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ABSTRACT Explaining the prediction of deep models has gained increasing attention to increase its
applicability, even spreading it to life-affecting decisions. However there has been no attempt to pinpoint
only themost discriminative features contributing specifically to separating different classes in a fine-grained
classification task. This paper introduces a novel notion of salient explanation and proposes a simple yet
effective salient explanation method called Gaussian light and shadow (GLAS), which estimates the spatial
impact of deep models by the feature perturbation inspired by light and shadow in nature. GLAS provides
a useful coarse-to-fine control benefiting from scalability of Gaussian mask. We also devised the ability to
identify multiple instances through recursive GLAS. We prove the effectiveness of GLAS for fine-grained
classification using the fine-grained classification dataset. To show the general applicability, we also illustrate
that GLAS has state-of-the-art performance at high speed (about 0.5 sec per 224 × 224 image) via the
ImageNet Large Scale Visual Recognition Challenge.

INDEX TERMS Computer vision, neural networks, explainable artificial intelligence, machine learning.

I. INTRODUCTION
Over the last several years, convolutional neural networks
(CNNs) [1] have achieved superior performance in various
computer vision tasks, including image classification [2], [3],
object detection [4], and image captioning [4]. Despite these
dramatic advances, the opacity of CNNs makes it difficult to
understand why they reach particular decisions, limiting the
ability to widen their application to various fields.

In general, the visual interpretation of deep learning mod-
els is understood as estimating the impact of a particular
neuron activation related to a given input instance. In white-
box approach, architectural modification of the classifica-
tion model [6] or access to specific layers [6], [9], [13] is
inevitable [14], resulting in severe limitation of application.
In contrast, the black-box approach [14]–[19] aims to be
inherently model agnostic. Its main concerns are how to
perturb an input image and draw the model’s response on
the perturbed instance to the final heat map. For example,
the Randomized Input Sampling for Explanation (RISE)
method [14] perturbed an image with a randomised mask to
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FIGURE 1. Salient explanation. As the value of σ decreases, the heat map
concentrates more and more on the most discriminative part of the
relevant objects, the bird’s face in this case. The salient explanation is
very important for a variety of tasks such as the fine-grained classification
and biomarker discovery in medical image. Note that the salient
explanation is possible due to our idea of adopting Gaussian mask.

measure the importance of pixels and then linearly fused all
importance from several thousand masks.

The conventional black-box methods employed unnatural
and fragile perturbation schemes such as single colour out
[14], [16], [17], random noise [18], [19], and smoothing [19].
These perturbation schemes have several limitations. First,
they are deficient in pinpointing only the most discriminative,
i.e., salient features that are essential for the fine-grained
classification tasks where the between-class shape similarity
is very high — for example, pinpointing only the red face of
Red-faced Cormorant in the bird classification task in Fig. 1 is
crucial for explaining why a deep learning model classifies
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the image as Red-faced Cormorant. Second, the conventional
perturbation schemes highly suffer from local noise and, thus,
fuse maps from a considerable number of perturbations for a
reliable explanation. This is the main cause of slowness with
conventional black-box methods.

Inspired by the lighting and shadowing phenomena in
nature, we propose a simple yet effective black-box method,
called Gaussian light and shadow (GLAS), which simulates
feature perturbation as the presence or the absence of light
at the pixel level of an image. The primary idea of GLAS
is to perturb an input image by the Gaussian mask (light)
and inverse-Gaussian mask (shadow) and, then, record the
responses of the perturbed images. GLAS uses a simple grid
search; once completed over the entire image, the response
maps are fused to construct the final heat map. The fusion
mimics the Gaussian mixture. The proposed method has
several advantages compared with other black-box meth-
ods [14], [18], [19]. First, GLAS provides scalability of
explanation that we can achieve by adjusting the variance
parameter of the Gaussian mask. The scalability makes it
possible to pinpoint clues for the salient explanation, which
is not feasible with the nonparameterized approaches [14],
[17]–[19]. The salient explanation is valid for explaining fine-
grained classifications, such as classifying bird species in
a CUB200 dataset, involving large between-class similarity
and significant within-class variance. Fig. 1 shows an image
of the Red-faced cormorant species that we can discriminate
by identifying the face color. It illustrates that GLAS adjusts
its gaze from the body to the red face as the scale param-
eter decreases and finally pinpoints the red area around the
eye. Second, our pixel-wise multiplication operation with the
Gaussianmask at a specific search point simulates the gradual
dimming effect as going farther from the center.We argue that
because of this characteristic, a significantly reduced number
of perturbations is sufficient. GLAS can process an image
much faster than conventional methods.

To summarize, the contributions of this paper are as
follows:

1) We introduce a novel notion of salient explanation
which is critical in explaining the fine-grained classi-
fication tasks. We propose a simple yet efficient black-
box method, GLAS, which provides an easy way to
perturb an input image based on Gaussian lighting and
shadowing.

2) GLAS is fast because of the smoothly varying shape
of the Gaussian mask, which generates a visual expla-
nation up to one order of magnitude faster than other
black-box methods.

3) We show the broad applicability of GLAS to various
other tasks: object localization and visual captioning.
Quantitative comparisons show that GRAS is superior
to conventional methods.

II. RELATED WORKS
The white-box approach heavily uses the network’s inter-
nal information, such as gradients or feature maps of

specific layers. A gradient can indicate how much a small
change in a pixel influences the class output [20]. For exam-
ple, Simonyan and Zisserman [10] proposed the gradient-
based model, which directly mapped saliency values to the
original space. Additionally, Zeiler and Fergus proposed a
deconvolution method [17]. In the method, the forward signal
is reversed at a neuron and backpropagated to the input space.
The study [6] proposed the layer-wise relevance propaga-
tion method, in which the prediction in the output layer is
decomposed into pixel-wise relevance values and backprop-
agated until it satisfies the conservation rule. Samek et al.
[21] emphasized the importance of quantitative evaluation
and provided a rigorous comparison of the previously men-
tioned methods; these approaches are extensively reviewed in
Samek et al. [21]. The visual feature maps provide important
clues for the explanation, which some techniques exploit.
The technique [4] called class activation mapping (CAM)
is accomplished by weighted fusion of visual feature maps
and requires the modification of CNN architecture, replacing
the fully connected layer with the global average pooling.
Grad-CAM [9], an extended version of CAM, is applicable
to a broader range of CNNs. The previously mentioned tech-
niques modify the model’s internal operations or rely on the
model’s internal values; thus, they are model dependent.

The black-box approach measures the response change of
the base model when the input instance is spatially perturbed,
and this change can be regarded as the significance of the
classifier’s decision. The study [12] simulates feature per-
turbation based on marginal probability, and several studies
have extended and improved this method [18], [22]. For
the CNN-based architectures, the study [18] proposed the
conditional sampling approach. The method considers that a
given pixel value highly depends on neighboring pixels and
that multivariate analysis excludes a rectangular region rather
than a single pixel. Because a pixel-wise perturbation method
such as random noise [18], [19], was considered, pixels are
highly vulnerable to adversarial attack.

Several techniques [15], [16], [22], aim at region-wise
perturbation approaches, rather than using pixels. A study
[22] improved the conditional sampling method using the
superpixel algorithm, making it more robust from local noise
than Zintgraf’s method [18]. Additionally, the superpixel
segmentation technique was used in existing methods [15],
[16], [22]. In these methods, high-level segments, rather
than pixels [18] or oversegmented regions [22], are used
to perturb the feature of instance, and the methods have
achieved explanation results that are more visually pleasing
compared with previous methods. However, the results are
probably limited when the segmentation map’s quality is
poor. Petisiuk et al. proposed the RISE method [14], which
simulates the feature’s absence using randomized masks and
measures its response to each masked instance. Because of
its random masking strategy, RISE requires a considerable
number of feed-forward executions and suffers from local
noise. The meta learning approach that tries to maximize the
interpretability of a learning model is used in some studies
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FIGURE 2. Overview of the GLAS method.

[16], [19]. One study [16] employed superpixel-wise random
samples around the instance and an approximate linear deci-
sion model. Fong and Andrea [19] proposed an optimized
framework that learns a minimum perturbationmask from the
corresponding response to its output neuron. However, such
frameworks often fail to optimize their result because of its
sensitivity to various types of models and instances. Unlike
the white-box approaches, the black-box methods are inher-
ently model agnostic; i.e., they are applicable to any learning
model, because they rely only on the output values, regardless
of the internal workings of the classification models.

The fine-grained classification is to recognize subordi-
nate classes of a base class such as species of birds and
different models of cars and planes. Most of recent works
use the deep CNN models and propose better loss function.
Shi et al. [3] proposed a generalized large-margin (GLM)
loss to reduce between-class similarity and within-class vari-
ance. The contrastive loss [23] and triplet loss [24] have also
been proposed. Qiu et al. [25] proposed a method based the
sqeeze-and-excitation attention model. Peng et al. [26] used
both the object-level attention and part-level attention. The
literatures treated various types of objects. Shi et al. [3]
used birds, cars, and airplanes datasets. Other objects include
fish [25], vehicle [27], plant [28], leukemia [29], and
plankton [30].

III. PROPOSED APPROACH
A. GLAS METHOD
Given an image I, we define a set of search points M =

(µ1, µ2, . . . , µk×k ) by the centers of k×k grids overlaid upon
I, as shown in Fig. 2. For a given class label y and a specific
search point µi, the prediction score fl(µi) by Gaussian light
can be written as

fl(µi) = P (y|I� G(µi, σl)) (1)

where � denotes element-wise multiplication, and G(µi, σl)
is a Gaussian distribution with mean µi and standard devia-
tion σl . Equation (1) simulates light projected on a specific

part of the image to measure the contribution of the local
pattern. It is also possible to define the score based on
the inverse-Gaussian mask; i.e., the shadow is given by the
following equation:

fs (µi) =
∣∣P (y|I)− P (y|I� G′(µi, σs))∣∣+ γ (2)

where G
′

(µi, σs) = 1−G(µi, σs). Here, γ is a constant, and
we empirically set it to 10−5 to avoid fs (µi) being 0. We use
a weighted fusion to define the saliency score S(xj) for a pixel
xj as

S(xj) =
1
|M |

∑
µi∈M

exp

(
−
D
(
xj, µi

)
σ 2
spatial

)
fl(µi)fs(µi) (3)

where exp
(
−
D(xj,µi)
σ 2spatial

)
is a spatial weighting factor; here,

D(a, b) denotes the distance between a and b. Equation (3)
represents the Gaussian mixture-based weighted fusion. The
high flexibility of the visual explanation can be achieved by
adjusting the scale parameter σ for each Gaussian mask.

Algorithm 1 RGLAS
Input: I , class label y
Output: Saliency map Sfuse
1. Sfuse = 0;M = (µ1,µ2, . . . ,µk×k)
2. Repeat
3. for each pixel xj in I

4. S
(
xj
)
=

1
|M|

∑
µi∈M exp

(
−

D(xj ,µi)
σ2spatial

)
f l (µi)f s(µi)

5. B = S > t1
6. for each search point µi inM
7. If (B (µi)== 1) remove µi from M
8. I = I � (1− S)
9. If (

√
mean(S)
f (y|I) > t2) break

10. else Sfuse+ = normalize S
11. Normalize Sfuse
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FIGURE 3. Framework of RGLAS. The GLAS instances are repeated until
all discriminative patterns related to a given class have been discovered.

B. RECURSIVE GLAS METHOD
GLAS tends to highlight the most discriminative clue.
To discover the various evidences that lead to the classi-
fier’s decision, we propose a simple schema called RGLAS.
Fig. 3 shows the key idea of RGLAS: to prevent revisits to
the search points related to the most discriminative features
that have already been found, leading to extraction of the next
important features. This mechanism also helps in discovering
multiple instances in an image. The RGLAS algorithm starts
by constructing the saliency map S (lines 3–4). We compute
the binary map of S using the threshold value t1 = 0.8
(line 5) and eliminate search points located in the positive
region of the binary map (lines 6–7). The input image is
updated using the previous input and the inverse saliency map
(line 8). We define a simple stop condition, as formulated in
line 9, with t2 = 5. We found that as the iteration increases,
mean(S) tends to increase but f (y|I) decreases, guaranteeing
that the stop condition occurs consistently.

IV. EXPERIMENTAL RESULTS
The experiments were conducted on an Intel Core i7-7800X
with a 3.50 CPU, 32 GB of memory, and a GTX 1080 Ti
GPU. We aimed to evaluate quantitatively and qualitatively
the salient explanation capabilities of GLAS and existing
explanation models.

A. SALIENT EXPLANATION FOR FINE-GRAINED
CLASSIFICATION TASKS
The GLAS provides us with fine-level visual clue identi-
fication, enabling the salient explanation. To demonstrate
the effectiveness of scalability, we employed CUB200 [31],
Stanford Cars [32], and Aircraft [33] benchmarks that have
been used for the fine-grained image classification tasks.
The CUB200 dataset consists of 11,788 images of 200 bird
species. The Stanford Cars dataset includes 8,144 training
and 8,041 test images with 196 classes. The Aircraft dataset
is a set of 10,000 images with 100 classes reflecting a fine-
grained set of airplanes.We used the basic procedure of trans-
fer learning using ResNet-50 pretrained on ILSVRC. The
resulting networks of CUB200, Stanford Cars and Aircraft
yielded top-1 accuracies of 76.11%, 92.01%, and 80.59%,
respectively. GLAS can pinpoint more detailed clues by
adjusting its scale parameters. Fig. 4 shows the visual com-
parison. In the experiment, we used an equal sigma value
of 3.0 for σl, σs, and σspatial . Unlike other methods, we can
see that GLAS consistently pinpoints meaningful patterns
of birds. For example, in the case of the Northern flicker,
an instance has characteristics such as the red spot below
the eyes and black dots on the body. GLAS surprisingly
pinpoints two characteristics of the Northern flicker with
the scale 3.0; however, the other methods only discover the
location of the instance and fail to explain the detailed pat-
terns. In this regard, Grad-CAM and RISE tend to explain

FIGURE 4. Visual comparison with the existing models. From top to bottom: red-winged blackbird, Northern flicker, European
goldfinch, and crested auklet. We introduce the uniform characteristics of each bird: first row (red wings), second row (red below
the eyes and black spots on the body), third row (red face and yellow on the wings), and fourth row (orange beak).
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TABLE 1. Average distances between the landmark points of selected
categories and the maximum points of heat maps.

FIGURE 5. From left to right: original image, heat map, and image
perturbed by the inverse heat map along with the class probabilities.
Green-tailed towhee and red-winged blackbird.

only global significance, such as the target’s location. Numer-
ous visual examples are available in the Supplementary
Materials.

The CUB200 dataset provides 15 landmark points for
each bird: beak, crown, eyes, nape, etc. We employed these
annotations to evaluate quantitively the salient explanation
capability of GLAS. We chose five categories in Table 1 due
to their unique characteristics, e.g., red-wing blackbird with
red spot on the wing. The landmark of each bird corre-
sponding to the unique characteristic is described in second
column. We measured the Euclidian distance between the
landmark point and the maximum point of the heat map.
As Table 1 shows, GLAS with sigma = 3.0 (σl = σs =

σspatial = 3.0) achieved the shortest distance compared with
both other methods and GLAS with sigma= 5.0. The results
tell us GLAS can closely access the meaningful patterns
of birds. We conducted another experiment measuring how
much the pinpointed clues affect the class decision. In Fig. 5,
original images are perturbed by the inverse heat map, and the
amount that the score drops is recorded. As expected, the class
score dropped rapidly, ensuring the significance of the pin-
pointed features. Fig. 6 shows the European goldfinch char-
acterized by red face and yellow spot on the wings used
for demonstrating coarse-to-fine controls. GLAS adjusts the
standard deviation. Deconv adjusts the occlusion mask size.
The RISE adjusts the size of the initial mask. The most
prominent observation is that the heat maps from RISE and
Deconv are very noisy and less accurate in identifying the
most discriminative parts of the relevant object. The failure
case analysis in Fig. 7 deserves an attention. The second row
unveils an interesting behavior of CNN through failure cases.
The first and second images belonging to the Red-legged Kit-
tiwake was incorrectly classified into Pigeon guillemot with
34.09% and 11.59% probabilities, respectively. The salient
explanation capability of GLAS allows us to understand that
the CNN misclassified the images into the Pigeon guillemot

FIGURE 6. Visual comparisons of GLAS, RISE, and Deconv according to
their parameters controlling the locality. The example is the European
goldfinch characterized by red face and yellow spot on the wings. GLAS
adjusts the standard deviation. Deconv adjusts the occlusion mask size.
The RISE adjusts the size of the initial mask.

FIGURE 7. Unveiling the feature selection behaviors of CNN. The top two
rows illustrate two bird classes, Red-legged Kittiwake and Pigeon
guillemot. Despite its name, the Red-legged Kittiwake were consistently
highlighted on faces while the Pigeon guillemot was highlighted on the
red legs.

by looking at the red leg. Fig. 8 shows the visual explanations
on Aircraft and Stanford Cars benchmarks, respectively. For
Aircraft examples, GLAS consistently pinpointed propellers
of wings for the class ‘‘Yu 12’’. For Stanford Cars dataset,
we found that CNN changed its gaze consistently according
to poses of Car. When the front is shown for the car class 138,
the grille part is highly probable to be pinpointed. When the
back side is shown, lamps and wheels are pinpointed. Note
that these behaviors of CNNs can be unveiled only when the
salient explanation is available.

B. EVALUATION ON TARGET LOCALIZATION
We performed quantitative evaluations on the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). As a
metric, we employed the pointing game (PT) presented in
the study [13]. The PT purely measures the spatial selec-
tiveness of the continuous visual saliency map. In the eval-
uation, the PT detects the maximum intensity point on
the saliency map, and a Hit is recorded if the maximum
point is in the ground-truth annotation; otherwise, a Miss is
recorded. The accuracy is calculated using Acc = #Hit

#Hit+#Miss .

VOLUME 8, 2020 61437



K. Oh et al.: Salient Explanation for Fine-Grained Classification

FIGURE 8. Visual explanations on Aircraft and Stanford Car benchmarks.

TABLE 2. PT scores according to the number of search points.

TABLE 3. Quantitative comparisons with existing models using the PT on
the ILSVRC validation data using ResNet50.

Because multiple maximum points often arise, we employed
the threshold value T > 0.95 to generate binary blobs, and
then we used the centroid of the biggest blob as the localiza-
tion point.

We empirically set the scale parameters σl = 5 and
σs = 3, with σspatial = 6. Table 2 shows the execution time
of GLAS according to the number of grid search points. The
result tends to show favorable PT scores as the number of
the search points grows. It starts to become saturated after
k = 15 in terms of performance, even as the execution time
continues to grow. Table 3 illustrates the results of compar-
isons with the existing methods on the ILSVRC validation
dataset. GLAS achieves the best result in terms of PT score.
GLAS is 13 times faster than RISE even with the higher PT
score. This is because a considerable number of perturbed
images using a randomizedmasking process are necessary for
reliable visual explanation in RISE. When RISE is forced to
use 450 (225 × 2) perturbed images, identical to the number

FIGURE 9. Visual comparison of the class-discriminative capability of
MASK, Grad-CAM, RISE, and GLAS by varying the object classes.

used by GLAS, we observed that the PT score of RISE drops
from 0.907 to 0.869. This observation tells us that GLAS
perturbs and localizes the important features efficiently.

We separately evaluated the cases in which the object is
small in the PT-small column of Table 3. We consider an
object to be small if the total area of the bounding box of
the given class is smaller than one quarter of the size of the
image. Even though all models encountered a performance
drop, GLAS still beats other models. In our work, GLAS
operations can be used together or independently. The results
in the last three rows of Table 3 show an ablation study on
GLAS by measuring the performance with either Gaussian
lighting or shadowing suppressed. Table 3 shows the per-
formance of the ablated GLAS is comparable to that the
state-of-the-art methods, outperforming all methods except
Grad-CAM, RISE, and fused GLAS.

Fig. 9 provides a visual comparison of the methods. GLAS
and Grad-CAM clearly highlight the important region related
to a given class, whereas MASK and RISE suffer from non-
trivial local noise. The advantage of GLAS is obvious without
the noise and produces a visualization map that is highly
interpretable. Because the GLAS map consists of Gaussian
mixture clues, it identifies the most important area without
being distracted by meaningless clues.

C. MULTIPLE EVIDENCE DISCOVERY BY
THE RECURSIVE PROCESS
Table 4 illustrates the mean intersection over union (IOU)
scores of the proposed recursive process. Because the
visual saliency map consists of continuous intensity values,

61438 VOLUME 8, 2020



K. Oh et al.: Salient Explanation for Fine-Grained Classification

TABLE 4. IOU scores of the proposed method on the ILSVRC validation
data as the iteration increases. ‘‘A’’ represents the final iteration under
the adaptive stop condition.

FIGURE 10. Recursive process. This algorithm discovers the relevant parts
of a given class in order of significance. We used the adaptive stop
condition mentioned in Section 3.

the mean IOU scores were measured with varying thresholds,
from 0 to 1.0. In particular, significant progress occurs at
the second iteration. Higher IOU scores over the thresh-
old values indicate that the object regions are uniformly
highlighted. In the fusion results shown in the last column
of Fig. 10, we can see that multiple instances and multiple
evidences are well discovered.

D. VISUALIZATION OF THE IMAGE CAPTIONING MODEL
Image captioning is a challenging task for which both com-
puter vision and natural language processing techniques
should be considered [34]. We constructed the image cap-
tioning model based on publicly available implementations1

for which the fine-tuned InceptionV3-based image and long
short-term memory-based language models are considered.
Fig. 11 shows some visual explanation results from the image
captioning model to demonstrate the applicability of GLAS.
GLAS shows the capability to localize visual concepts such as
objects (man, bicycle, ball, boy, hurdle, and dog) and actions
(riding, playing, and jumping).

E. VISUALIZATION OF THE NEUROIMAGING
CLASSIFICATION MODEL
We consider a neuroimaging classification problem to show
the applicability of GLAS in a medical imaging domain.
We employed 3D-magnetic resonance imaging (MRI) scans

1 https://github.com/yashk2810/Image-Captioning

FIGURE 11. Visual explanation examples produced by GLAS for the image
captioning model.

reflecting 199 patients with Alzheimer’s disease (AD) ver-
sus 230 healthy normal control (NC) individuals from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, which is publicly available. A 3D-CNN was
employed for classification of AD versus NC. Because of
the limited dataset size, 3D-MRI scans are spatially normal-
ized based on template brain image, and the unsupervised
learning technique (convolutional autoencoder) is applied
before supervised learning [35]. The overall architecture is
composed of three 3 × 3 × 3 Conv layers with 10 filters
each, two FC layers with 32 and 16 nodes each, and soft-
max activation. Fivefold cross-validations were conducted to
evaluate the classification model. The mean accuracy was
85.24% [37].

In applying GLAS to MRIs, we used the automated
anatomical labeling (AAL) map which contains 116 anatom-
ical segments representing brain functioning. We considered
the centroid of each segment as the search point rather than
use of grid point. The 3D-GLAS used 3D Gaussians to
perturb MRI. We empirically set σl = 10 and σs = 15.
Regarding a segment µi as unit, all the voxels in the segment
were assigned the same saliency score, fl(µi, σl)fs(µi, σs).
For a statistical analysis of AD group, the MRI scans of
the AD category are fed to 3D-GLAS, and the saliency
maps were linearly combined and normalized. In the sec-
ond row of Fig. 12, the segments corresponding to hip-
pocampus, amygdala, and temporal inf were highlighted as
the important biomarkers for the accurate classification of
AD. The first row of Fig. 12 shows these biomarkers with
different colors. These biomarkers have been proved to be
closely related to dementia in many studies [36]–[38]. In
particular, the hippocampus, a brain region for learning and
memory, is one of the first brain biomarkers affected by AD,
and it undergoes severe structural changes as the disease
progresses. This experiment shows that GLAS is able to
interpret the learned neuroimaging classificationmodel based
on AAL.
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FIGURE 12. Visual distribution of discriminative biomarkers in the
classification of AD. The first rows illustrate a brain template image
overlapped with important biomarkers (rank 1 of Table 1, red; rank 2,
green; rank 3, blue; rank 4, yellow; rank 5, purple). The second
rows show the AAL-wise saliency map. Z represents depth of MRI scan,
Z=0 corresponding to the middle cross section,
and Z = −1,−2,−3, . . . going to down.

V. CONCLUSION
In this study, we proposed a visual explanation method called
GLAS for the black-box model. Our method is inspired by
the natural light and shadow phenomena and provides a
simple yet robust way to perturb an input instance. In exper-
iments, GLAS showed state-of-the-art performance and effi-
cient computing time. In particular, the GLAS presented
the ability of fine-level visual explanation at various scales
through the adjustment of the Gaussian scale. Additionally,
we showed the wide applicability of GLAS to various tasks.
For a future work, we plan to improve the saliency map
by optimizing the scale parameters of the Gaussian mask
adaptively on an image instance. A deeper theoretical analysis
of GLAS is also needed.
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