results.

Table 4 shows the classification accuracy of experiments 1,
2, 3 and 4. The second row in Table 4 shows the accuracy of
the proposed algorithm MI-ASVD, which achieved 92.69%
on the training set and 94.91% on the testing set. According
to the MI-ASVD approach, 13 features were selected auto-
matically from the total number of features, which is 64. The
names and feature ranks are shown in Table 7.

Based on the 13 features obtained, this paper manually
selected K = 13 to be the required reduction for PCA and
SVD. PCA achieved an accuracy of 86.21% on the training
set and 88.89% on the testing set, whereas SVD achieved an
accuracy of 85.89% on the training set and 87.71% on the
testing set.

Moreover, in terms of measuring the performance of PCA
and SVD, different numbers of features were used. Twenty-
six (double of 13) and 52 (double of 26) features were used.
When using 26 features, the accuracy values are 75.22%
and 76.17% on training and testing, respectively, for PCA;
whereas, they are 72.90% and 73.85% on training and testing,
respectively, for SVD, as shown in Table 3. In the case of
using 52 features, the accuracy values are 73.72% and 74.64%
on training and testing, respectively, for PCA; whereas, they
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TABLE 6. Brain tumor classification by different feature selection and machine learning algorithms for comparison with the proposed system.

TABLE 7. Names and feature ranks based on the MI-ASVD approach.

are 72.40% and 73.31% on training and testing, respectively,
for SVD.

Table 6 shows a comparison with other studies in this field.
According to the comparison, it is found that the performance
and accuracy of the proposed system is suitable for providing
a meaningful estimation of brain tumour classification in real
time and provides good precision to detect this class of brain
tumours.

The average quality measurement results, such as recall,
precision, F-measurement, detection rate, and false alarm of
the proposed system during the training and testing phases,
are shown in Table 5.

Additionally, it can be seen in Fig. 11 that the MI-ASVD
approach (blue loss function line) achieves the lowest score
during the training phase within 500 epochs compared with

FIGURE 11. Loss function scores of the classification training phase by
using all features, MI-ASVD, PCA and SVD.

the other dimensionality reduction approaches PCA and
SVD, in grey and orange, respectively, as well as in compar-
ison with the whole feature space, in purple.

VI. CONCLUSION
The main contribution of this paper is to design an automated
system that can detect and classify grades of brain gliomas.
The classification process in the proposed system depends
only on the most significant features obtained by using MI-
ASVD. It is a new method combining the mutual information
with Singular Value Decomposition. It automatically selects
the significant subset of features and provides a good distri-
bution in finding the best features to use as an input to the
main classifier.

Here, a hybrid methodology, MI-ASVD with a simpli-
fied RNN has been used in addition to LDI-Means clus-
tering [38] proposed in a previous paper by the same
authors. This method presents both an unsupervised and also
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supervised learning approaches that can make a useful
CAD system to help speed up the diagnostic procedure and
decrease diagnostic errors. This combination gives an accu-
rate result for identifying brain tumours by achieving 94.91%
accuracy on the testing dataset, whereas the highest accuracy
using PCAwas 88.02% and that using SVDwas 87.71%. The
experimental results of the proposed system demonstrates the
effectiveness of using MI-ASVD technique which identified
the robust features to recognize the class of the tumour excel-
lently and to save time.

Regarding the selected features, there are some limitations
that the proposed system may face. MI-ASVD works per-
fectly on the dataset used in this paper, but there are a variety
of other datasets, which may present different difficulties and
challenges, and the proposed model could be unsuitable for
them. Hence, this paper proposes using different classifiers to
increase the accuracy of associating different segmentation
and feature extraction methods with other clinical cases by
using a large dataset to cover different scenarios and over-
come these limitations. Additionally, possible future work
includes:
• Using T1-weighted and T2-weighted MR images,
because this paper used only FLAIR-weighted MR
images.

• Using 3-D VOIs for evaluation, which could be more
convincing.

• Increasing the number of classes, which could provide
more information on the grades of glioma tumours.

• Using deep neural networks, because despite some
successes, deep neural network applications remain
relatively unexplored in the neuroimaging field [56].
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