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ABSTRACT When a single-phase ground fault occurs in a distribution network, it is generally allowed to
operate with faults for one to two hours, which may lead to further development of the fault and even threaten
the safe operation of the power system. Therefore, when a small current system has a ground fault, it must be
quickly diagnosed to shorten the time of operation with fault. In this paper, an adaptive convolutional neural
network (ACNN)-based fault line selection method is proposed for a distribution network. This method
improves the feature extraction ability of the network by improving the pooling model. Compared with deep
belief network (DBN), it can improve the accuracy of fault classification by 7.86% and reduce the training
time by 42.7%. On this basis, the secondary fault location is identified using the principle of two-terminal
fault location. In this research, fault data obtained by Simulink simulation is used as training set, and ACNN
model is built based on TensorFlow framework. The analysis of results proves that the model has a high
fault recognition rate and fast convergence speed. It can be used as an auxiliary hand for fault diagnosis in
distribution networks.

INDEX TERMS Convolutional neural network, adaptive pooling model, two-terminal fault location,
distribution network, single-phase ground fault.

I. INTRODUCTION
Distribution networks in China are characterized by complex
structures, large scale, wide coverage, and frequent ground
faults, and more than 80% of these faults are single-phase
ground faults [1]. For a long time, most neutral points of the
distribution network have been grounded by arc suppression
coils or are ungrounded. When a single-phase ground fault
occurs, the system is allowed to continue its operation with
fault for two hours, which leads to a series of problems [2].
For instance, the non-grounded phase voltage will rise to

√
3

times the voltage during normal operation, the overvoltage
of the single-phase ground fault easily forms a phase-to-
phase short circuit, and the ground fault point may cause
personal injury or death. Therefore, the above procedure no
longer meets the requirement of safe and stable operation.
A fast and accurate fault diagnosis method for single-phase
ground fault should be proposed to shorten the time required
by maintenance personnel to search for the fault, to improve
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the reliability of the power supply and to reduce economic
losses [3].

Presently, the main methods used for identifying single-
phase ground fault location in distribution networks are the
impedance [4], [5], S-injection [6], [7], traveling wave [8] and
port fault diagnosis methods [9]. In addition, a fault location
method for distribution network based on advanced genetic
algorithm is proposed in [10]. This method has high fault
tolerance and can be used in complex situations of multiple
sources and multiple faults. However, this method cannot
utilize the feedback information of the network promptly, and
the search speed is slow. It requires more training time to
obtain the precise solution. Besides, it struggles to solve the
problem of large-scale computation. Reference [11] presents
a unified matrix algorithm for fault section judgment and
isolation of distribution automation system based on remote
terminal unit (RTU). This method requires significant com-
putation, and terminal fault judgment is limited to single
power supply systems. Reference [12] proposes a phasor
measurement unit (PMU)-based fault location method for
multi-terminal transmission lines. It needs to transform the
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FIGURE 1. Network structure of CNN.

multi-terminal lines into equivalent three-terminal lines and
further transform the fault location problem of three-terminal
lines into two-terminal fault location. This method is greatly
affected by the line structure, and there are large errors in the
process of line transformation

In order to reduce the computation time, improve the
search speed of fault location, reduce the influence of dis-
tribution network structure on the algorithm, and realize the
fault location of the whole line without blind area, the convo-
lutional neural network (CNN) is applied to the fault diagno-
sis of distribution network in this paper.With the development
of computer technology, CNN as an artificial intelligence
algorithm has been widely used in the research of power
industry. A method for power quality disturbance classifi-
cation is proposed by combining deep convolutional neural
network with wigner-ville distribution [13]. Research on the
application of deep learning in fault diagnosis of wind turbine
gearbox and condition monitoring of wind turbine gearbox
bearing highlight the excellent ability of deep learning in fault
classification [14], [15]. Fault locations were defined as clas-
sification labels, and different CNN’s were used to classify
the labels to achieve the fault localization results. Then, image
segmentation was performed to extract the features of fault
areas and simplify the data volumes [16].

In this study, the authors proposed a distribution network
fault location method combining ACNN with a two-terminal
fault location method. This paper is organized as fol-
lows: section II introduces the generation of fault data set,
the structure of ACNN, and the principle of adaptive pool-
ing model. Section III describes the fault dataset used in
the process of fault line selection and the principle of two-
terminal fault location by negative sequence current. Finally,
sections IV and V present the results and conclusions of the
experiment generated during this research.

II. ACNN MODEL BASED ON FAULT RECORDING DATA
As a typical deep learning model, CNN improves the tradi-
tional machine learning system by relying on the three impor-
tant ideas, namely sparse interaction, parameter sharing, and
isotropic representation. It can realize feature extraction, clas-
sificationmodel construction, and other functions through the
training of input samples. It has made important progress in
fault diagnosis [17]–[20]. In this study, the adaptive weight
factor is added to the traditional CNN structure to improve

the convergence rate of the network and reduce the training
time.

A. THE STRUCTURE AND PRINCIPLE OF CNN
Typical structures of CNN are mainly composed of the
input layer, convolutional layer (C-layer), pooling layer (or
sampling layer, S-layer), full connection layer, and output
layer [21], as shown in Figure 1. Each sample is input in the
form of a two-dimensional matrix, which is mapped to the
hidden layer by the convolution kernel. The hidden layer is
composed of a convolutional layer and a pooling layer. The
C-layer and S-layer are set alternately to construct the sparse
interaction between layers. CNN reduces the number of train-
ing parameters in this way. Additionally, through weight
sharing, the S-layer fully preserves the local characteristics
of data and reduces the dimension of data while preventing
overfitting. By expanding all the outputs of the previous layer
into a one-dimensional array, the affine layer connects all
its neurons to integrate the local information with category
differentiation in the C-layer or the S-layer. Finally, the output
value of the affine layer is passed to the output layer.

Because of its unique network structure, CNN has a good
ability to process data with network structure characteristics.
Therefore, it can effectively solve the problem of difficult
data processing caused by the complex structure, large scale,
nonlinear, and other factors of a distribution network. It is
suitable to process voltage and current data of single-phase
ground faults in a distribution network and extract fault char-
acteristics.

B. CONSTRUCTION OF INPUT FEATURE MAP
In this paper, the sampling data of a three-phase current at
both ends of the line with two cycle before and two cycles
after the fault is selected as the input. As shown in Figure 1,
each phase current recorded data is taken as a column of the
input feature map, and the size of the feature map is 4NT ×6,
where NT is the number of sampling points in each cycle.
The system parameters, fault location, system voltage, fault
type, transition resistance, and other parameters are traversed
in the form of permutation and combination. In this manner,
the input feature map is formed, and the training sample set
is constructed.

In addition, owing to the complex components of the fault
transient [22], the collected fault recording data contains

54036 VOLUME 8, 2020



J. Liang et al.: Two-Terminal Fault Location Method of Distribution Network Based on ACNN

high-frequency components and some random interference.
Therefore, the input data needs to be smoothed properly to
highlight the main part.

C. CONVOLUTION MODEL
The convolution process of the C-layer is shown in Figure 2.
Its function is to extract local features of input neuron data.
The size of the input feature map is n×n and is denoted by X.
The size of the matrix with convolution kernel is k × k and
that of the matrix with output denoted by Y is m × m. The
dimensional relation of the three is as follows [23].

m = n− k + 1 (1)

FIGURE 2. Principle diagram of convolution process.

The specific formula used for calculation is as follows:

Yij = fs(
k∑
i=1

k∑
j=1

(XijC)+ a) (2)

where Xij and Yij are the elements corresponding to the con-
volution kernel of the input layer and output layer, a is the
offset, and fs is the sigmoid function.
The convolution process is used to extract the local char-

acteristics of the current recording data at both ends of the
fault line, which can be used to reduce the training parameters
while representing the fault data.

D. ADAPTIVE POOLING MODEL
The pooling layer is a sub-sampling of the convolutional
layer, whose purpose is to reduce the data dimension and
prevent overfitting by scaling the output feature map of the
previous layer. The pooling process is shown in Figure 3.

FIGURE 3. Principle diagram of pooling process.

The average and maximum pooling models, as the two
most common pooling models, are widely used in the con-
struction of neural networks. Their algorithm expressions are

shown as follows [23].

Sij =
1
c2
(
c∑
i=1

c∑
j=1

Fij)+ b (3)

Sij =
c

max
i=1,j=1

(Fij)+ b (4)

Here, F is the input feature map, b is the bias, S is the
sub-sampling characteristic matrix, and c is the size of the
pooling matrix.

Because these two classical poolingmodels are insufficient
for feature extraction of pooling domain [24], appropriate
improvements should be made based on the classical pooling
model to optimize the feature extraction process of the tradi-
tional CNN model. In this paper, adaptive weights are added
on the basis of the maximum pooling model to optimize
pooling results. The calculation is as follows [25]:

Sij = λ
c

max
i=1,j=1

(Fij)+ b (5)

where λ is the adaptiveweight factor, whose value is related to
the number of network training layers and the element value
in the pool domain. The formula for calculation is as follows:

λ = α
x̄(xmax − x̄)

x2max
+ β (6)

where x̄ is the average value of elements other than the
maximum value xmax in the pool domain, β is the compensa-
tion term, whose value range is (0, 1), α is the characteristic
coefficient, calculated as follows:

α =
c

1+ (niter − 1)cn
2
iter+1

(7)

where c is the size of the pool domain, niter is the num-
ber of CNN training, and iter is the number of times the
training set is trained in the network. Therefore, the value
of adaptive weight factor is not only related to the elements
in the pool domain and its size, but also to the number of
network training. In the test phase, when niter is set to 1,
the pooling effect can be optimized by adjusting the edge
length of the pooling domain. When the size of the pool
domain is determined, the adaptive weight factor will be
dynamically adjusted by increasing in the number of training
times of the sample data set. Because of the adaptive pooling
factor λ ∈ (0, 1), the dynamic pooling model accounts for the
two classical pooling models mentioned above. It not only
retains the accuracy of the maximum pooling model when
there is an obvious maximum eigenvalue in the pool domain,
but also avoids the weakening of the maximum element.

III. THE PRINCIPLE OF FAULT LINE SELECTION AND
LOCATION OF SINGLE-PHASE GROUND FAULT
BASED ON ACNN
A. SINGLE-PHASE GROUND DIAGNOSIS
MODEL BASED ON ACNN
In this paper, a fault line selection and location method based
on ACNN is proposed for single-phase ground fault detection
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FIGURE 4. Principle Diagram of Fault Location Based on ACNN.

of distribution networks. The established model is shown
in Figure 4. Themodel is divided into three parts: fault feature
extraction, fault line selection, and fault location.

In the first part, PMU is used to obtain the current fault
recording data of each node of the transmission line, and the
synchronization time mark is added. After the smoothening
process, it is input into the designed ACNN model for train-
ing. Then, the fault characteristics are extracted. Compared to
the fault diagnosis method based on relative wavelet energy,
the ACNN model proposed herein does not require complex
operations such as wavelet decomposition of the original fault
recorded data and calculation of relative wavelet energy to
extract data features. During the training of the network,
the model can automatically extract the features of the input
data through the C-layer and the adaptive S-layer.

The number of hidden layers of ACNN is set according
to the actual needs, through the analysis of the above input
matrix dimensions and considering the dimensionality reduc-
tion effect of convolution and pooling processes. Therefore,
in the process of model design, the number of hidden layer
network layers is four, comprising two C-layers and two
S-layers.

In the second part, the current phasor sampling data of each
node of the line after feature extraction is divided into the
training sample set and the test set. The training set is used to
train the Softmax classifier. The test set is used to calculate
the accuracy of ACNN network classification of the fault line
after training. Through the calculation of loss function, when
the error rate of test results is reduced to the allowable range,
ACNN network parameters with high accuracy after training
are saved.

The function of Softmax is

P(i) =
exp(θTi x)∑K
k=1 exp(θ

T
k x)

(8)

where x is the three-phase current characteristic data
expanded after feature extraction of S2 layer,K is the classifi-
cation number, and P(i) is the probability belonging to class I.

Two SoftMax classifiers are set up in this study. They
are respectively used for fault selection and fault judgment.
This realizes the weight sharing of two different classification
problems by the same network. Its classification labels are
shown in Figure 5.

FIGURE 5. Fault classification index chart.

Set the number of output ports to 11. Labels 1 to 3 represent
single-phase ground fault, labels 4 to 6 represent two-phase
ground fault, and labels 7 to 8 represent phase to phase short
circuit. For labels 10 to 11, set 1 for larger output and 0
for smaller output, respectively representing the internal and
external fault of the line.

In the third part, when a single-phase ground fault occurs
in the distribution network, fault current data of each node
uploaded by PMU in real time are input into the trained
ACNN model for fault line selection. When the fault line is
determined, the fault record data of both ends of the fault line
with the synchronization mark is called from the background,
and the fault location algorithm is applied to locate the fault
accurately.

B. TWO-TERMINAL FAULT LOCATION MODEL
OF DISTRIBUTION NETWORK
To further determine the location of the fault, the two-terminal
location principle is introduced. The schematic diagram is
shown in Figure 6.

When a single-phase ground fault occurs in a distribution
network, the fault power network can be divided into the
positive sequence network, negative sequence network, and
zero sequence network, according to the symmetrical compo-
nent method and linear superposition principle. In this paper,
the negative sequence voltage and current components at both
ends of the fault line are used for fault location.
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FIGURE 6. Equivalentnetworkdiagram of single-ended powersupply
system.

When a single-phase ground fault occurs at point F of the
line, the negative sequence voltage expression of the send
terminal (S- terminal) and the receiver terminal (R- terminal)
can be derived from reference [26] as follows:

US2 = IS2Z2x + IF2Rf + UF2 (9)

UR2 = IR2Z2 (L − x)+ IF2Rf + UF2 (10)

where IS2, IR2,US2 andUR2 are the negative sequence current
phasor and voltage phasor of S and R terminals in case
of single-phase ground fault, Z2 is the negative sequence
impedance of the line with unit length, x is the distance from
the fault point F to the measuring point S, and L is the total
length of the line.

By combining the two terms to the right of (8) and (9), they
are further reduced to

US2 = IS2Z2x + UFS2 (11)

UR2 = IR2Z2 (L − x)+ UFR2 (12)

where UFS2 and UFR2 are the negative sequence voltage
phasor of the fault point calculated at the S-terminal and the
R-terminal respectively.

When the data collected at both ends of the line are fully
synchronized, the following equation can be obtained.

UFS2 = UFR2 (13)

With the development of GPS technology, the accuracy
of the synchronous clock provided by GPS is within 1 µs.
In other words, the phase angle measurement error in the
power system can be less than 1◦ [27]. Therefore, it can be
considered as synchronous sampling to collect voltage and
current phasors at both ends of fault line with PMU.

Furthermore, the fault distance x under synchronous sam-
pling data can be calculated from (10), (11), and (12).

x =
|US2 − UR2| + IR2Z2L

Z2 (IS2 + IR2)
(14)

IV. SIMULATION AND EXPERIMENT
In this study, the IEEE 33 node power distribution system is
built in Simulink byMATLAB, and its systemwiring diagram
is shown in Figure 7. In the experiment, four lines L1 to L4 are
selected to set different ground faults for the fault branch. The
fault type is set by adjusting the fault module parameters.

FIGURE 7. The electrical topology of the 33-node distribution network.

TABLE 1. Parameters of faulty lines.

TABLE 2. Traversal of fault data set parameters.

LJ-120 overhead line parameter, i.e. 0.335 + j0.27 �,
is selected for the unit impedance of the line. The specific
parameter settings are shown in Table 1.

In this paper, the sampling rate of the model is set to
1200 Hz; that is, the number of sampling points per cycle
is 24. The PMU device is set at nodes Q1 to Q5. The fault
points are set at different distances from line L1 to line L4,
and the specific parameter settings are listed in Table 2.

Through parameter traversal, there are a total of 6000 sam-
ple data, which are input into the fault sample set. They are
divided into the training and test sets via stratified sampling,
with sizes of 1800 and 4200, respectively.

A. FAULT LINE SELECTION WITH ACNN
In this study, by setting different ACNN model structures,
the accuracy of fault line selection and training time under
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TABLE 3. Training results of single phase to ground fault line selection in distribution network based on ACNN.

different network structures are obtained. The results of neu-
ral network training are listed in Table 3.

Table 3 is explained as follows. Take No. 1 as an exam-
ple. The network structure parameter is set to 1C-1S-1C-
1S, where C represents the convolution layer, S represents
the pooling layer, and 1 represents the number of neurons in
each layer. The two numbers in the convolution kernel are the
convolution kernel sizes of the first convolution layer and the
second convolution layer. 200 samples are entered into each
batch during training. The accuracy of classifier 1 is the ratio
of the successful fault phase selection samples to the total test
samples. The accuracy of classifier 2 is the ratio of successful
samples of fault judgment in and out of the area to the total
number of test samples. Training time is the time required to
complete the specified number of training times.

It can be seen from Table 3 that under the same data set, the
structure of the network, the size of the convolution kernel,
the amount of data processed in each training and the number
of training will affect the accuracy of fault line selection.
From the comparison of serial numbers 7, 8 and 9, it can
be seen that under the same network structure, the more data
each training process, the higher the accuracy. The compar-
ison of 5, 6 and 7 shows that in the same network structure,
the accuracy increases with the increase of training times, but
when the training times reach a certain value, the accuracy
keeps fluctuating near a certain value.

The experimental results show that the ACNN model per-
forms best when the convolution kernel is 5×5 and structure
is 32c-1s-64c-1s. The accuracy of fault line selection can

reach 98.50%, and the accuracy of fault judgment in and out
of the area can reach 99%. In addition, it can be seen from the
experiment that ACNN can still accurately select the fault line
when the system frequency, fault location, system impedance,
transition resistance and other factors are different. This is
because the training sample data traverses the system parame-
ters, and ACNN has strong generalization ability and learning
ability. Through the learning of the training sample data, it is
not affected by system parameters, fault location and other
factors. Therefore, the more the number of samples, the more
accurate the ACNN network for fault classification.

A fault locationmethod based on the similarity and polarity
of transient current between upstream and downstream is
proposed [28]. Compared with this method, the ACNNmodel
proposed in this paper can realize the fault line selection
without blind area through multiple training. Figure 8 shows
the zero-sequence current measured from node Q1 to Q4,
when the fault point is near the outgoing line boundary
point Q1. It can be seen from the above figure that the polarity
of transient current in upstream and downstream of fault
recording data is the same at some points. According to the
method described in [28], line L1 will be misjudged as nor-
mal. By setting the fault location several times, the accuracy
of fault line selection of this method and the ACNN model in
the whole line is shown in Figure 9. It can be seen that the
ACNN model proposed in this paper has a high fault identi-
fication ability for the whole section of the line. In addition,
the recognition accuracy can be improved through secondary
learning.
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FIGURE 8. Graph of the relation between the number of weight
adjustments and mean square variance.

FIGURE 9. Comparison of fault line selection accuracy of different
methods in different position faults.

B. ACNN VS CNN AND DEEP BELIEF NETWORK
In this section, ACNN is compared with traditional CNN and
DBN in fault line selection. Figure 10 shows the relationship
between the number of adjustment times of network structure
parameters and the mean standard deviation of convolutional
neural networks with different pooling models in the training
process. It can be seen that the decreasing trend of the error
value with the increase of the number of iterations is basically
the same, but the convergence rate is different. The adaptive
pooling model proposed in this paper has faster convergence
speed. Because compared with the maximum pooling model
and the average pooling model, the ACNN can achieve the
optimal weight faster when adjusting the network parameters.

FIGURE 10. Graph of therelation between the number ofweight
adjustments andmean square variance.

FIGURE 11. Graph of therelation between the number ofweight
adjustments andmean square variance.

TABLE 4. Accuracy rate and training time of each model with different
iteration times.

The Figure 11 and Table 4 show that the ACNNmodel pro-
posed in this paper has both the feature recognition accuracy
of the maximum pooling model and the convergence speed
of the average pooling model. Compared with the traditional
DBNmodel, the proposed method reduces the time by 42.7%
when the accuracy is increased by 7.86%.

C. FAULT LOCATION
After the fault line is determined, the fault point can be
located by using (14). Through setting different types of
faults at different positions of L1, the percentage of position-
ing error in the total line length was calculated, as shown
in Table 5. The simulation results show that the proposed
algorithm can eliminate the influence of load current, fault
point transition resistance and system parameters. On the
premise that the fault line and fault type are determined, the
algorithm can locate the fault point accurately.

By setting metallic single-phase ground fault at different
positions of line L1 to L4, the relationship between error
and position can be calculated by applying the principle of
two-terminal fault location, as shown in Figure 12. When the
distribution network is powered by a single power supply,
the positioning error increases as the distance of the fault
location from the power supply. Through the analysis, it can
be concluded that the error of fault location is within 7.6 m.

When the photovoltaic power supply is assembled on
node 17, the relation between error and position is shown in
Figure 12. By changing the connection node of photovoltaic
equipment, it can be found that when there is photovoltaic
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TABLE 5. Location results under different fault locations and transition
resistances.

FIGURE 12. Fault location and location error diagram.

power in the distribution network, the changing trend of
this curve is related to the connection node of photovoltaic
equipment and the generation capacity. The overall error can
be kept within 0.2% of the line length.

V. CONCLUSION
In this paper, a fault line selection method based on ACNN
is proposed to solve the problem of fault detection during
the operation of distribution system. The influence of dif-
ferent network structure parameters on the model line selec-
tion structure is analyzed. On this basis, combined with the
principle of two-terminal fault location, the location error
of different fault points is analyzed, and the relationship

between fault location error and different fault location is
obtained. The simulation results show that the method has
high accuracy of fault line selection and is less affected by
system frequency, fault location, transition resistance, and
other factors, and the experimental results are in agreement.
In short distance transmission fault detection, the location
error can be controlled within 7.6 m.

With the rapid development of computer software and
hardware technology, ACNN will take less time to obtain
samples, train weights and bias. The current data of each node
with different fault types under different system parameters
are obtained by simulation. Taking this as a sample, relying
on ACNN’s strong learning and generalization ability, it is
expected to achieve accurate fault line selection for different
power grids by using the same weight bias parameter. Finally,
the fault is located by the principle of two-terminal fault
location. The fault location method based on deep learning
proposed in this paper has broad application prospects in the
future development of smart grid.
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