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ABSTRACT While object-oriented databases (OODBs) are known to be rich in functionality, HBase
database, which is a distributed and scalable big data store, as well as uncertain databases have recently
gained a lot of attention in the database community. This paper presents a methodology for handling an
important step of knowledge integrations and migrations. In particular, a formal approach for reengineering
fuzzy object-oriented databases in HBase is firstly developed. The reengineering approach is based on the
technique of rule-based schema mapping, which defines a set of transformation rules involved in the process
of schema transformations for mapping a fuzzy object-oriented database schema into a fuzzy HBase database
schema. In addition, a formal approach to map the fuzzy object-oriented algebra into fuzzy HBase algebra
is proposed. On this basis, we complement the work with a comprehensive set of experiments to show the
efficiency of our proposed approach in terms of query time and scalability metrics.

INDEX TERMS Big data store, fuzzy HBase, fuzzy object-oriented database, mapping.

I. INTRODUCTION
In current computer science and medicine fields, since the
notion of object and class is ubiquitous in many real-world
applications, there is a paradigm shift to the object orienta-
tion in the formalisms for representations of the structured
knowledge used both in knowledge representations and in
databases. Object-oriented databases (OODBs) are widely
used for supporting advanced database applications [1] such
as such as the systems biology modeling [2], the object-
oriented biomedical continuous system modeling [3], and
object-oriented user interfaces for the bioinformatics analysis
pipeline systems [4]. An object-oriented knowledge base [5]
called SENEX is developed for modeling and representing
the biomedical information about the neurodegeneration and
loss of memory in aging. OODBs have several advantages:
increased data representation capabilities including the rep-
resentations of the abstract data types or meta-data, nav-
igational access to data, encapsulation of procedural and
declarative knowledge, managements of class extensions,
dynamic class definitions, etc [6]. With the popularity of
object-oriented technology, many prototypes and commer-
cial object-oriented databases (OODBs) have been developed
by industrial and research laboratories. In [7]–[10], In the
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real world, an application that involves the analysis and the
management of databases often involves imperfect infor-
mation. In many domains, e.g., the high-throughput DNA
sequencing [11], the precision medicine [12], the structural
biology research [13] and diagnostic practice [14], it is
difficult to state all information with one hundred percent
certainty [15]–[17]. Influenced by objective factors such as
instrument precision, there is uncertain information in the
original sequencing data. Through the quality control of
sequencing data, we remove the low-quality data before fur-
ther analysis. In addition, uncertainty surrounding etiology
and diagnosis, as well as treatment and aftercare widely exist
in practical applications. These drive researchers to develop
specific solutions to provide supports for the uncertain
data processing, and the research on fuzzy object-oriented
database management is extensively under way [18]–[22].

In recent years, average sizes of corporate databases tend
to be in the range of Gigabytes (GB). With the advent of the
era for big data, a database with amulti-Terabyte (TB) or even
Petabyte (PB) size becomes normal [23]. Massive knowledge
representation and management is emerged as a challenge-
able issue in big data era. Managing and storing knowledge
in traditional databases [24]–[26] could no longer fulfill
the increasing requirements of dealing with massive data.
There are number of projects (e.g., [27], [28]) have been
developed as an alternative to traditional database systems.
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Due to the advantages in distributed and parallel processing,
as well as knowledge applications such asmassive knowledge
managements, etc, the open-source, reliable and scalable
distributed database system HBase [29], designed for the
large-scale distributed data storage and the high-performance
computation, has attracted much attention both in academia
and industry [30], [31].

The requirement of the interoperability of autonomous
databases leads to the multi-database systems [32]–[37],
which often consists of homogenous or heterogeneous
databases. In the heterogeneous multi-database system,
the transformation between operations of databases with
different data models is critical [38]. Actually, there exist
many legacy databases (such as object-oriented databases,
and so on) that are in need of modernization [39] in order
to be compatible and competitive in this new era of big data
ubiquity. Now database administrators are faced with the
challenge of ensuring their databaseswhich can interfacewith
other big data management systems (such as HBase, etc),
and mapping mechanisms from existing legacy databases
to databases designed for large-scale data managements are
proposed [40]–[42].

As the integration of uncertain and scalable aspects is
necessary in the next generation information systems, fuzzy
object-object database is a promising database application
and currently, HBase is widely used in bioinformatics com-
munity and it may be the next generation database to
meet advanced big biomedical data management require-
ments. In order to effectively manage massive biomedical
data, approaches concerned with the reengineering traditional
databases in HBase are greatly needed. The adoption of the
HBase naturally triggers the requirement of the mapping
from the historical one to the new one [43], [44]. Although
HBase is employed to model the future data explosion, lit-
tle work focuses on the uncertainty modeling of object-
oriented biomedical information in HBase. Developing an
effective mapping technique, which can deal with uncertainty
modeling and schema mapping from the fuzzy object-object
biomedical database model to the HBase model in a uniform
way is still an open problem. In order to solve the map-
ping problems, in this paper, we study the methodology of
uncertainty modeling of object-oriented biomedical informa-
tion in HBase. In particular, we present a novel rule-based
approach to transform a fuzzy object-oriented biomedical
database schema into an HBase database schema. On this
basis, a formal approach to map the fuzzy object-oriented
algebra into fuzzy HBase algebra is proposed. To the best of
our knowledge, this is the first effort on the construction of
the fuzzy HBase database model from fuzzy object-oriented
database models.

Our contributions in this paper can be summarized as
follows:
• We study the methodology of uncertainty modeling of
object-oriented biomedical information in HBase and
present a rule-based approach to achieve the schema
transformation.

• We propose a novel approach to map the fuzzy object-
oriented algebra into fuzzy HBase algebra.

• We present an extensive experimental evaluation which
proves the efficiency of our proposal on the tested data.

The rest of the paper is organized as follows. Section 2
gives the preliminaries of fuzzy object-oriented and fuzzy
HBase databases. The uncertainty modeling of object-
oriented biomedical information in HBase is presented
in Section 3. Section 4 contains the experiments and
Section 5 concludes the paper.

II. PRELIMINARIES
A. FORMALIZATION OF FUZZY OBJECT-ORIENTED
BIOMEDICAL DATABASES
By summarizing the characteristics of fuzzy object-oriented
databases in the literature [22], [45], [46], [47], in the follow-
ing we introduce some basic notions of fuzzy object-oriented
biomedical databases.

The basic notions of fuzzy object-oriented biomedi-
cal databases consist of fuzzy object, fuzzy class, fuzzy
inheritance, integrity constraints and fuzzy object-oriented
database (algebraic) operations. An object is fuzzy because
of a lack of information. A fuzzy object can be represented
by a 3-tuple (o, vi, ρ (vi)), where o is a unique and immutable
object identifier, vi is a value set, and ρ (vi) (0< ρ (vi) ≤ 1)
is a possibility connecting with vi. The object identifier of a
fuzzy object is unaffected by changes to the object’s value,
and the possibility connecting with a value can be omitted
if the possibility is equal to 1.0. For example, the following
object represents a fuzzy genome annotation object:

(o1, [pos: ’’14370’’, REF: ‘‘G’’ ], [ρ (14370): ’’0.9’’, ρ (G):
‘‘0.8’’])

Here, o1 is the object identifier, pos and REF are attribute
names, 14370 and G are the values of those attributes respec-
tively, 0.9 and 0.8 are the possibilities of the values 14370 and
G respectively.

The objects with the same properties are gathered into
classes organized into hierarchies. Theoretically, a class could
be considered from two viewpoints [22]: i) an extensional
class, where the class is defined by a list of its object
instances, and ii) an intensional class, where the class is
defined by a set of attributes and their values. A class is fuzzy
because: i) a class defined by fuzzy objects could be fuzzy.
In this scenario, these fuzzy objects belong to the class with a
possibility ρ (ρ ∈ [0, 1]). ii) if a class is intensionally defined,
the domain of an attribute may be fuzzy and a fuzzy class
is formed. For instance, a class ‘‘young people’’ is a fuzzy
class because the domain of its attribute ‘‘age’’ may be a set
of fuzzy values such as {45/0.2, 40/0.3, 35/0.4}, that is, the
possibility of 45 is 0.2, the possibility of 40 is 0.3, and the
possibility of 35 is 0.4. iii) the subclass produced by a fuzzy
class by means of specialization and the superclass produced
by some fuzzy classes by means of generalization are also
fuzzy. Following the previous works on uncertainty modeling
such as the work [48], a sound uncertainty model usually
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contains three levels of uncertainty. To be consistent with
previous studies, we also use these three levels of uncertainty
in our work. We introduce three levels of uncertainty [38] to
the classes in fuzzy object-oriented databases as follows:
• At the first level, class and its attribute sets could be
fuzzy, i.e., they have a possibility to the model.

• The second one is related to fuzzy occurrences of
objects.

• The third one concerns fuzzy values of attributes of
special objects.

In order to model the first level of uncertainty, i.e.,
an attribute or a class with a possibility, the attribute or class
name should be followed by a pair of words WITH i
DEGREE, where 0 ≤ i ≤ 1 is a scalar and it is used to
indicate the degree that an attribute belongs to a class or a
class belongs to a data model. For example, assume that
we have a class INFO with an attribute AA in a biomedical
data model about genomic annotations. This biomedical data
model contains several classes, and class INFO may or may
not be necessary to be included in the data model. Addition-
ally, INFO consists of some attributes, and AA may or may
not be necessary to be included in this class. Assume that we
have INFOWITH 0.8 DEGREE and AAWITH 0.6 DEGREE,
which means class INFO and attribute AA are both with the
first level of the uncertainty. Here, INFO belongs to the data
model with 0.8 degree, and AA belongs to the class with
0.6 degree. Generally, ‘‘WITH 1.0 DEGREE’’ can be omitted
when the degree of an attribute or a class is 1.0. In order
to model the third level of uncertainty (i.e., attribute values
are fuzzy), a keyword FUZZY could be introduced and it is
added in the attribute. As to the second level of uncertainty,
we need indicate the possibility that an object of the class
belongs to this class. To this purpose, an additional attribute is
introduced to represent the possibility belonging to the class,
whose domain is [0,1].We denote this special attribute withµ
in this paper. In order to differentiate the class with the second
level of fuzziness, we could use a dashed-outline rectangle to
denote this kind of class.

Figure 1 shows a fuzzy class INFO. For the sake of simpli-
fication, some components such as superclass, method and

FIGURE 1. A fuzzy class.

constraints, etc, are not listed. OMIMmay have fuzzy values,
that is, its domain is fuzzy, in this scenario a fuzzy type
(depicted as FUZZY TYPE OF) of number is introduced.
Since INFO may or may not have AA information, when
class INFO is given, it is not sure whether AA should be
included in INFO. That is to say, AA uncertainly belongs to
INFO. A possibility ρ could be assigned to AA with regard
to INFO. WITH ρ DEGREE is used to describe the first
level uncertainty in the class definition. Since we may not
determine whether an object is the instance of a class because
the class is fuzzy, an additional attribute µ whose domain is
[0, 1] is added into INFO.

The formal description to fuzzy object-oriented biomedical
databases contains three elements: fuzzy biomedical class,
fuzzy inheritance relationship definition between classes, and
algebraic operations. In the following, the definition of fuzzy
biomedical class is firstly provided.
Definition 1:A fuzzy biomedical class is defined as a tuple

(Csup(c), Csub(c), Ldatt(c), Luatt(c), Lins(c), Lpos(c)), where c
is class identifier, Csup(c) is a list of direct superclasses of
class c, Csub(c) is a list of direct subclasses of class c, Ldatt(c)
is the set of additional deterministic attributes locally defined
in c, Luatt(c) is the set of additional fuzzy attributes locally
defined in c, Lins(c) is the set of object identifiers of objects
added locally to c (An instance of an object schemamaps each
class name to a set of OIDs, and maps each OID to a value),
and Lpos(c) is the set of possibility of an object (or attribute)
added locally to c.

For the fuzzy inheritance relationship, we have the fol-
lowing definition. In particular, fuzzy inheritance relation-
ships between classes define a partial ordering called a fuzzy
superclass/subclass relationship. Conceptually, if sc is in a
fuzzy subclass relationship with sc’, then the set of objects
represented by c (depicted as s(c)) is a subset of the objects
represented by sc’ with possibilities. In this scenario, for any
object, if the possibility that it belongs to the subclass is no
more than the possibility that it belongs to the superclass, and
the possibility that it belongs to the subclass is no less than a
given threshold β. In particular, let c1 and c2 be fuzzy classes
and β be a given threshold, we say c2 is a subclass of c1 if
s(c2) ⊆ s(c2), and (∀o)( β ≤ ρc2(o) ≤ ρc1(o)), where ρc2(o)
is the possibility that it belongs to the subclass, and ρc1(o) is
the possibility that it belongs to the superclass.

For the inheritance hierarchies [49], two constraints are
maintained in the fuzzy object-oriented database system:
• Cover: a set of subclasses C1, . . .Ck of a class C covers
a class C if every instance of C is an instance of one
of these subclasses, i.e., ϑ(C1)∪. . .∪ϑ(Ck) = ϑ(C),
and ρ(C1),. . . , ρ(Ck) ≤ ρ(C), where ϑ(C) is the set of
instances of class C, ρ(C) is the corresponding possibil-
ity. The cover constraint is introduced in the declaration
of one of these classes with: Ci inherit C cover with (C1,
. . .Ci−1, Ci+1, . . .Ck).

• Partition: a set of subclasses C1, . . .Ck of a class C parti-
tions a class C if every instance of C can be an instance
of one of these subclasses only, i.e., for all i, j, we have
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ϑ(Ci) ∩ ϑ(Cj) = ∅, and ρ(C1),. . . , ρ(Ck) ≤ ρ(C). The
partition constraint is introduced in the declaration of
one of these classes with Ci inherit C partition with (C1,
. . .Ci−1, Ci+1, . . .Ck).

For the referential integrity in fuzzy object-oriented
databases, it requires that any object referenced by another
object actually exists. When a deterministic object is deleted,
one can handle remaining references to it by either deleting
the reference (replacing it with a null), or deleting the refer-
encing object (cascading the deletion process). When a fuzzy
object is deleted, one can handle remaining references to it by
either deleting the reference and the corresponding possibil-
ity, or deleting the referencing object. The referential integrity
could be supported by specifying one of these maintenance
options for a reference attribute in the attribute declaration.

For the algebraic operations, we have the following for-
mal description. In particular, fuzzy object-oriented databases
provide algebraic operations as a basis for database manip-
ulation languages. Primitive algebraic operators are class
construction Cc(C, Sc, Sa, Sp), object construction Io(C, Sv,
Sp), object union Uo(C, Sv, Sp), object difference Do(C, Sv,
Sp), selection So(C, Fc, Sa), and update Uo(C, Fc, Sa, Vc).
• class construction Cc(C, Sc, Sa, Sp): create class C as a
subclass of classes in set Sc with additional attributes in
set Sa and possibilities in set Sp.

• object construction Io(C, Sv, Sp): create an object of
class C with values in set Sv and corresponding possi-
bilities in set Sp.

• object union OUo(C, Sv, Sp): unite two objects oi and
oj as an object o with the union of each value of the
same attribute in set Sv, and the maximal possibility
(depicted as max(ρ(oi), ρ(oj)), where ρ(oi) and ρ(oj)
are related possibilities, ρ(oi), ρ(oj) ∈(0, 1]) of the
corresponding possibilities in set Sp. It should point out
that, for the object union, two objects involved must be
union-compatible, i.e., they must have the same set of
attributes.

• object difference Do(C, Sv, Sp): the object difference
of object oj from oi, is the set of all values of set Sv
in oi but not in oj, and the minimal possibility of the
corresponding possibilities ρ(oi) and (1−ρ(oj)) in set
Sp(depicted as min(ρ(oi), (1−ρ(oj))), where ρ(oi) and
ρ(oj) are related possibilities, ρ(oi), ρ(oj) ∈(0, 1]). For
the object difference, the two objects involved must be
union-compatible.

• selection So(C, Fc, Sa): select values, satisfying a given
fuzzy selection condition specified by a fuzzy expres-
sion combining the basic clause AθB in set Fc of
attributes in set Fc of class C. Since the fuzzy selection
condition may be fuzzy, the evaluation of the fuzzy
expression can be conducted by using Zadeh’s extension
principle [22], [50], where θ ∈ {<ω, =ω, >ω, ≤ω, ≥ω,
6=ω}, ω is a threshold.

• update Uo(C, Fc, Sa, Vc): update values which satisfy
fuzzy selection condition in set Fc, of attribute Sa of class
C with new value Vc.

B. FORMALIZATION OF FUZZY HBase DATABASES
As introduced in [51], from a logical point of view, data
in HBase are organized in labeled tables. All table accesses
are via the table primary key and any scan of HBase table
results into a MapReduce job [30], [52]. By summarizing
the characteristics of HBase databases in the literature [53],
in the following we will introduce the formalization of fuzzy
HBase databases. The basic notions of fuzzyHBase databases
consist of fuzzy HBase table, HBase integrity constraints and
fuzzy HBase database (algebraic) operations. To model the
uncertainty in HBase, three levels of uncertainties occurring
in a fuzzy HBase table are considered [53]:

• At the first level, column families or columns
may or may not occur, that is, they have some possibility
to the given model.

• The second one, a column family may or may have rows
associated with its columns, that is, rows may have some
possibility belonging to the column family.

• The third one, some columns may have fuzzy values.

To model the first level of uncertainty in HBase, a column
(or a column family) depicted by a pair of words with ρ
possibility ρ ∈ [0, 1] is introduced to indicate the possibility
of an HBase table having the column family or column is ρ.
Note that, ρ can be omitted when the possibility is 1.0. For the
second level of uncertainty, a possibility columnµ,µ ∈ [0, 1]
is added to indicate the possibility of a column family having
a row i µ. For the third level of uncertainty, a set of possible
values (possibility distribution) associated with the column
is used to indicate the values’ possibilities. For example, the
following represents the first level of uncertainty in a fuzzy
HBase table:

(cf, [columnFamily: ’’INFO’’, column: ‘‘AA’’], [ρ(INFO):’’
with 0.8 possibility’’, ρ(AA):‘‘with 0.3 possibility’’]).

Here, cf is the column family or column identifier, colum-
nFamily and column are column family and column names,
INFO and AA are the values of those column family and col-
umn respectively, with 0.8 possibility and with 0.3 possibility
are the possibilities of the values INFO and AA belonging to
the fuzzy HBase table respectively.

The following represents the second level of uncertainty in
a fuzzy HBase table:

(r1,[columnFamily:’’INFO’’-columnRange:‘‘1-3’’],
[ρ(r1:INFO: 1-3):’’0.5’’]).

Here, r1 is the row identifier, columnFamily and colum-
nRange are column family names and column ranges, car
and ‘‘1-3’’ are the values of the column family and column
range respectively, ’’0.5’’ depicts that the possibility of this
row (columns 1-3) being a member of the column family car
is 0.5.

The following depicts the third level of uncertainty in a
fuzzy HBase table:

(r1,[columnFamily:’’INFO’’-column:‘‘OMIM’’-value:’’
DOID:0110493,HP:0000007,HP:0000407’’], [ρ(v1):’’0.5,
0.6, 0.3’’]).
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TABLE 1. An example of a fuzzy HBase table.

Here, r1 is the row identifier, columnFamily, columnRange
and value are column family and column names, INFO and
OMIM are values of the column family and column, and
’’DOID:0110493,HP:0000007,HP:0000407’’ are the possi-
ble values of this column in r1, ’’0.5, 0.6, 0.3’’ depicts that
possibilities of these values are 0.5, 0.6 and 0.3 respectively.

Consider the fuzzy HBase table in Table 1, where µ
denotes the possibilities of related rows belonging to the
corresponding column family. INFO with 0.8 possibility is
a column family with the first level of uncertainty. In the
first row of table 1, for the NS 3 whose OMIM-value is
HP:0000307, the possibility of this row being a member
of the column family INFO is 0.3. The first row of table
1 is an instance of the second kind of uncertainty in the
fuzzy HBase table. For the NS 2, if its OMIM-value is
unknown so far, i.e., it has a fuzzy value in the column
cost, which could be represented by using a possibility distri-
bution, for example, {DOID:0110493/0.5, HP:0000007/0.6,
HP:0000407/0.3}. This salary column is an instance of the
third kind of uncertainty in the fuzzy HBase table.
Definition 2: A fuzzy HBase table is defined as a tuple

(Tdcf(t), Tucf(t), Tdcol(t), Tucol(t), Tins(t), Tpos(t)), where t
is object identifier, Tdcf(t) is a list of deterministic column
families of t, Tucf(t) is a list of fuzzy column families of
t, Tdcol(t) is the set of additional deterministic column of t,
Tdcol(t) is the set of additional fuzzy columns of t, Tins(t) is
the set of values of column added locally to t, and Tpos(t) is
the set of possibilities occurring in t.

The main constraints in fuzzy HBase models are domain
integrity constraints and cell integrity constraints. The con-
tents of domain integrity constraints in fuzzy HBase are that
column values should be the values in the domain. In particu-
lar, for all values v1, . . . vk of a column Col, every instance of
Col is one of these values, i.e., χ (v1)∪. . .∪χ (vk) = χ (Col),
where χ (C) is the set of instances of the values in Col. The
contents of cell integrity constraints in fuzzy HBase are that
each nonempty cell should have an identified key and the
value of the identified key should be sole and cannot be null.

Next we will introduce the algebraic operations in fuzzy
HBase databases. Primitive algebraic operators are column
family construction CFcf(CF, Scf, Scol, Sp), row object con-
struction ROro(RO, Scf, Scol, Sv, Sp), mapper construction
Mapmap(M, Scol, Sv, Sp), reducer construction Redreduce(R,
Scol, Sv, Sp), row object union Urou(U, Scf, Scol, Sv, Sp), row
object difference Drod(D, Scf, Scol, Sv, Sp), HBase selection
Shselection(HO, Fc, Sa), and HBase update Uhupdate(HO, Fc,
Sa, Vc).

• column family construction CFcf(CF, Scf, Scol, Sp):
create column family CF in set Sfc with additional
columns in set Scol (Scol =Sucol∪Sdcol, Sucol is the
set of fuzzy columns and Sdcol is the set of deter-
ministic columns) and corresponding possibilities in
set Sp.

• row object construction ROro(RO, Scf, Scol, Sv, Sp):
create a row object RO with column families in set Scf,
columns in set Scol, values in set Sv and corresponding
possibilities in set Sp.

• mapper construction Mapmap(M, Scf, Scol, Sp): create
a mapper M with columns in set Scol and their val-
ues of each column family in set Scf associated with
the corresponding corresponding possibilities in set Sp.
Mapper construction performs filtering and sorting (e.g.,
sorting teachers by name into queues, one queue for each
name).

• reducer construction Redreduce(R, Scf, Scol, Sp): create a
reducer R with columns in set Scol and their values of
each column family in set Scf associated with the corre-
sponding possibilities in set Sp. Reducer construction
performs a summary operation (such as counting the
number of students in queue, yielding name frequen-
cies).

• row object union Urou(U, Scf, Scol, Sv, Sp): unite two row
objects roi and roj as a row object ro with the union of
each value of the same column family and the same col-
umn in set Sv, and the maximal possibility (depicted as
max(ρ(roi), ρ(roj)), where ρ(roi) and ρ(roj) are related
possibilities, ρ(roi), ρ(roj) ∈(0, 1]) of the corresponding
possibilities in set Sp. It should pointed out that, for
the object union, the two row objects involved must be
union-compatible, i.e., the two row objects must have
the same set of columns.

• Row object difference Drod(D, Scf, Scol, Sv, Sp): the
row object difference of object roj from roi, is the
set of all values of set Sv in roi but not in roj, and
the minimal possibility of the corresponding possi-
bilities ρ(roi) and (1−ρ(roj)) in set Sp(depicted as
min(ρ(roi), (1−ρ(roj))), where ρ(roi) and ρ(roj) are
related possibilities, ρ(roi), ρ(roj) ∈(0, 1]). For the row
object difference, the two row objects involved must be
union-compatible.

• HBase selection Shselection(HO, Fc, Scf, Scol): select
values, satisfying a given fuzzy selection condition
specified by a fuzzy expression combining the basic
clause AθB (this fuzzy expression could be conducted
by using Zadeh’s extension principle [22, 50] computing
on the corresponding column family and column, where
θ ∈{<ω,=ω,>ω,≤ω,≥ω, 6=ω}, ω is a threshold.) in set
Fc of attributes in set Fc of HBase row object HO.

• HBase update Uhupdate(HO, Fc, Scf, Scol, Vc): updates
values which satisfy fuzzy selection condition in set Fc
of the corresponding column family and column in Scf
and Scol, respectively, of HBase row object HOwith new
value Vc.
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III. UNCERTAINTY MODELING OF OBJECT-ORIENTED
BIOMEDICAL INFORMATION IN HBase
In this section, we concentrate on the formal mapping from
fuzzy object-oriented biomedical database to HBase by using
transformation rules. In particular, the defined rules are used
for the class mapping (Rules 1-7), the inheritance relation
mapping (Rule 8) and the database operations mapping (such
as class construction associated with Rule 9, object construc-
tion associated with Rule 10, the selection associated with
Rule 11, the update associated with Rule 12, object union
associated with Rule 13, object difference associated with
Rule 14), separately. And these rules are not conflicted.

A. TRANSFORMATION OF FUZZY CLASSES
The uncertainty modeling of object-oriented biomedical
information and the corresponding schema mapping could be
established by a series of mapping rules as follows.
Rule 1: For a fuzzy object-oriented biomedical schema S,

a column named Timestamp is created in HBase.
Rule 2: For each classC in a fuzzy object-oriented biomed-

ical schema S, a column family named S.C is created in
HBase.
Rule 3: For each Object identifier (OID) with the name

Oi in class C of fuzzy object-oriented schema S, a column
concatenating all (distinct) Object identifiers Oi as the row
key column of the (fuzzy) HBase table, and a column with
the same name as Oi are created in the column family S.C.
Rule 4: For each deterministic non-OID attribute Ai in

class C of fuzzy object-oriented schema S, a column with
corresponding name Ai is created in the column family S.C.
Rule 1-4 could be directly used to transform a deterministic

object-oriented biomedical class into a deterministic HBase
table when all the classes and attributes are deterministic.
As soon as there exists the uncertainty in object-oriented
biomedical databases, the following rules (Rule 5-7) can be
used to accomplish the fuzzy class schema mapping.
Rule 5: If there exists the first level of uncertainty in object-

oriented biomedical databases (recall the discussions of the
uncertainty in Section 2.1), for each non-OID fuzzy attribute
Ai in class C of fuzzy object-oriented schema S, a column
with the same name as Ai with ρ possibility is created in the
column family S.C.
Rule 6: If there exists the second level of uncertainty in

object-oriented biomedical databases (recall the discussions
of the uncertainty in Section 2.1), for each fuzzy class C of
fuzzy object-oriented schema S, an additional column with
the name as ρ. S.C is created in the column family S.C.
Rule 7: If there exists the third level of uncertainty in

object-oriented biomedical databases (recall the discussions
of the uncertainty in Section 2.1), for each non-OID fuzzy
attribute Ai in class C of fuzzy object-oriented schema S, an
additional column with the same name as Ai, which takes a
fuzzy value represented by using a possibility distribution,
is created in the column family S.C.
Figure 2 shows the transformation of the fuzzy object-

oriented biomedical class shown in Figure 1 to the fuzzy

FIGURE 2. Construction of fuzzy biomedical class INFO in HBase table.

HBase table. From Figure 1, we know that fuzzy class Student
has three levels of uncertainties. Firstly, we use Rule 1 and
2 to create the Timestamp column and the column family for
the construction of uncertainty class INFO in HBase. For the
OID attribute and deterministic non-OID attributes of fuzzy
class INFO, Rule 3 and 4 are used for the fuzzy class construc-
tion in HBase. Then for the uncertainty in class INFO, Rule 5,
6 and 7 are used to create the corresponding HBase columns
for the first, second and third levels of uncertainties in fuzzy
class INFO, respectively. Finally, we create the row key for
the generated HBase table based on Rule 3 to accomplish the
construction of fuzzy class INFO in HBase.

B. TRANSFORMATION OF FUZZY INHERITANCE
In this section, the construction of fuzzy HBase tables based
on the fuzzy inheritance (see Section 2.1) in object-oriented
biomedical databases is investigated. Following the transfor-
mation of classes given in Section 3.1, the superclass and each
subclass are firstly transformed and then the extended tag
is used to identify the constraints of the fuzzy inheritance.
In particular, the following mapping rule could be used to
accomplish the transformation of the fuzzy inheritance.
Rule 8. For each subclass Ci in fuzzy object-oriented

biomedical databases, let its superclass be C , (i) if Ci inherit
C cover with (C1, . . .Ci−1, Ci+1, . . .Ck), Rules 1-7 are firstly
used to transform the classes and column families S. Ci
and S. C are created for classes Ci and C respectively, and
an additional column ξ .Ci -C is created in column family
S. Ci to identify the cover constraint between subclass Ci
and its superclass C, and (ii) if Ci inherit C partition with
(C1, . . .Ci−1, Ci+1, . . .Ck), Rules 1-7 are used to transform
the classes and column families S. Ci and S. C are created
for classes Ci and C respectively, and an additional column
named ζ .Ci -C is created in column family S. Ci to identify
the partition constraint between subclass Ci and its super-
class C.

C. TRANSFORMATION OF FUZZY DATABASE OPERATIONS
In this section, we will introduce the transformation from
fuzzy object-oriented algebraic operations to the fuzzyHBase
algebraic operations. The detailed transformation could be
accomplished by using the following mapping rules.
Rule 9: For the class construction Cc(C, Sc, Sa, Sp) in the

fuzzy object-oriented algebra, it can be mapped into the col-
umn family construction of the fuzzy HBase algebra, where
the object-oriented class name C in class set Sc, attributes Sa,
and possibilities Sp are mapped into the corresponding HBase
column family, columns and possibilities.
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Rule 10: For the object construction Io(C, Sv, Sp) in the
fuzzy object-oriented algebra, it can be mapped into the row
object construction of the fuzzy HBase algebra, the values Sv
and possibilities Sp of the given class C are mapped into the
corresponding HBase column values and possibilities of the
transformed column family C.
Rule 11: For the selection So(C, Fc, Sa) in the fuzzy object-

oriented algebra, if the fuzzy selection condition Fc conducts
at a single attribute, then the attribute and its corresponding
selection condition Fc of the given class C can be mapped
into the selection that satisfies the given fuzzy selection
condition executed on the corresponding HBase column of
the transformed column family C. Otherwise, if the fuzzy
selection conditions Fc conduct at multiple attributes, then
the attributes and their corresponding selection conditions Fc
of the given class C can be mapped into the selections that
satisfy the given fuzzy selection conditions executed on the
corresponding HBase columns of the transformed column
family C.
Rule 12: For the update Uo(C, Fc, Sa, Vc) in the fuzzy

object-oriented algebra, the attributes Sa satisfying selection
conditions Fc and their updated values Vc of the given class
C are mapped into the updates that satisfy the given fuzzy
selection conditions executed on the corresponding HBase
columns of the transformed column family C.
Rule 13: For the object union OUo(C, Sv, Sp) in the fuzzy

object-oriented algebra, the values Sv and possibilities Sp of
the given class C can be mapped into the set union of the
corresponding HBase column values and maximal values of
related possibilities of the transformed column family C.
Rule 14: For the object difference Do(C, Sv, Sp) in the

fuzzy object-oriented algebra, e.g., the object difference of
object oj from oi, where the corresponding possibilities of oi
and oj are ρ(oi) and (1−ρ(oj)) respectively, the values Sv and
possibilities Sp of the given class C can bemapped into the set
difference of the corresponding HBase column values and the
minimal possibility of the corresponding possibilities ρ(oi)
and (1−ρ(oj)) of the transformed column family C.

Algorithm 1 OO2HB(o)
01 while not end(o)
02 tact = getOOSchema(o)
03 Sact = getHBaseSchema(tact, Tdcf(tact), Tucf(tact),
Tdcol(tact), Tucol(tact), Tins(tact), Tpos(tact))
//translating the schema o of tact into the fuzzy HBase
schema based on Rules 1-7
04 for each object objecti in tact
05 Tdcol( objecti) = getValues(Lins( objecti))
06 cellOfHBase(determinstic attribute columns) = Tdcol(
objecti)
07 Lpos( objecti) = getValues(Lpos ( objecti))
08 cellOfHBase(fuzzy attribute columns)= Lpos( objecti)
09 end for
10 end while

The mapping frameworks operate in two phases. In the
first phase (lines 2-3 of Algorithm 1), the corresponding
HBase schema is generated. In the second phase (lines 4-9),
the contents in fuzzy object-oriented biomedical objects are
migrated to the fuzzy HBase cells based on the generated
HBase schema. The values are migrated from the fuzzy
object-oriented biomedical objects to the corresponding cells
of the constructed HBase tables at lines 6 and 8 respectively.
Theorem 1: For each object i in fuzzy object-oriented

databases Oi and its transformed object γ (i) in fuzzy HBase
databases H(γ (Oi)), two conditions holds: i) there is a map-
ping 1 from Oi to H(γ (Oi)), for each instance i in Oi, 1(i)
is an object of H(γ (Oi)), and ii) there is a mapping 0 from
H(γ (Oi)) to Oi, for each object j in H(γ (Oi)), 0(j) is an object
of Oi.

Proof: For the first part of Theorem 1, let (Csup(i),
Csub(i), Ldatt(i), Luatt(i), Lins(i), Lpos(i)) and (Tdcf(γ (i)),
Tucf(γ (i)), Tdcol(γ (i)), Tucol(γ (i)), Tins(γ (i)), Tpos(γ (i))) be
a fuzzy class i in Oi, and a fuzzy object γ (i) in H(γ (Oi))
respectively.

• According to mapping rules introduced in Section 3.1,
it is easy to prove that 1(Ldatt(i)) = Tdcol(γ (i)),
1(Luatt(i)) = Tucol(γ (i)), 1(Lins(i)) = Tins(γ (i)), and
1(Lpos(i)) = Tpos(γ (i)).

• For the fuzzy inheritance, if Ck inherit C cover/partition
with (Ca, Cm), we have Csup(i) = C, Csub(i) =
Ca∪Ck∪Cm. Based on the mapping rules introduced in
Section 3.2, i) if C is the deterministic superclass of class
(Ca, Ck, Cm) in Oi, and Ca, Ck, Cm are fuzzy subclasses,
then 1(C) = Tdcf(γ (i)), 1(Ca∪Ck∪Cm) = Tucf(γ (i)),
ii) if C is the deterministic superclass of class (Ca, Ck,
Cm) in Oi, and Ca is a deterministic subclass, Ck and
Cm are fuzzy subclasses, then 1(C∪Ca) = Tdcf(γ (i)),
1(Ck∪Cm) = Tucf(γ (i)), iii) i) if C is the deterministic
superclass of class (Ca, Ck, Cm) in Oi, and Ca, Ck, Cm
are deterministic subclasses, then 1(C∪Ca∪Ck∪Cm) =
Tdcf(γ (i)), iv) if C is the fuzzy superclass of class (Ca,
Ck, Cm) in Oi, and Ca, Ck, Cm are fuzzy subclasses,
then 1(C∪Ca∪ Ck∪Cm) = Tucf(γ (i)), v) if C is the
fuzzy superclass of class (Ca, Ck, Cm) in Oi, and Ca is a
deterministic subclass, Ck and Cm are fuzzy subclasses,
then 1(Ca) = Tdcf(γ (i)), 1(C∪ Ck∪Cm) = Tucf(γ (i));
vi) if C is the fuzzy superclass of class (Ca, Ck, Cm) in
Oi, and Ca, Ck and Cm are deterministic subclasses, then
1(C) = Tucf(γ (i)), 1(Ca∪ Ck∪Cm) = Tdcf(γ (i)).

As a consequence of the above, for each instance i in Oi,
1(i) is an object of H(γ (Oi)). Similarly, the second part of
Theorem 1 is a mutually inverse process of the first one, and
could be proved in the same manner, i.e., for each object j in
H(γ (Oi)), 0(j) is an object of Oi.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
In this section, the performance comparisons after the reengi-
neering are discussed based on our experiments in the
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TABLE 2. Queries used for the experiments.

database applications for the queries of massive data, from
the perspectives of query time and scalability. For the data
in HBase databases, the MapReduce query model is used
to evaluate the performance, denoted as HB+MR. For the
object-oriented data, the previous OQL (object query lan-
guage) query model [54]–[56] implemented in SQL-like
query specifications is used to evaluate the performance,
denoted as OO+OS. In order to simulate a real scenario of
massive object-oriented data and offer a comprehensive eval-
uation of HB+MR and previous approach OO+OS in terms
of query time and scalability, we performed our experiments
on synthetic datasets which contain a randomly generated
fuzzy class and attributes. For the randomly generated class,
we randomly generate 6 attributes (numeric data are gener-
ated by using uniformly distributed parameters). We then ran
the experiments on the different synthetic datasets, depicted
D1, D2, D3, D4 and D5, which contains different amount
of data records varying from 1, 5, 10, 50 and 100 million.
We chose three representative queries listed in Table 2 to
evaluate the approaches.

All the experiments are running on a 7-server Hadoop 2.7.1
cluster, including 1 master node, 6 slave nodes and 74TB
storages. Each server is equipped with Xeon E5 2680 V4
2.40GHz CPU ∗2 and 64GB main memory. The approaches
are programmed in Java with JDK 1.8.0 and CentOS 6.3 as
operating system.

B. EXPERIMENTAL RESULTS
In this section, we show the performance of the proposed
approach in terms of query time and scalability metrics by
using the following group of experiments.

The aim of the first group of experiments is to analyze
the query performance on different datasets with the same
number of slave nodes. Figure 3 shows the execution times
of queries for HB+MR and OO+OS, tested on D1, D2, D3,
D4 and D5 with 3 slave nodes. Our first observation is that
query times of using OO+OS is less than those of using
HB+MR when executing queries on a small size of datasets.
For example, in Figure 3(a), HB+MR is about 2 times slower
than OO+OS when processing Q2 on D1. The second obser-
vation is that query times of using OO+OS is more than those
of using HB+MR when executing queries on a large size FIGURE 3. Execution time comparisons running on 3 slave nodes.
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FIGURE 4. Varying the number of data records executing Q2 on 3 slave
nodes.

FIGURE 5. Varying the number of slave nodes executing Q2 on D3.

of datasets. For instance, in Figure 3(c), HB+MR is about
2 times faster than OO+OS when processing Q2 on D3.
In the second group of experiments, the scalability of

HB+MR and OO+OS is investigated. Figure 4 shows the
results by varying the number of data records when executing
Q2 on 3 slave nodes. From Figure 4, we can see that, query
times increase linearly with the increase of the number of
records. In particular, the times consumptions for OO+OS
are much higher than those for HB+MR. We also observe
that larger size of datasets results in greater gaps of query
times between HB+MR and OO+OS, e.g., in Figure 3(e),
HB+MR is about 5 times faster than OO+OS when pro-
cessing Q2 on D5. These results conforms to our previous
observations that, HB+MR has the ability of handling the
large-scale datasets and better performance when executing
queries on a large size of datasets.

Figure 5 reports the results by varying the number of slave
node parameters executing Q2 on D3. From Figure 5, we see
that, query times of HB+MR and OO+OS decrease with
increasing the number of slave nodes, and HB+MR still
holds the performance advantage over OO+OS. These results
further illustrate that HB+MR has good scalability.

V. CONCLUSION
In this paper, we investigated the uncertainty modeling
of object-oriented biomedical information in HBase. After

introducing the formalizations of fuzzy object-oriented and
HBase models, we develop a set of mapping rules to han-
dle the schema transformation. Meanwhile, we present a
formal approach to transform fuzzy object-oriented algebra
into fuzzy HBase algebra, and illustrate the transformation
approaches by using representative examples. Experimental
results indicate that using HBase databases could provide
great support for massive fuzzy object-oriented biomedical
data with both nice efficiency and scalability.
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