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ABSTRACT In general, the construction of subspace codes or, in particular, cyclic Grassmannian codes
in some projective space Pq(n) is highly mathematical and requires substantial computational power for the
resulting searches. In this paper, we present a newmethod for the construction of cyclic Grassmannian codes.
To do that was designed and implemented a series of algorithms using the GAP System for Computational
Discrete Algebra and Wolfram Mathematica software. We also present a classification of such codes in the
space Pq(n), with n at most 9. The fundamental idea to construct and classify the cyclic Grassmannian codes
is to endow the projective space Pq(n) with a graph structure and then find cliques.

INDEX TERMS Cliques, cyclic codes, finite fields, Grassmannian codes, orbits, projective space, subspace
codes.

I. INTRODUCTION
Similar to classical coding theory, there are two main direc-
tions for research in network coding: The existence and
construction of subspace codes, in particular, Grassman-
nian codes and the design of efficient coding and decoding
schemes for a given subspace code.

From a mathematical and computer science point of view,
four major sub-themes have been considered for research
• Construction of subspace codes, Grassmannian codes
and cyclic Grassmannian codes.

• Determination of bounds for code size in terms of the
code parameters and the size of the ground field.

• Practical aspects of network coding.
• Subspace codes based Cryptography.
Cyclic Grassmannian codes were first presented by

Kohnert and Kurz in [6] from the perspective of design theory
over finite fields. Later Etzion and Vardy in [3] defined
them as a q-analog of cyclic code from the classical coding
theory. Trautmann et al. [8] and Gluesing-Luerssen et al. [4]
studied cyclic codes from the point of view of groups actions.
Specifically, they have used an action of the general linear
group over a Grassmannian to define them: these codes were
called cyclic orbits codes. Cyclic Grassmannian codes are a
special case of orbits codes.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

Recently Ben-Sasson et al. [1], Otal and Özbudak [7],
Niu et al. [9], and Chen and Liu [2] presented new meth-
ods for constructing such codes, what includes linearized
polynomials, namely subspace polynomials and Frobenius
mappings. A computational method for construction of cyclic
Grassmannian codes was presented in [5].

Let Fqn be the extension field, of degree n, of the finite
field with q elements, Fq (where q is a prime power). It is
well known that we may regard Fqn as a vector space of
dimension n over Fq. That is, for a fixed basis, we can
identify every element of Fqn with a n-tuple of elements
in Fq. Therefore, we will not distinguish between Fqn and Fnq.
We denote with Pq(n) the projective space of order n, that is,
the set of all subspaces of Fnq, including the null space and
Fnq itself.

For a fixed natural number k , with 0 ≤ k ≤ n we denote
with Gq(n, k) the set of all subspaces of Fnq of dimension k
and we call it the k-Grassmannian over Fq or Grassmannian
in short. We say that C ⊆ Gq(n, k) is an (n,M , d, k)q
Grassmannian code if |C | = M and d(X ,Y ) ≥ d for all
distinct X ,Y ∈ C . Such a code is also called a constant
dimension code.

Let Aq(n, d, k) and Cq(n, d, k) be the maximum number
of codewords in an (n,M , d, k)q Grassmannian code over
the filed Fq and the maximum number of codewords in an
(n,M , d, k)q cyclic code over Fq, respectively. It is clear that
Cq(n, d, k) ≤ Aq(n, d, k).

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 51333

https://orcid.org/0000-0002-7107-7617
https://orcid.org/0000-0002-6921-7369


I. Gutiérrez-García, I. Molina Naizir: Finding Cliques in Projective Space: Method for Construction

Let α ∈ F∗qn and V ∈ Gq(n, k). The cyclic shift of V
is defined as follows:

αV := {αv | v ∈ V }. (I.1)

Clearly αV is a subspace belonging to Gq(n, k). That is,
it has the same dimension as V . A Grassmannian code
C ⊆ Gq(n, k) is called cyclic, if for all α ∈ F∗qn and all
subspace V ∈ C we have that αV ∈ C . The set

Orb(V ) := {αV | α ∈ F∗qn} (I.2)

is called the orbit of V . Observe that in this definition the
zero vector was omitted from the set of an orbit. Starting now,
this will be explicitly deleted when we specify the elements
of a codeword of a cyclic Grassmannian code.

If V ∈ Gq(n, k), then |Orb(V )| = qn−1
qt−1 , for some natural

number t , which divides n, see [1, Lemma 9]. An immedi-
ate consequence of this result is presented in the following
theorem.
Theorem 1: The maximum number of codewords in an

(n,M , d, k)q cyclic Grassmannian code is given by

Cq(n, d, k) =
∑
t|n

αt
qn − 1
qt − 1

(I.3)

for some integer 0 ≤ αt .

II. CLIQUES CONSTRUCTION
A clique in an undirected graph G = (V, E) is a subset
of V , such that every two distinct vertices are adjacent. The
clique of the largest possible size is referred to as a maximum
clique; that is, it cannot be extended by including one more
adjacent vertex. The clique numberω(G) ofG is the number of
vertices in a maximum clique in G. A clique of size k is called
a k-clique.

To calculate the coefficients αt in the previous theorem we
proceed as follows:
(1) Find all the orbits of Gq(n, k) and denote this set by V .

That is,

V := {Orb(V ) | V ∈ Gq(n, k)}.

(2) Calculate the minimum subspace distance dOrb(·) of
each orbit independently; then we form the pair
(Orb(·), dOrb(·)).

(3) A minimum distance d is fixed, for which we want to
obtain a cyclic code.

(4) The graph G = (V, E) is constructed so that the set E
of edges is obtained in the following way: two orbits are
adjacent if their union has a minimum distance greater or
equal than d .

(5) A clique in the graph G constructed in (4) is a Grass-
mannian cyclic code with minimum distance d and
dimension k .

(6) To determine themaximumvalues of each αt , the graphG
is separated into independent subgraphs by the number of
spaces in their orbits (every vertex in each subgraph with

Algorithm 1 The Algorithm That Calculates All the
Cyclic Codes of a Grassmannian
Data: d : the minimum distance required for the code
Result: Grassmannian cyclic codes with minimum

distance d .
Let V := {O ⊆ Gq(n, k) | O is an orbit};
E ← {};
forall the O1 ∈ V do

forall the O2 ∈ V \ {O1} do
if dO1 ≥ d and dO2 ≥ d and D(O1,O2) ≥ d
then

E ← E ∪ {(O1,O2)};

We define G as the graph of orbits;
G← (V ,E);
forall the C in Cliques(G) do

print(C);

Algorithm 2 Algorithm That Calculates the Upper
Bounds of the Values of αt
Data: n, d, k, q, t
Result: A bound for αt
Let V := {O ⊆ Gq(n, k) | O is an orbit and
|O| = qn−1

qt−1 };
E ← {};
forall the O1 ∈ V do

forall the O2 ∈ V \ {O1} do
if dO1 ≥ d and dO2 ≥ d and D(O1,O2) ≥ d
then

E ← E ∪ {(O1,O2)};

We define G as the graph of orbits;
G← (V ,E);
print("αt ≤",NumeroDeClique(G));

the same number of associated spaces), and the number
of cliques in each one is calculated.

Remark 2: To perform the previous algorithm we use:
(1) GAP to calculate all the vector spaces over the field Fq;
(2) Java to construct the orbits and graph G;
(3) Wolfram Mathematica to calculate the cliques.

III. CLASSIFICATION OF BINARY GRASSMANNIAN
CODES OF LENGTH SMALLER THAN 6
Theorem 3: C2(4, 4, 2) = 5.
Proof: Let α be a primitive root of x4 + x + 1 and use

this polynomial to generate the field F24 . Let C ⊆ G2(4, 2)
which consists of all cyclic shifts of

{α0, α5, α10}.

This code C is an [4, 5, 4, 2]-cyclic code. It consists of a
unique orbit with 5 subspaces.
Theorem 4: If n < 6 then C2(n, 4, k) = 0.
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Proof: The unique orbit with minimum distance 4 and
n < 6 was presented in the previous theorem.

IV. CLASSIFICATION OF BINARY GRASSMANNIAN
CODES OF LENGTH 6
A. CALCULATING THE NUMBER C2(6, 6, 3)
It follows from Theorem 1 that

C2(6, 6, 3) = 63α1 + 21α2 + 9α3.

Lemma 5: Let C ⊆ G2(6, 3) a cyclic code with minimum
distance 6. Then

(1) α1 ≤ 0
(2) α2 ≤ 0
(3) α3 ≤ 1

Proof: There are not orbits with minimum distance 6
having 63 or 21 subspaces. There is a single orbit with
minimum distance 6 and nine subspaces.
Theorem 6: C2(6, 6, 3) = 9.
Proof: Let α be a primitive root of x6+ x4+ x3+ x+ 1

and use this polynomial to generate the field F26 . Let C ⊆
G2(6, 3) which consists of all cyclic shifts of

{α0, α9, α18, α27, α36, α45, α54}.

This code C is an [6, 9, 6, 3]-cyclic code. It consists of a
unique orbit with nine subspaces.

B. CALCULATING THE NUMBER C2(6, 4, 3)
It follows from Theorem 1 that

C2(6, 4, 3) = 63α1 + 21α2 + 9α3.

Lemma 7: Let C ⊆ G2(6, 3) a cyclic code with minimum
distance 4. Then

(1) α1 ≤ 1
(2) α2 ≤ 0
(3) α3 ≤ 1

Proof: The constructed graph with these parameters
is the null graph. That is an edge-less graph. Therefore the
clique number is one. There are no orbits with 21 subspaces
and minimum distance 4.
Lemma 8: α1 + α3 = 1
Proof: The combined constructed graph with the orbits

with 63 and 21 subspaces is the null graph. Then the cyclic
Grassmannian code has an orbit of 63 subspaces or an orbit
of 9 subspaces but not both.
Theorem 9: C2(6, 4, 3) = 63.
Proof: Let α be a primitive root of x6+ x4+ x3+ x+ 1

and use this polynomial to generate the field F26 . Let C ⊆
G2(6, 3) which consists of all cyclic shifts of

{α0, α6, α15, α26, α33, α34, α38}.

This code C is an [6, 63, 6, 3]-cyclic code. It consists of a
unique orbit with 63 subspaces.

TABLE 1. Values for C2(6, d , k).

TABLE 2. Values for C2(7, d , k).

C. CALCULATING THE NUMBER C2(6, 4, 2)
It follows from Theorem 1 that

C2(6, 4, 2) = 63α1 + 21α2 + 9α3.

Lemma 10: Let C ⊆ G2(6, 2) a cyclic code with minimum
distance 4. Then

(1) α1 ≤ 0
(2) α2 ≤ 1
(3) α3 ≤ 0

Proof: There are not orbits with minimum distance 4
having 63 or 9 subspaces. The associate graph with the orbits
of 21 subspaces is the null graph.
Theorem 11: C2(6, 4, 2) = 21.
Proof: Let α be a primitive root of x6+ x4+ x3+ x+ 1

and use this polynomial to generate the field F26 . Let C ⊆
G2(6, 2) which consists of all cyclic shifts of

{α0, α21, α42}.

This code C is an [6, 21, 4, 2]-cyclic code. It consists of a
unique orbit with 21 subspaces.

V. CLASSIFICATION OF BINARY GRASSMANNIAN
CODES OF LENGTH 7
A. CALCULATING THE NUMBER C2(7, 4, 3)
It follows from Theorem 1 that

C2(7, 4, 3) = 127α1.

Lemma 12: For a cyclic codeC ⊆ G2(7, 3)with minimum
distance 4 holds that α1 ≤ 2.

Proof: The figure above illustrates this result. We can
see that there are various cliques and the big one has two
vertices, that is two orbits of 127 subspaces.
Theorem 13: C2(7, 4, 3) = 254.
Proof: Let α be a primitive root of x7 + x + 1 and use

this polynomial to generate the field F27 . Let C ⊆ G2(7, 3)
which consists of all cyclic shifts of

{α0, α4, α9, α28, α38, α58, α90}

{α0, α8, α23, α39, α56, α82, α100}.

This codeC is an [8, 254, 4, 3]-cyclic code. It consists of two
orbits with 127 subspaces.
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VI. CLASSIFICATION OF BINARY GRASSMANNIAN
CODES OF LENGTH 8
A. CALCULATING THE NUMBER C2(8, 4, 4)
It follows from Theorem 1 that

C2(8, 4, 4) = 255α1 + 85α2 + 17α4.

Lemma 14: Let C ⊆ G2(8, 4) a cyclic code with minimum
distance 4. Then
(1) α1 ≤ 17;
(2) α2 ≤ 4;
(3) α4 ≤ 1.

Proof: The graph formed only by the orbits of 255 sub-
spaces has a clique of 17 vertices, and there is no clique of
greater size. In the same way, the graph formed by the orbits
of 85 subspaces and the orbits of 17 subspaces is the null
graph.
Lemma 15: If α4 = 1 then α1 + α2 ≤ 3
Proof: Fixing the orbit of 17 subspaces in all cliques,

then the combined graph formed by the orbits of 255 sub-
spaces and 85 subspaces do not contain a clique with more
than four vertices.
Theorem 16: C2(8, 4, 4) ≤ 4675.
Proof: It follows directly from the two previous lemmas.

Lemma 17: If α2 = 4 then α1 ≤ 16.
Proof: Similar to the previous theorem, but now we fix

the clique of four orbits with 85 subspaces. This procedure
is made for every combination of four orbits of 85 subspaces
that form a clique.
Theorem 18: There is a cyclic code with 4420 codewords.

That is, α2 = 4 and α1 = 16.
Proof: Let α be a primitive root of x8+x4+x3+x2+1

and use this polynomial to generate the field F28 . Let C ⊆
G2(8, 4) which consists of all cyclic shifts of

{α0, α7, α30, α46, α66, α76, α87, α88, α89, α112, α113, α137,

α167, α175, α203}

{α0, α40, α41, α53, α65, α80, α84, α98, α124, α139, α147, α157,

α162, α168, α180}

{α0, α2, α31, α45, α50, α91, α110, α123, α126, α163, α182,

α183, α205, α207, α209}

{α0, α27, α59, α62, α82, α89, α90, α104, α114, α117, α122,

α125, α166, α194, α203}

{α0, α1, α25, α56, α64, α65, α70, α71, α89, α95, α109, α131,

α162, α176, α203}

{α0, α1, α25, α38, α81, α94, α124, α155, α156, α159, α160,

α169, α180, α184, α202}

{α0, α7, α9, α57, α62, α64, α70, α72, α83, α90, α112, α120,

α156, α169, α195}

{α0, α8, α16, α54, α69, α87, α125, α130, α145, α163, α167,

α182, α194, α200, α208}

{α0, α5, α10, α21, α37, α40, α76, α84, α113, α114, α138, α143,

α150, α166, α179}

{α0, α23, α64, α70, α79, α97, α110, α124, α126, α154, α174,

α180, α190, α196, α201}

{α0, α16, α31, α45, α49, α88, α114, α145, α155, α159, α166,

α171, α175, α197, α211}

{α0, α19, α47, α62, α78, α80, α90, α92, α101, α128, α140, α168,

α205, α207, α212}

{α0, α2, α29, α39, α49, α50, α60, α71, α74, α103, α106, α109,

α132, α181, α197}

{α0, α9, α28, α38, α47, α49, α93, α97, α101, α120, α158, α184,

α190, α193, α197}

{α0, α7, α47, α59, α79, α82, α91, α94, α101, α112, α148, α174,

α202, α206, α209}

{α0, α6, α12, α49, α53, α58, α107, α127, α147, α149, α156,

α169, α188, α191, α197}

{α0, α7, α19, α27, α49, α85, α92, α104, α112, α134, α170,

α177, α189, α197, α219}

{α0, α6, α10, α21, α39, α85, α91, α95, α106, α124, α170, α176,

α180, α191, α209}

{α0, α13, α14, α38, α54, α85, α98, α99, α123, α139, α170, α183,

α184, α208, α224}

{α0, α9, α32, α35, α37, α85, α94, α117, α120, α122, α170, α179,

α202, α205, α207}

This code C is an [8, 4420, 4, 4]-cyclic code. The first
sixteen orbits are sets with 255 subspaces and the remaining
four with 85 subspaces.
Theorem 19: C2(8, 4, 4) ≥ 4420.
Proof: The previous theorem show a cyclic Grassman-

nian code with 4420 subspaces.
Theorem 20: There is a cyclic code with 4590 codewords.

That is, α2 = 3 and α1 = 17.
Proof: Let α be a primitive root of x8 + x4 + x3 +

x2 + 1 and use this polynomial to generate the field F28 . Let
C ⊆ G2(8, 4) which consists of all cyclic shifts of

{α0, α7, α30, α46, α66, α76, α87, α88, α89, α112, α113, α137,

α167, α175, α203}

{α0, α40, α41, α53, α65, α80, α84, α98, α124, α139, α147, α157,

α162, α168, α180}

{α0, α2, α31, α45, α50, α91, α110, α123, α126, α163, α182,

α183, α205, α207, α209}

{α0, α27, α59, α62, α82, α89, α90, α104, α114, α117, α122,

α125, α166, α194, α203}

{α0, α1, α25, α56, α64, α65, α70, α71, α89, α95, α109, α131,

α162, α176, α203}

{α0, α1, α25, α38, α81, α94, α124, α155, α156, α159, α160,

α169, α180, α184, α202}

51336 VOLUME 8, 2020



I. Gutiérrez-García, I. Molina Naizir: Finding Cliques in Projective Space: Method for Construction

{α0, α7, α9, α57, α62, α64, α70, α72, α83, α90, α112, α120,

α156, α169, α195}

{α0, α8, α16, α54, α69, α87, α125, α130, α145, α163, α167,

α182, α194, α200, α208}

{α0, α5, α10, α21, α37, α40, α76, α84, α113, α114, α138, α143,

α150, α166, α179}

{α0, α23, α64, α70, α79, α97, α110, α124, α126, α154, α174,

α180, α190, α196, α201}

{α0, α16, α31, α45, α49, α88, α114, α145, α155, α159, α166,

α171, α175, α197, α211}

{α0, α19, α47, α62, α78, α80, α90, α92, α101, α128, α140, α168,

α205, α207, α212}

{α0, α2, α29, α39, α49, α50, α60, α71, α74, α103, α106, α109,

α132, α181, α197}

{α0, α9, α28, α38, α47, α49, α93, α97, α101, α120, α158, α184,

α190, α193, α197}

{α0, α7, α47, α59, α79, α82, α91, α94, α101, α112, α148, α174,

α202, α206, α209}

{α0, α6, α12, α49, α53, α58, α107, α127, α147, α149, α156, α169,

α188, α191, α197}

{α0, α4, α30, α32, α35, α49, α66, α80, α94, α100, α117, α122,

α168, α197, α202}

{α0, α7, α19, α27, α49, α85, α92, α104, α112, α134, α170, α177,

α189, α197, α219}

{α0, α6, α10, α21, α39, α85, α91, α95, α106, α124, α170, α176,

α180, α191, α209}

{α0, α13, α14, α38, α54, α85, α98, α99, α123, α139, α170, α183,

α184, α208, α224}

This codeC is an [8, 4590, 4, 4]-cyclic code. The first sev-
enteen orbits are sets with 255 subspaces and the remaining
three with 85 subspaces.
Theorem 21: C2(8, 4, 4) = 4590.
Proof: It follows directly from previous theorem and

lemmas 14, 15 and 17.

B. CALCULATING THE NUMBER C2(8, 4, 3)
It follows from Theorem 1 that

C2(8, 4, 3) = 255α1 + 85α2 + 17α4.

Lemma 22: Let C ⊆ G2(8, 3) a cyclic code with minimum
distance 4. Then

(1) α1 ≤ 5;
(2) α2 ≤ 0;
(3) α4 ≤ 0.

Proof: There are not orbits with 85 and 17 subspaces.
There is a clique with five orbits, and there is not one with six
orbits.

Theorem 23: There is a cyclic code with 1275 codewords.
That is, α1 = 5.

Proof: Let α be a primitive root of x8+x4+x3+x2+1
and use this polynomial to generate the field F28 . Let C ⊆
G2(8, 3) which consists of all cyclic shifts of

{α0, α27, α34, α98, α104, α136, α139}

{α0, α58, α60, α107, α108, α132, α161}

{α0, α76, α80, α95, α113, α168, α176}

{α0, α20, α42, α59, α82, α110, α126}

{α0, α13, α69, α99, α130, α135, α144}

This code C is an [8, 1275, 4, 3]-cyclic code. Every orbit has
255 subspaces.
Theorem 24: C2(8, 4, 3) = 1275.
Proof: See the previous theorem.

C. CALCULATING THE NUMBER C2(8, 6, 4)
Theorem 25: C2(8, 6, 4) = 0
Proof: There is no orbit with minimum distance 6.

D. CALCULATING THE NUMBER C2(8, 8, 4)
It follows from Theorem 1 that

C2(8, 8, 4) = 255α1 + 85α2 + 17α4.

Lemma 26: Let C ⊆ G2(8, 4) a cyclic code with minimum
distance 8. Then
(1) α1 ≤ 0;
(2) α2 ≤ 0;
(3) α4 ≤ 1.

Proof: There is a unique orbit with a minimum distance
of 8 and 17 subspaces.
Theorem 27: There is a cyclic code with 17 codewords.

That is, α4 = 1.
Proof: Let α be a primitive root of x8+x4+x3+x2+1

and use this polynomial to generate the field F28 . Let C ⊆
G2(8, 4) which consists of all cyclic shifts of

{α0, α17, α34, α51, α68, α85, α102, α119, α136, α153, α170,

α187, α204, α221, α238}.

This code C is an [8, 17, 8, 4]-cyclic code. It consists of a
unique orbit.
Theorem 28: C2(8, 8, 4) = 17.

E. CALCULATING THE NUMBER C2(8, 6, 3)
Theorem 29: C2(8, 6, 3) = 0.
Proof: There is no orbit with minimum distance of 6.

F. CALCULATING THE NUMBER C2(8, 8, 3)
Theorem 30: C2(8, 8, 3) = 0.
Proof: There is no orbit with minimum distance 8.

G. CALCULATING THE NUMBER C2(8, 4, 2)
It follows from Theorem 1 that

C2(8, 4, 2) = 255α1 + 85α2 + 17α4.
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TABLE 3. Values for C2(8, d , k).

Theorem 31: Let C ⊆ G2(8, 2) a cyclic code with mini-
mum distance of 4. Then
(1) α1 ≤ 0;
(2) α2 ≤ 1;
(3) α4 ≤ 0.

Proof: There is only one orbit with 85 subspaces, and
it has a minimum distance of 4. There are no orbits of other
sizes with minimum distance 4.
Theorem 32: There is a cyclic code with 85 codewords.

That is, α2 = 1.
Proof: Let α be a primitive root of x8 + x4 + x3 +

x2 + 1 and use this polynomial to generate the field F28 . Let
C ⊆ G2(8, 2) which consists of all cyclic shifts of

{α0, α85, α170}.

This code C is an [8, 85, 4, 2]-cyclic code. It consists of a
unique orbit.
Theorem 33: C2(8, 4, 2) = 85.

VII. CLASSIFICATION OF BINARY GRASSMANNIAN
CODES OF LENGTH 9
A. CALCULATING THE NUMBER C2(9, 4, 3)
It follows from Theorem 1 that

C2(9, 4, 3) = 511α1 + 73α3.

Theorem 34: Let C ⊆ G2(9, 3) a cyclic code with mini-
mum distance 4. Then
(1) α1 ≤ 11;
(2) α3 ≤ 1.

Proof: There is only one orbit with 73 subspaces, and
it has a minimum distance of 6. There is a clique of 11 orbits
with 511 subspaces.
Theorem 35: C2(9, 4, 3) ≤ 5621
Proof: It follows directly from previous theorem.

Theorem 36: There is a cyclic code with 5621 codewords.
That is, α1 = 11.

Proof: Let α be a primitive root of x9 + x4 + 1 and use
this polynomial to generate the field F29 . Let C ⊆ G2(9, 3)
which consists of all cyclic shifts of

{α0, α26, α27, α142, α156, α276, α345}

{α0, α86, α162, α169, α229, α237, α247}

{α0, α33, α81, α110, α181, α305, α379}

{α0, α2, α93, α96, α154, α260, α304}

{α0, α28, α127, α232, α248, α268, α311}

{α0, α25, α56, α90, α109, α227, α281}

{α0, α133, α174, α185, α197, α277, α332}

TABLE 4. Value for C2(9, d , k).

{α0, α21, α157, α194, α244, α306, α372}

{α0, α73, α170, α187, α219, α259, α289}

{α0, α35, α123, α180, α218, α231, α356}

{α0, α24, α131, α177, α290, α294, α299}

This code C is an [8, 5621, 4, 3]-cyclic code. It consists of
eleven orbits with 511 subspaces.
Theorem 37: There is a cyclic code with 5694 codewords.

That is, α1 = 11, α3 = 1.
Proof: Let α be a primitive root of x9 + x4 + 1 and use

this polynomial to generate the field F29 . Let C ⊆ G2(9, 3)
which consists of all cyclic shifts of

{α0, α64, α144, α242, α313, α381, α382}

{α0, α23, α84, α190, α202, α335, α337}

{α0, α27, α41, α52, α83, α142, α161}

{α0, α15, α91, α94, α126, α166, α322}

{α0, α45, α53, α63, α225, α263, α310}

{α0, α26, α33, α93, α181, α276, α304}

{α0, α102, α141, α184, α206, α316, α397}

{α0, α57, α108, α157, α227, α244, α281}

{α0, α74, α223, α239, α259, α289, α351}

{α0, α6, α103, α158, α192, α308, α329}

{α0, α24, α131, α177, α290, α294, α299}

{α0, α73, α146, α219, α292, α365, α438}

This code C is an [8, 5694, 4, 3]-cyclic code. It consists of
eleven orbits with 511 subspaces and the remaining orbit with
73 subspaces.

B. CALCULATING THE NUMBER C2(9, 4, 2)
Theorem 38: C2(9, 4, 2) = 0.
Proof: There is no orbit with minimum distance 4.

VIII. CONCLUSION
In this paper, we present an alternative to constructing cyclic
Grassmannian codes, having as a basis the design and imple-
mentation of algorithms to perform exhaustive searches of
cliques in the projective space. We also present a classifica-
tion of such codes in the space Pnq, with n at most 9.
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