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ABSTRACT Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that seriously
endangers human health and has high incidence and mortality worldwide. Therefore, an effective predic-
tive model is required for COPD diagnosis. Given the limited data samples available in current COPD
studies, we propose a method for diagnosing COPD based on transfer learning called balanced probability
distribution (BPD) algorithm; this algorithm integrates instance- and feature-based transfers to improve the
prediction accuracy of the model. First, instance-based cascaded transfer learning was used to initialize the
weight distribution of the training data and obtain instances closer to the target domain. Second, the cross-
domain feature filtering algorithm was adopted to filter irrelevant features, eliminate redundant features,
and obtain the co-occurrence features of the source and target domains. Moreover, the remaining features
were assigned different weights and transformed into the same space to reduce the distribution difference
between the domains. Third, the BPD algorithm was used to balance the examples and the co-occurrence
features from multiple disease source domains and construct a more suitable classification model of the
target domain. Finally, the elastic network was used to further improve the generalization performance of
the model. The experimental results show that the prediction effect of the BPD model is better than that of
state-of-the-art methods and has strong generalization ability and robustness. We proved that our proposed
BPD method works well in the COPD prediction model when the sample size is small.

INDEX TERMS Balanced probability distribution (BPD) algorithm, chronic obstructive pulmonary disease
(COPD), feature extraction, few-shot learning, transfer learning.

I. INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a
preventable and treatable common disease characterized
by persistent respiratory symptoms and restricted airflow.
According to the global initiative for COPD (hereinafter
GOLD), this sickness is often associated with airway or
alveolar abnormalities caused by significant exposure to toxic
particles or gases. COPD is a chronic respiratory disease that
seriously threatens people’s health and has a high incidence
and mortality globally. The World Health Organization has
reported that COPD has become the third leading cause of
deaths globally and will become one of the leading respira-
tory diseases in China by 2020 [1]. In China, the prevalence
of COPD in people over 40 years of age is 9.9%. The
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morbidity and mortality associated with COPD are often
underestimated because of the differences in the diagnostic
criteria and an insufficient understanding of the disease; the
rate of missed diagnosis is as high as 70% [2]. Therefore,
a predictive data mining model with good clinical reliability
is an important requirement for diagnosis, treatment, and
self-management of COPD [3].

In recent years, different machine-learning models have
been used for predicting COPD [1], which can be character-
ized as either non-deep (i.e., traditional) or deep [4]. A tra-
ditional model typically comprises two major steps: feature
engineering [5] and model building [6]. Feature engineering
extracts the ‘‘good’’ features that are effective for construct-
ing the model. Unlike traditional methods, the deep learning
model [7] has an end-to-end learning mechanism in which
the feature engineering part is implicitly integrated into the
learning pipeline. Deep learning has attracted the attention
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of researchers in various fields because of its superior per-
formance. In deep learning, it is possible to learn advanced
features using big data; therefore, it is a representation-
learning algorithm based on large-scale data used in machine
learning. However, in some bioinformatics fields, such as
COPD diagnosis, it is very difficult to construct large-scale
well-labeled datasets because of the high cost of data collec-
tion and labeling; this limits the development of deep learning
in these fields.

If only a small amount of data is used for training, it will
lead to the problem of model overfitting and low reliabil-
ity [8].Moreover, imbalances inmedical data make it difficult
to obtain efficient disease prediction models. Transfer learn-
ing [9] relaxes the assumption that training data must be inde-
pendent and identically distributed (i.i.d) with the test data.
In addition, transfer learning applies the knowledge learned
from existing tasks to new models or fields to improve the
learning performance and obtain efficient prediction models
greatly. In fact, transfer learning has become a new learning
framework to solve many knowledge transfer problems [10].
In this work, it has a great positive impact on performance
improvement despite limited training data.

There have been numerous studies on COPD [11] since the
1980s. However, the existing treatmentmethods for COPDdo
not consider the possible complications and lack a systematic
approach to exploring the interactions between COPD and
the complications. Clinically, the pathogenesis, clinical man-
ifestations, diagnosis, treatment, and management of COPD
complications and simple COPD+ complications will have
varying degrees of differences. As stated by GOLD in 2017,
the natural course of COPD develops from complex sys-
tematic outcomes and complications, which are the main
characteristics of clinical COPD [1]. The systemic outcome
of COPD refers to the direct pulmonary phenotype and the
non-pulmonary manifestations caused by COPD.

Therefore, in this paper, we propose a novel transfer
learning method based on instance-based and feature-based
transfer called the balanced probability distribution (BPD)
method, which solves the problem of having a small sample
size. The main contributions of this research are as follows:
(1) We propose a transfer learning method called BPD,

which integrates instance transfer and feature trans-
fer; this method includes the advantages of both these
methods but avoids their disadvantages. BPD is effec-
tive in the prediction model of COPD when there
are only a limited number of samples. BPD can not
only improve the accuracy of COPD prediction, but it
can also improve the reusability and robustness of the
model.

(2) By adopting cascading instance-based transfer in our
BPD, we solved the problem of sparse data in the COPD
prediction because the effective examples learned from
multiple disease source domains were retained.

(3) By adopting a cross-domain feature filtering method in
BPD to obtain co-occurrence features and increasing
their weight in the COPD prediction model, we avoided

overfitting and other problems caused by the direct
training of COPD domain samples. At the same time,
the regularization constraints of the elastic network
were used to optimize the learning performance of the
model further.

(4) We conducted numerous experiments to verify the
effectiveness of the BPD method in this paper. In com-
parison with other methods, BPD has a good effect
on all indicators. The BPD prediction effect is better
than other methods, and it also has a strong generaliza-
tion ability, which finally proves that the BPD method
improves the prediction ability for small sample data.

II. RELATED WORK
In recent years, with the rapid development of computer
technology and the widespread application of medical data
systems, an increasing amount of disease-related data has
become readily available. Based on these data, researchers
have established many disease diagnoses, predictions, and
classification models and obtained good results.

A. DISEASE CLASSIFICATION
The correct classification of diseases is the basis of disease
diagnosis. Most disease prediction models based on machine
learning formalize the disease prediction problems into clas-
sification problems [12]. Brisimi et al. [13] used a joint
clustering and classification method to explore and predict
the number of people hospitalized for heart disease and dia-
betes. Han et al. [14] proposed a probabilistic path score
method to distinguish between two main types of inflamma-
tory bowel diseases. After the classification, the probability
graph model was used to include gene interactions to obtain
better performance. Besides, ensemble learning has dramat-
ically contributed to the development of disease classifica-
tion. Yosipof et al. [15] combinedmultiple machine learning
models to form an integrated learning method called AL
Boost, which achieved the goal of classifying tumor com-
pounds and neurological diseases.

Presently, neural network techniques are being gradually
applied to disease prediction models. To prove the effective-
ness of neural networks, Lipton et al. [16] modeled and ana-
lyzed the multi-label medical records, constructed a disease
prediction model based on LSTM, and performed experi-
ments according to the changes in a patient’s medical char-
acteristics. Moreover, Anthimopoulos et al. [17] used deep
convolution neural networks to classify interstitial pulmonary
diseases into pulmonary patterns, achieving a close match
between the classification results and basic facts. Li et al. [18]
used natural language processing and deep learning technol-
ogy to automatically learn expert doctor diagnostic modes
from historical medical record data to form intelligent assis-
tant diagnostic models.

B. COPD DIAGNOSIS
COPD is a common, preventable, and treatable disease.
It is characterized by persistent respiratory symptoms and
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restricted airflow because of abnormalities in the respira-
tory tract and/or alveoli. This is usually caused by excessive
exposure to harmful particles or gases [1]. Previous studies
have focused on early diagnosis of mild COPD, severity
assessment, differential diagnosis of high-risk groups, and so
on. Demographic studies in Denmark [19] and Finland [20]
found significant correlations between the educational levels,
household incomes, and COPD prevalence. A Swedish study
reported that in addition to the educational level, COPD
prevalence was related to age, smoking, and a history of
tuberculosis [21]. Another urban population survey report in
Sweden used the Pearson correlation coefficient to assess the
correlation between the socio-economic variables and risk
factors on the incidence of COPD [22]. In China, there has
also been a precedent for exploring the relationship between
stress hormone levels and prognosis in elderly patients with
COPD [23].

In addition, several studies have analyzed the features
of the influencing factors and the prediction of dis-
ease risk at different stages. Most of these studies
are based on data analysis methods. Marin et al. [24]
studied the prognostic value of the BODE quartiles
(i.e., the of bodymass index, degree of airflow limitation, dys-
pnea, and exercise capacity) for the number and severity
of patients with COPD who needed outpatient treatment,
emergency, or hospitalization. The Cox regression models
and BODE indexes predict the deterioration. Jensen et al. [25]
built a linear regression model to distinguish the acute and
non-acute phases of COPD with an accuracy rate of 73%.
van der Heijden et al. [26] used cross-validation and ROC
analysis to evaluate whether or not the patient’s condition
worsened with a probability model. Christopher [27] used
multi-stage logistic regression to distinguish between stable
and deteriorating periods.

C. TRANSFER LEARNING
Transfer learning is an essential branch of machine learning,
which achieves knowledge transfer between similar tasks and
has provided excellent results in the fields of medical health,
computer vision, and recommendation systems. Transfer
learning is divided into instance-based and feature-based
transfer learning methods. The instance-based transfer learn-
ing method is based on a specific weight generation rule
for reusing data samples for transfer learning. Dai et al. [28]
proposed the TraAdaBoost plan, which applied the idea of
AdaBoost to transfer learning to improve the instance weights
beneficial to the target classification task and reduce the
instance weights that are not conducive to the target clas-
sification task. The feature-based transfer learning methods
usually assume that there are some overlapping features
between the source and target domains. In the transfer com-
ponent analysis (TCA) method proposed by Pan et al. [29],
the core content is based on the maximum mean dis-
crepancy (MMD) [30] taken as the measurement criterion

to minimize the distribution differences in different data
fields.

The instance-based and feature-based methods have
advantages and disadvantages. The instance-based method
has excellent theoretical support. By increasing the weight of
the relevant samples and reducing the weight of the irrelevant
samples in the target domain, knowledge becomes more suit-
able for migration to the target domain. However, data that are
not similar to the target-domain data are always retained dur-
ing the learning process. However, the feature-based meth-
ods can remove dissimilar features and share the common
features between domains. A feature-based method relies on
the marginal probability distribution to reduce the difference
between the source and target domains, thereby reducing its
generalization ability. Therefore, this paper proposes the BPD
method by fusing the instance-based and feature-based trans-
fer learning methods. It has advantages both methods, which
reduces the overall errors and enhances the classification
accuracy. First, the BPD model transfers knowledge step-by-
step by using the same instance as the basis to obtain instances
close to the target domain. Then, the cross-domain filtering
feature algorithm is used to obtain the common features
across the source and target domains. To handle the problem
that the source domain data and target domain data may have
different distributions, the features were transformed to the
same space and given different weights, that is, the common
features in the source and target domains had high weights
and features irrelevant to the target domain possessed low
weights. Furthermore, we adopted the MMD to reduce the
distribution distance between the different fields. Finally,
the elastic network was used for training-related instances to
improve the generalization ability of the model.

III. BALANCED PROBABILITY DISTRIBUTION
The training data and test data with i.i.d are the necessary
requirements for a training model that has good prediction
accuracy in the test data. However, uniformly distributed data
are rare in real life. For example, if a model trained on book
review texts is directly applied for predicting movie review
text data, it is likely that the result would be unsatisfac-
tory because of the different data distributions. Therefore,
training models with sound testing effects in multiple fields
are particularly important for practical situations. Transfer
learning can determine the potential relationship between the
source and target domains and further build a suitable target
domain model based on the learned source domain knowl-
edge. Therefore, narrowing the data distribution distance
between the fields is the key to cross-domain learning and
building models. However, the data from different domains
have different distributions, which makes it difficult to fit all
the distributions simultaneously. Moreover, simply matching
the distributions cannot guarantee the prediction effect on the
target domain. Therefore, in this paper, we propose the BPD
algorithm based on the instance and feature transfer methods.
The BPD framework is shown in Fig. 1.
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FIGURE 1. BPD framework for COPD diagnosis and prediction based on
feature and instance transfer methods.

A. INSTANCE-BASED CASCADED TRANSFER LEARNING
We first consider transfer-specific prior medical knowledge
in our BPD method. In fact, since the 1980s, there have
been in-depth studies on COPD and its complications, which
have given us considerable medical knowledge [11]. The
first report about COPD and its complications was given
by the McSweeny study in 1982 [1], which revealed that
the incidence of COPD complications was 42%. In 2001,
Laeasse found that 57% of patients with COPD also suffered
from depression. In 2014, scholars from Stanford showed that
COPD was accompanied by mental and sleep disorders [31].
Zhong pointed out that in addition to causing organ damage,
COPD also affected the patient’s daily life and led to other
diseases [32]. Professor Zhang noted that COPD combined
with depression produced lesions in the lung and then affected
the spleen, kidney, heart, and brain [33]. GOLD 2017 [1]
pointed out that COPD patients often developed a variety
of complications, including heart disease, chronic respira-
tory failure, depression, and cognitive impairment. If these
complications are found, patients should be given appropriate

FIGURE 2. Example of the source domain and target domain
with no common instance.

treatment as soon as possible. In summary, this kind of
knowledge is the basis for us to realize cascaded instance-
based transfer learning for improving the accuracy of the
diagnosis and prediction of COPD. Here we can give a more
specific example. Prior clinical knowledge shows that chronic
bronchitis and emphysema are the twomost common diseases
that lead to COPD. If a patient has a serious disease, such as
chronic bronchitis or emphysema, he can be diagnosed with
COPD. At times, we could even face a situation in which
there are almost no common instances between the source
and target domains (see Fig. 2). However, in such situations,
it is possible to realize a smooth step-by-step instance-based
transfer of knowledge (see Fig. 3).

Instance-based cascaded transfer learning first initializes
the weight distribution of the training instance data [34].
Then, the weighted instances are used for transfer learn-
ing. By multiple transfers of intermediate instances, we can
not only obtain instances closer to the target domain but
also obtain a more diversified effect [35], [36]. In partic-
ular, the first step is to find the same instances to bridge
different domains; the second step is to migrate between
domains. We select one or more instances to connect to
a given domain and then transfer knowledge through their
overlapping instances. The selection of instances is problem-
specific, and different scenarios have different options. The
process can be explained using the following example.

Suppose patient A suffers from chronic bronchitis, gastri-
tis, diarrhea, and heart disease; patient B suffers from chronic
bronchitis, upper airway obstruction syndrome, arthritis and
diabetes; and patient C suffers from upper airway obstruction
syndrome, coronary heart disease, and diabetes. We cannot
transfer knowledge from patient A to patient C because there
is no common disease instance between them. Therefore,
we take the disease of patient B as a path to transfer instances
from patients A to C. Both patients A and B suffer from
chronic bronchitis. Therefore, for migration, we assign a high
weight to patient A for chronic bronchitis. It is the same
as patients B and C. The common diseases between B and C
are upper airway obstruction syndrome and diabetes; we
assign a high weight to the upper airway obstruction syn-
drome. If there are multiple candidate instances, we transfer
them together. However, we cannot determine whether there
are common instances between the source and final target
domains; therefore, we incorporate feature-based transfer
to reduce the overall errors and achieve high classification
accuracy.

VOLUME 8, 2020 47373



Q. Wang et al.: Diagnosis of COPD Based on Transfer Learning

FIGURE 3. Diagram of smooth step-by-step.

FIGURE 4. Example of feature representation in the original feature space.

B. CROSS-DOMAIN FEATURE FILTERING
We use the feature filtering algorithm to obtain common
features between the source and target domains. After the
common features are obtained, they are mapped to the same
space. Then, the irrelevant features are filtered, and the redun-
dant characteristics are eliminated.

The steps of the cross-domain feature filtering algorithm
are as follows:

Step 1: Map features to a common feature space using
the multidimensional scaling (MDS) method. In this space,
the degree of difference between the features can be retained,
and the relationship between the features can be found.

Step 2: Filter the irrelevant and redundant features and
obtain the relevant features with the approximate Markov
blanket defined by the symmetric uncertainty (SU).

The detailed algorithm is as follows:
In step 1, we use (MDS) [37] to map the features in the

different domains to a unified feature space. In fact, there are
other methods, such as principal component analysis (PCA),
t-distributed neighborhood embedding (t-SNE), and singular
value decomposition (SVD), which can achieve the goal of
feature mapping. Our experiments show that the effects of
these methods are lower than that of MDS. The comparison
results are given in Table 1.

The MDS process is as follows. Assuming that the dataset
X contains n + m features, the dataset is represented
as

X = (XS ,XT ) = (xs1, xs2, . . . , xsn, xt1, xt2, ...xtm) (1)

TABLE 1. Comparison of different feature mapping methods.

where XS is the source domain feature set, XT is the target
domain feature set, n is the number of features in the source
domain, and m is the number of features in the target domain.
A concrete example is shown in Fig. 4.

We assume that the distance matrix of (n + m) features in
the original space is D, and the element Dij in the ith row and
jth column is the distance from the sample xi to xj. The goal is
to obtain the representation Z of the samples in the common
feature space, with the Euclidean distance of any two sam-
ples in the space being equal to the distance in the original
space, that is, ||zi − zj|| = Dij. From (2), the MDS plots
the similarity or the distance between multiple features in a
low-dimensional Euclidean space. Further, we determined the
relationship between the various features. We assumed that B
is the inner product matrix mapped to the feature space of the
common samples. Let B = ZTZ , and bij = zTi zj, then(
DXij
)2
=
(
xi − xj

)T (xi − xj) = ‖xi‖2 − 2xTi xj +
∥∥xj∥∥2 (2)

47374 VOLUME 8, 2020



Q. Wang et al.: Diagnosis of COPD Based on Transfer Learning

The sample of the common feature space is
n+m∑
i=0

zi = 0

by dimension reduction and mean subtraction. Obviously,
the sum of the rows and columns of matrix B is 0, that is,
n+m∑
i=1

bij =
n+m∑
j=1

bij =0.

We can see that
n+m∑
i=1

D2
ij = tr (B)+ (n+ m) bjj (3)

n+m∑
j=1

D2
ij = tr (B)+ (n+ m) bii (4)

n+m∑
i=1

n+m∑
j=1

D2
ij = 2 (n+ m) tr (B) (5)

Here, tr(·) represents the trace of the matrix

tr (B) =
m∑
i=1
‖zi‖2. Let

D2
i. =

1
n+ m

n+m∑
j=1

D2
ij (6)

D2
.j =

1
n+ m

n+m∑
i=1

D2
ij (7)

D2
.. =

1

(n+ m)2

n+m∑
i=1

n+m∑
j=1

D2
ij (8)

From (2), (3), and (8), we obtain

bij = −
1
2

(
D2
ij − D

2
i. − D

2
.j + D

2
..

)
(9)

Thus, we can obtain the inner product matrix B bymapping
to the distance matrix D that stays constant before and after
the eigenspace.

Eigenvalue decomposition of the matrix B, B = V ∧ V T ,
where ∧ = diag(λ1, λ2, . . . , λd) is the diagonal matrix
comprising the eigenvalues, and V is the eigenvector matrix.
Assuming that d∗ of the nonzero eigenvalues constitutes a
diagonal matrix ∧∗ = diag(λ1, λ2, . . . , λd∗), V∗ represents
the corresponding eigenvector matrix. We anticipate that the
distance mapped to the feature space is as close as possible to
the distance in the original space without having to be strictly
equal. Then Z can be expressed as

Z = 31/2
∗ V T

∗ (10)

Z is the representation of the sample in the new feature
space.

Subsequently, considering the correlation between the fea-
tures and categories in the case of a small data sample, we use
the SUmethod to perform correlation analysis to measure the
contribution of various features to the different classes.

In step 2, the irrelevant features were filtered by using the
SU method, and the redundant features were removed using

the approximate Markov blankets. Thus, the relevant features
were selected, which were the common features.

SU is a non-linear related information measure based on
the definition of information entropy [38], and the informa-
tion entropy E(x) of the feature x is defined as follows:

E (x) = −
∑
i

P (xi) log2 P (xi) (11)

The information entropy E (y) of the class y is defined as
follows:

E (y) = −
∑
j

P
(
yj
)
log2 P

(
yj
)

(12)

The conditional entropy E (x|y) is given as follows:

E (x |y ) = −
∑
j

P (yi)
∑
i

P
(
xi
∣∣yj ) log2 P (xi ∣∣yj ) (13)

Based on the above equations, we define the mutual infor-
mation (MI) between feature x and class y. MI describes how
much the information uncertainty of class y is reduced if and
only if the information in the feature space x is determined.
Obviously, different features have different MI with class y.
The definition of the MI between the feature x and class y is
as follows:

MI (y |x ) = E (x)− E (x |y ) (14)

As mentioned, the features with high MI have stronger
classification capabilities; that is, they have more critical
features for classification. Thus, we define the maximum MI
as follows:

MImax (y |x ) =
MI (x |y )

min {E (x) ,E (y)}
(15)

Definition 1: Symmetric uncertainty
The SU calculated for feature x and class y is defined as

follows:

SU (x |y ) =
2MImax (y |x )
E (x)+ E (y)

(16)

It is known that the value of SU is between [0,1]. When the
SU value is close to 1, the correlation between x and y will
be high. When the SU value is close to 0, the relationship
between x and y will be small. In extreme cases, if the SU
value is 0, then x and y will be completely uncorrelated;
therefore, x will be removed as an unrelated feature.
Now, all the relevant features remain. However, not all

these features are necessary for classification because redun-
dant features were also included, which will reduce the classi-
fication accuracy. Therefore, we use the heuristic method [40]
to approximate the Markov blankets called approximate
Markov blankets to retain relatively weak correlation char-
acteristics through SU.
Definition 2: Approximate Markov blankets.
Suppose xi and xj are features, and y is a class. Feature xi is

an approximate Markov blanket of feature xj if SU (xi, y) ≥
SU (xj, y), and SU (xi, xj) ≥ SU (xj, y).
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TABLE 2. Effect of approximate Markov blankets.

The idea of approximate Markov blankets is based on the
Markov blanket [39]. The Markov blanket contains infor-
mation on the features and classes. It is used to eliminate
the features because of redundancy and retain features with-
out any redundancy. It has been proved that features highly
relevant to the class are not redundant; therefore, they will
not be removed at any stage. This meets the requirements
of our research. However, we need not only some highly
relevant features but also some weakly relevant features.
Therefore, we had to adopt approximate Markov blankets
to retain relatively weak correlation characteristics because
traditional Markov blanket cannot achieve this. Therefore,
using the approximateMarkov blanket, the irrelevant features
and some redundant features were removed; this helped us
obtain the updated feature set.

The experimental results proved that the approximate
Markov blanket effectively removes the redundant features
and improves the dimensionality reduction rate (Table 2).

In summary, the cross-domain feature filtering algorithm
can effectively filter irrelevant features and eliminate redun-
dant features. Therefore, the co-occurrence features of the
source and target domains can be found, which helps to estab-
lish a classification model in the target domain. Fig. 5 shows
the co-occurring features in multiple areas such as COPD,
emphysema, and bronchitis, which were found by the cross-
domain feature filtering algorithm.

C. BALANCED PROBABILITY DISTRIBUTION MODEL
1) JOINT MATCHING MARGINAL PROBABILITY
DISTRIBUTION AND CONDITIONAL
PROBABILITY DISTRIBUTION
In machine learning, we assume that both the training and
test data obey the same distribution, and under this assump-
tion, the predictive risk of the model can be controlled.
Transfer learning does not comply with this assumption.
In other words, both marginal distribution differences and
the conditional distribution differences need to be considered.
Marginal distribution refers to the distribution of the gener-
ated data, and conditional distribution refers to the distribu-
tion between the data and labels. Our goal is to reduce the
distance between the marginal probability distribution and
conditional probability distribution of the source domain and
the target domain, thereby completing the transfer learning.
The joint matching marginal probability distribution and con-
ditional probability distribution can combine the advantages
of the two and compensate for their shortcomings; this will
greatly improve the training effect.

FIGURE 5. Co-occurrence features found by cross-domain feature
filtering algorithm.

Marginal probability distribution and conditional proba-
bility distribution were not equally important in practical
applications when the BPD method fused the instances and
features; therefore, we introduced the balance parameter λ
to adjust the two probability distributions dynamically. The
probability distribution distance is given as follows:

D (Ds,Dt) = λMMD (Ps,Pt)

+ (1− λ)
Y∑
y=1

MMD (Q (ys |xs ) ,Q (yt |xt )) (17)

where P(xs) and P(xt ) are the marginal probability distribu-
tions and Q(ys|xs) and Q(yt |xt ) are the conditional probability
distributions. The equilibrium parameter λ ∈ [0, 1] acts as
the weight adjustment of the marginal probability distribution
and the conditional probability distribution.

In (17), MMD(Ps, Pt ) is the marginal probability distribu-
tion of the source and target domains. After introducing the
kernel mapping, we have

MMD(Ps,Pt ) =

∥∥∥∥∥1n
n∑
s=1

φ (xs)−
1
m

m∑
t=1

φ (xt)

∥∥∥∥∥
=

∥∥∥∥∥1n
n∑
s=1

W T xs −
1
m

m∑
t=1

W T xj

∥∥∥∥∥
= tr

(
W TXM0XTW

)
(18)

In (18), n represents the number of features in the source
domain. The total number of features in the source domainDs
is s= 1, 2, . . . , n, and m is the number of features in the target
domain. The total number of features in the target domain Dt
is t = 1, 2, . . . , m. M0 is the MMD matrix as given below.

(M0)st =


1
n2
, xs ∈ Ds, xt ∈ Dt

1
m2 , xs ∈ Ds, xt ∈ Dt

−
1
mn
, else

(19)

In (17), MMD(Q(ys|xs), Q(yt |xt )) is the conditional prob-
ability distribution of the source and target domains. After
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introducing the kernel mapping, we have

MMD (Q (ys |xs ) ,Q (yt |yt ))

=

Y∑
y=1

∥∥∥∥∥∥∥
1
n(c)

∑
xs∈D

(c)
s

φ (xs)−
1
m(c)

∑
xt∈D

(c)
t

φ (xt)

∥∥∥∥∥∥∥
=

Y∑
y=1

∥∥∥∥∥∥∥
1
n(y)

∑
xs∈D

(y)
s

W T xs−
1
m(y)

∑
xt∈D

(y)
t

W T xj

∥∥∥∥∥∥∥
=

Y∑
y=1

tr
(
W TXMcXTW

)
(20)

where n(y) represents the number of y-class features in the
source domain, and m(y) represents the number of y-class
features in the target domain. D(y)

s represents the feature
set that belongs to class y in the source domain, and D(y)

t
represents the feature set belonging to class y in the target
domain. We calculate the Mc of the adaptive class matrix as
follows:

(Mc)st =



1
n2c
, xs, xt ∈ D

(y)
s

1
m2
c
, xs, xt ∈ D

(y)
t

−
1

mcnc
,

{
xs ∈ D

(y)
s , xt ∈ D

(y)
t

xs ∈ D
(y)
t , xt ∈ D

(y)
s

0, else

(21)

Substituting (18) and (20) into (17), we obtain the
following:

D (Ds,Dt)

= λMMD (Ps,Pt)+(1−λ)
Y∑
y=1

MMD (Q (ys |xs ) ,Q (yt |xt ))

= λtr
(
W TXM0XTW

)
+ (1− λ)

Y∑
y=1

tr
(
W TXMcXTW

)
(22)

When the equilibrium parameter λ approaches 1, the result
is mainly the result of the marginal probability distribution.
Similarly, when λ approaches 0, the result is mainly the result
of the conditional probability distribution. To find the best
value of λ, we performed experiments 10 times with the
COPD data. The results are shown in Fig. 6; the x-axis repre-
sents the value of λ, and the y-axis represents the prediction
accuracy. We can see that the best prediction accuracy is
89.5% when λ = 0.6.

2) MODEL OPTIMIZATION
In the process of model optimization, we will inevitably
encounter the problem of determining super parameters, and
common solutions are fixed usingmanual designs. The elastic
model [41] can dynamically learn from the data without any
extra calculation costs; the elastic model is universal to all

FIGURE 6. Prediction accuracy with different values of λ.

network structures and can be seamlessly embedded. In addi-
tion, we added the norm constraint performance of L1 and
L2 in the traditional elastic network. The improved elastic
network has many advantages, such as learning from data
instead of manual designing and changing with the change in
data. Finally, the improved elastic network can be applied to
the classification model of COPD, which can further improve
the diagnosis accuracy and prediction of COPD. The objec-
tive function of the elastic network is as follows:

f = min
α0,α

 j∑
i=1

(
yi − α0 − xTi

)2
+ µPβ (α)

 (23)

Here, yi represents the prediction result of the i disease
class, and xi is the feature of the ith disease; α is the estimated
regression coefficient, and µ is the minimum mean square
error. The regularization term Pβ (α) is given as

Pβ (α) =
|xi|∑
j=1

(
1− β
2

α2j + β
∣∣αj∣∣) (24)

where β ∈ [0, 1]. When β = 0, the term is expressed as
ridge regression, and when β = 1, the term is expressed as
the least absolute shrinkage and selection operator. Here α is
determined by cross-validation.

The class label obtained previously is used as the pseudo-
identity label for the next identification, and the features
involved in the transfer will not change. After iterating
t times, the function converges to its minimum. We thus
achieve model optimization.

D. ALGORITHMS
1) CROSS-DOMAIN FEATURE FILTERING ALGORITHM
The cross-domain feature filtering algorithm first uses the
MDSmethod to map features to the same dimension and then
constructs a feature space.

In the space, the diversity between features is retained, and
the relationship between the features is also deter-
mined (see steps (2) to (4)). Subsequently, we use the approxi-
mate Markov blanket defined by the SU to filter the irrelevant
and redundant features and select the relevant feature set
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(see steps (5) to (10)). The cross-domain feature filtering
algorithm is as follows:

Algorithm 1 Cross-domain Feature Filtering Algorithm
1. X6=ø;
2. for i = 1 to n+ m //See Algorithm 2 for details

3.compute
(
DXij
)2
;

4. end for
5. for i = 1 to n+m //See Algorithm 3 for details
6.compute SU;
7. for j = i + 1 to n+m do
8. SU(xi, xj) ≥SU(xj, y)
9. X = X − {xi};
10. end for
11. end

MDS uses space and distance to reflect the relationship
between features, and finally this algorithm obtains the low-
dimensional position structure relationship that contains all
the features in a unified space. The MDS algorithm is
given below.

Algorithm 2 MDS Algorithm
Input: Distance matrixD, whose elementDij is the distance
from sample xi to xj
Output: The representation matrix of the sample in the new
feature space is ∧1/2∗ VT∗
1. Calculate D2

i. , D
2
.j , D2

.. according to (6)–(8) respectively;
2. Calculate matrix B according to (9);
3. Eigenvalue decomposition of matrix B;
4. ∧ = diag(λ1, λ2, . . . λd) is the diagonal matrix formed
by the eigenvalues. V is the eigenvector matrix.

The unsymmetrical features are filtered using SU.
We remove the redundant features using the approximate
Markov blankets; the relevant feature sets can be selected, and
the standard features can be found. The specific algorithm is
as follows:

2) ALGORITHM STEPS OF BALANCED PROBABILITY
DISTRIBUTION MODEL
The specific stages of the BPD model algorithm based on the
instance and feature transfers are as follows:

IV. EXPERIMENT AND ANALYSIS
Weusedmedical test results and symptoms to predict whether
patients have COPD and to classify the diseases. To verify the
effectiveness of the BPD algorithm based on the instance and
feature transfers, we performed experiments on the following
two datasets: the COPD dataset provided by the Clinical
Medical Science Data Center and the COPD dataset extracted
from the electronic medical records of a partner medical
system [42]. The test set was the COPD dataset obtained
from the electronic medical document of the partner medical

Algorithm 3 Approximate Markov Blanket Algorithm with
the Symmetric Uncertainty
Input: low-dimensional features x, class y in the same
feature space
Output: optimal feature dataset

1. Calculate the information entropy E(x) of feature x,
the information entropy E (y) of class y, and the con-
ditional entropy E (x|y) according to (10)–(12);

2. Calculate the maximum mutual information as MImax
(y|x), the feature x, and the SU of class y according
(14)–(15);

3. Take the i feature xi from X ;
4. Extract the j feature xj from X ;
5. If SU(xi, xj) ≥SU(xj, y)
6. X = X − {xi}

Algorithm 4 BPD Algorithm
Input: Feature dataset X , weight balance parameter λ of
marginal distribution and conditional distribution, esti-
mated regression coefficient α;
Output: Target domain prediction class y

1. x = x0, y = y(x) //Initial state, precision
2. K = ϕ(x)Tϕ(x),W TW = E

//compute kernel matrix K ,transformation matrix W
3. MMD(Ps,Pt ) = tr(W TXM0XTW )

//compute MMD(Ps,Pt ), (M0)st

4. MMD(Q(ys|xs),Q(yt|xt )) =
Y∑
y=1

tr(W TXMcXTW )

//compute MMD(Q(ys|xs),Q(yt |xt)),(Mc)st
5. λ = λ0 //Initial λ
6. D(Ds,Dt ) = λMMD(Ps,Pt )+

(1− λ)
Y∑
y=1

MMD(Q(ys|xs),Q(yt |xt ))

//compute D(Ds,Dt )
7. α = α0;ffinal = f ; //Initial α, ffinal is state.
8. t = 1;
9. if (ffinal = f ){

10. f = f (α); }
11. else {t ++}
12. return x0, y(x)

system. The data in this dataset were screened after at least
five years of observations of patients.

A. EXPERIMENTAL DATASET
The COPD dataset provided by the Clinical Medical Sci-
enceData Center included relevant demographic information,
electronic medical record information, examination results,
health self-scores, and follow-up information over five years;
more than 360 types of features were used. The dataset
contained 1999 samples, including the data obtained from
829 patients with COPD, 1021 non-COPD patients, and
149 undiagnosed patients. The COPD dataset also included
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TABLE 3. Contents of the COPD dataset.

data on heart diseases, asthma, emphysema, and other com-
mon diseases associated with COPD (Table 3).

A total of 1200 pieces of data were extracted from the
COPD dataset from the electronic medical records of the
partner healthcare system [42]; this included two classes
of 750 COPD patients and 450 non-COPD patients who
had symptoms similar to COPD patients. Table 4 gives the
original 26 feature descriptions extracted from the electronic
medical record.

B. EXPERIMENTAL SETUP AND EVALUATION
In medical datasets, the evaluation criterion for the multi-
class performance of algorithms is usually accuracy, which
is calculated as follows:

accuracy =
1
j

j∑
i=1

|z (x) = y (x)| (25)

where y is the class space set of diseases with a total of j
disease classes, y(x) is the predicted class of feature x, and
z (x) is the correct class of feature x.
It would be too one-sided to use accuracy as the evaluation

index; therefore, in this paper, we introduce precision, recall,
and F1 values as indicators to evaluate the model. Taking
COPD as an example, there were four outputs of any sample
in the target domain after using the BPD model based on
the instance and feature transfers. The COPD samples were
correctly predicted as the COPD disease and recorded as TP;
the non-COPD samples were erroneously predicted as COPD
diseases and were recorded as FP. The COPD samples were
incorrectly predicted as non-COPD diseases, and they were
recorded as FN. The non-COPD samples were correctly clas-
sified as non-COPD samples, and they were marked as TN.

TABLE 4. Contents of the COPD dataset of the electronic medical records.

Precision refers to the proportion of correctly divided sam-
ples among all the samples predicted as COPD.

precision = TP/ (TP+ FP) (26)

Recall refers to the proportion of correctly predicted sam-
ples among all COPD samples.

recall = TP/ (TP+ FN ) (27)

Using accuracy and recall, F1 can fully reflect the pros and
cons of the actual performance of the method.

F1 =
2× precision× recall
precision+ recall

(28)

C. EXPERIMENTAL RESULTS
In this paper, we propose a cross-domain feature filtering
algorithm and a BPDmodel based on the instance and feature
transfers; this algorithm achieved excellent results in COPD
prediction. Accuracy and F1 values play an essential role in
the evaluation of model performance. To verify the effective-
ness of the model proposed in this paper, we first compare
the BPD algorithm with the TraAdaBoost algorithm, TCA
algorithm, and multi-task learning (MTL) algorithm based on
the classical transfer learning method in terms of accuracy
and F1 values.

As shown in Figs. 7 and 8, on the COPD dataset provided
by the Clinical Medical Science Data Center, the accuracy of
the TraAdaBoost algorithm is 88.9%, while the accuracies of
the MTL and TCA algorithms are 80% and 90.8%, respec-
tively. The accuracy of the BPD algorithm reached 92.1%,
whereas the F1 value reached 88.7%.
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FIGURE 7. Comparison of the accuracies of different algorithms on the
COPD dataset provided by the Clinical Medical Science Data Center.

FIGURE 8. Comparison of F1 of the COPD dataset in the clinical medical
science data center.

FIGURE 9. Comparison of the accuracies of different algorithms on the
COPD dataset of the electronic medical records of the partner medical
system.

In the COPD dataset extracted from the electronic medical
records of the partner medical system, the accuracies of the
TraAdaBoost, MTL, TCA, and BPD algorithms were 87.8%,
83.6%; 85%, and 90.5%, respectively, whereas the F1 value
reached 88.7% (see Figs. 9 and 10).

The experiment results of the two datasets show that
the proposed BPD method is superior to the feature-based

FIGURE 10. Comparison of different algorithms on electronic medical
record COPD dataset F1 of the partner medical system.

FIGURE 11. Comparison of accuracies of the proposed BPD method and
the method proposed by Marin et al. [24].

FIGURE 12. AUC comparison chart.

transfer learningmethod TCA and the instance-based transfer
learning method TrAdaBoost. In addition to comparing with
other transfer learning algorithms, we compared the proposed
BPD method with the methods proposed by Marin et al. [24]
and Jensen et al. [25] (Fig. 11 and Fig. 12, respectively).
Marin et al. [24] studied the BODE index (i.e., the body

mass index, degree of airflow limitation, dyspnea, and exer-
cise capacity) to predict that the accuracy rate of the COPD
patients admitted to hospitals was 87.3%. The accuracy rate
for predicting COPD patients using a cross-domain feature
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FIGURE 13. Comparison of the accuracies of BPD, SDBFNN, and
SGW–SCN.

FIGURE 14. Disease classification.

filtering algorithm was 92.7%. Jensen et al. [25] used a
linear regressionmodel to distinguish the acute and non-acute
phases of COPD, and the AUC value reached 73%. The AUC
value of the BPD method based on the instance and feature
transfers proposed in this paper was 95.2%, which is quite
robust.

There are many other advanced methods for predic-
tion. We also compared the method proposed in this
paper with advanced methods such as sparse deep belief
network with fuzzy neural network (SDBFNN) proposed
by Wang et al. [43] and Savitzky–Golay wavelet-supported
stochastic configuration network (hereinafter SGW–SCN)
proposed by Bi et al. [44] by using the evaluation standard of
accuracy. As shown in Fig. 13, the accuracy of the SDBFNN
method was 93%, which is slightly higher than that of the
proposed BPD method (92.1%). The accuracy of SGW–SCN
was 88.7%, which is lower than the proposed BPD method.
To summarize, our experiments prove that the BPD method
is more effective than most other methods. From the obtained
results, it is clear that the method proposed in this paper is
effective.

In this research, we not only applied the knowledge
transfer learned from multi-source domains to the COPD
field but also achieved excellent results for the COPD
identification and classification. For the dataset provided
by the Clinical Medical Science Data Center, we distin-
guished between bronchitis, emphysema, COPD, and their

comorbidities (i.e., lung cancer and pulmonary heart dis-
ease). As shown in Fig. 14, a BPD algorithm that fuses
the instance-based and feature-based transfers can effectively
distinguish among the different conditions showing similar
symptoms.

V. CONCLUSION
For the prediction of few-shot learning in COPD studies,
we propose a method for the diagnosis of COPD based on
transfer learning, i.e., the BPD algorithm. BPD first uses
instance-based cascaded transfer learning to obtain instances
close to the target domain. Then, it uses the cross-domain fea-
ture filtering algorithm to obtain the co-occurrence features
of source domains and target domains. The transference of
learning from a multi-disease source domain to the COPD
domain is realized through instances and co-occurrence fea-
tures to construct the classification model of the target
domain. Next, an elastic network is used to further improve
the generalization performance of the model. The BPD
method integrates the instance-based transfer and feature-
based transfer, and our multiple experiments prove that the
BPD method can obtain accurate prediction results.

Our experimental results also show that the BPD method
not only improves COPD identification but it can also effec-
tively distinguish among different diseases having similar
symptoms. In subsequent studies, we propose to use dif-
ferent diagnostic approaches to simulate medical diagnostic
thinking to obtain more accurate and interpretable disease
prediction models.
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