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ABSTRACT The mosquito-borne dengue fever is a major public health problem in tropical countries, where
it is strongly conditioned by climate factors such as temperature. In this paper, we formulate a holistic
machine learning strategy to analyze the temporal dynamics of temperature and dengue data and use this
knowledge to produce accurate predictions of dengue, based on temperature on an annual scale. The temporal
dynamics are extracted from historical data by utilizing a novel multi-stage combination of auto-encoding,
window-based data representation and trend-based temporal clustering. The prediction is performed with a
trend association-based nearest neighbour predictor. The effectiveness of the proposed strategy is evaluated
in a case study that comprises the number of dengue and dengue hemorrhagic fever cases collected over the
period 1985–2010 in 32 federal states of Mexico. The empirical study proves the viability of the proposed
strategy and confirms that it outperforms various state-of-the-art competitor methods formulated both in
regression and in time series forecasting analysis.

INDEX TERMS Clustering, machine learning, time-series analysis, predictive analysis.

I. INTRODUCTION
Dengue fever is a mosquito-borne disease caused by the
dengue virus. It is a global problem that affects numerous
tropical countries, with tens to hundreds of millions of people
infected annually. Dengue can be deadly – annually there are
thousands of deaths attributed to it. The mosquitoes carrying
dengue are tropical and subtropical species that mostly live
between latitudes 35 ◦N and 35 ◦S and usually in altitudes
below 1000 meters. The disease-carrying mosquitoes gener-
ally grow in water-filled habitats close to human dwellings
and thus dengue can be transmitted from community to com-
munity not just by the mosquitoes themselves, but also by
humans [1, p. 14].

Dengue has received considerable attention in the data
analysis literature [2]–[12]. The existing studies have focused
on assessing the association between a number of fac-
tors (e.g., climatic, demographic and/or socio-economic
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variables) and the transmission properties of dengue. The
data analysis techniquesmainly considered in these investiga-
tions include regression analysis, correlation studies, and time
series analysis. The studied data are often collected in Mex-
ico, which has states with vastly different geography, climate,
economies and demographics. For example, the authors of [2]
conduct a time series analysis that uses an auto-regressive
model to evaluate the role of climatic factors (e.g., tem-
perature and precipitation) on the incidence of dengue over
the period 1995–2005 on the Texas-Mexico border. The
authors of [4] fit multiple linear regression models to look
for associations between changes in the incidence rate of
dengue fever and climate variability in the warm and humid
region of 12 Mexican states, over the period 1985–2007.
The authors of [8] apply wavelet analysis to identify time-
and frequency-specific associations between temperature and
dengue on a multi-year scale in Mexico, Puerto Rico and
Thailand. The authors of [9] explore the effect of temperature
on the fluctuation of population immunity and hyperendemic-
ity in Singapore over the period 1980–2009. The authors
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of [5] study the epidemiology of dengue fever in Mexico
over the period 2000–2011 by looking for the age distribution
pattern of the dengue disease, while the authors of [6] conduct
a Bayesian phylogenetic analysis to determine the origin,
persistence and geographical dispersion of various serotypes
of the dengue virus in Mexico over the period 1980–2002.

In this paper, we investigate the dengue virus activity by
exploring the dynamics of dengue incidence data in various
states of Mexico.

From an application point of view, we consider the dengue
incidence data of the Mexican ministries of health, described
in [13]. We investigate the dynamics of temperature-related
patterns in this database and evaluate whether these patterns
exhibit predictive utility for dengue incidence in Mexico.
From a methodological point of view, we formulate a
machine learning strategy that performs cluster analysis of
historical data to learn a model of the associations between
temperature and dengue-related data. This model is used for
predictive purposes. We investigate the effectiveness of this
strategy compared to the state-of-the-art methods formulated
in both regression analysis and time series forecasting.

Contrary to previous studies, which have mainly explored
the idea of discovering associations between temperature and
dengue [2], [8], [14] collected at a single site, we account
for data collected at multiple sites (i.e., several Mexican
states). In particular, we try to model the temporal dynamics
of associations between temperature and dengue as they are
spanned across space. For this purpose, the cluster anal-
ysis is performed over spatio-temporal data, which repre-
sent monthly measurements of both temperature and dengue,
collected over consecutive years in various states of Mex-
ico. The cluster analysis is performed to discover clusters
of yearlong state co-located time series of temperature and
dengue, so that their trends are continuously co-associated
on the yearlong scale. An auto-encoding representation of
temperature and dengue data is learned for mapping exist-
ing associations between temperature and dengue from the
bivariate space to the univariate space. A univariate clus-
tering technique is then applied to process the transformed
data. Finally, the knowledge enclosed in the cluster model is
used in a simple time series nearest neighbour predictor to
accurately predict dengue from temperature on the yearlong
scale.

The knowledge that we expect to derive with the cluster
analysis is the extension of the temporal continuity of the
trend pattern in the associations between the historical data
of temperature and dengue. Therefore, we intend to discover
clusters, which highlight the existence of distinctive yearlong
trend patterns of co-located temperature and dengue, spanned
over various states and, possibly, in different (not consecu-
tive) years. The discontinuity points, which may occur over
space and/or time in the extension of these patterns will be
isolated into separate clusters. If enclosed in a global model,
this may help in the finer modeling of the changes occurring
over space and time in preventing the outlier association
patterns from diminishing the accuracy of the predictions.

It is noteworthy that the cluster analysis represents a
crucial phase of the proposed machine learning predictive
strategy. Cluster analysis has received considerable atten-
tion in its application to political behavior [15], ecological
trends [16], geophysical data streams [17]–[19], and many
others [20]–[22]. In epidemiology, the authors of [23] use
the Kulldorff space-time scan statistic (STSS) to identify
statistically significant space-time clusters of chikungunya
and dengue fever in Colombia from 2015 to 2016. The authors
of [24] investigate a parallel computing approach for scaling
the computation of space-time kernel density with epidemi-
ological data of increasing size, diversity and availability.
The proposed approach is used to perform clustering of a
high volume of dengue fever cases from 2010 to 2011 in the
city of Cali, Colombia. In this paper, we adopt the clustering
algorithm introduced in [17]. Onemotivation for this decision
is that, as shown in the empirical study described in [17],
this algorithm scales well with large streams of geophysical
data. In addition, the approach allows us to discover trends in
addition to clusters as the method groups geographical sites
(e.g., states of Mexico) around distinct trends, which depict
how the geo-referenced data, measured at the clustered sites,
evolve over time.

In summary, the contributions of this paper are:

• The definition of a holistic strategy, where the clustering
is used to drive the historical data modeling for yielding
accurate time series predictions.

• The use of auto-encoding as a univariate modeler of
associations between temperature and dengue to ease the
discovery of a model of the main trends in such bivariate
associations through a univariate algorithm.

• The use of a nearest neighbour time series predictor with
the temporal trend of associations between temperature
and dengue as they are discovered in historical data
spread across space.

• The evaluation of the effectiveness of the presented
strategy in a case study that comprises monthly data
on temperature and the number of dengue and dengue
hemorrhagic fever cases collected over the period
1985–2010 in 32 federal states of Mexico.

This paper is organized as follows. The data are pre-
sented in the next Section. The proposed machine learning
method and its competitors are described in Section III.
The experimental setting is illustrated in Section IV, while
the findings in the evaluation are discussed in Section V.
Finally, Section VI draws conclusions and proposes future
developments.

II. DATA
We investigate dengue-related data collected monthly at the
scale of the federal states of Mexico. We note that this spa-
tial and temporal scale of data is used in various studies
of dengue incidence in Mexico [7], [13]. As the risk of
dengue epidemics is higher when the weather is suitable for
mosquitoes that transmit the virus, we supplement the dengue
data with air temperature information. This decision is based
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FIGURE 1. Machine learning methods of AutoTiC-NN. (1) The auto-encoding method builds a 1-dimensional representation of Dengue and Temperature
on the training data collected at various states. (2) The count-window operator decomposes the training data into a yearlong time series geo-located at
the considered states. (3) The time series clustering method builds clusters of states whose encoding representation of the measured values of Dengue
and Temperature evolve with a similar trend along the considered yearlong training windows. For each cluster, the prototype time series of both Dengue
and Temperature is determined by aggregating training data collected at the cluster scale. (4) The NN method is used to predict any testing time series
of Dengue based on both the co-located known time series of Temperature and the detected cluster-based prototypes built for both Dengue and
Temperature from the training data.

on several studies [2], [4], [8], [9], [14], [25], [26], which
have shown that additional climate covariates can improve
predictive accuracy of dengue-related phenomena.

In particular, we focus our attention on the task of pre-
dicting monthly dengue incidence one year ahead, based on
monthly temperature. We highlight that the decision of con-
sidering the monthly data aggregation level is coherent with
the analysis formulated in [14], who show that the highest
correlation of the incidence of dengue can be found with
the temperature at a lag of one month. On the other hand,
the use of the year scale in the association search follows
the considerations formulated by the authors of [8], who
highlight that associations between temperature and dengue
cannot be stably observed in Mexico on the multi-year scale.
The study suggests that the continuity of the associations
between temperature and dengue should be analyzed at the
annual scale instead.

Therefore, based upon the premises formulated above,
we study the dengue incidence in Mexico based on
the monthly number of dengue and dengue hemor-
rhagic fever cases. These data were collected from Jan-
uary 1985 to December 2010 by the [27] for 32 Mexican
federal states. Similar data are investigated in the recent
literature [13], [25], [28].

Finally, the average air temperature (in ◦C) was obtained
from conventional and automatic stations [29] at the monthly
level for each of the states of interest in the matching period.

III. METHODS AND MATERIALS
We investigate the use of machine learning to yield accu-
rate yearlong predictions of dependent Dengue time series
on independent (or ancillary) Temperature time series.

To this aim, we propose a novel multi-stage machine learn-
ing strategy (see Section III-A), denoted as AutoTiC-NN
(AUTOencoding based TIme series Clustering with Near-
est Neighbour) that is formulated to learn a bivariate pre-
dictive model of Dengue from Temperature. In addition,
we illustrate well-known predictive methods (Section III-B),
formulated in both time-series forecasting and regression
theory, which will be evaluated as possible competitors of
AutoTiC-NN in Section V.

A. AutoTiC-NN METHOD
AutoTiC-NN is composed of four stages, i.e., auto-
encoding, count-based window, time series clustering, and
nearest-neighbour prediction (see Figure 1). The auto-
encoding, count-based window and time series clustering
methods are cascaded in order to learn a clustering model
of the training historical measurements of Dengue and
Temperature. The count-based window decomposes the
training data, geo-located in each state, into consecutive year-
long time series. The time series clustering method learns
a clustering model of the time series representation of the
training data. The auto-encoding stage allows us to derive a
univariate representation of training data by also capturing
possible associations hidden in the historical measurements
of Dengue and Temperature. Therefore, the clustering step
can be attempted with a univariate algorithm, without giving
away the opportunity of accounting for patterns describing
associations between Dengue and Temperature. Finally,
the learned clusteringmodel can then be used in the predictive
stage. In particular, the nearest neighbour prediction method
allows us to predict any testing time series of Dengue based
on both the co-located time series of Temperature and the
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cluster model of both Dengue and Temperature learned
from the historical training data. A detailed description of
auto-encoding, count-based window, time series clustering
and nearest-neighbour prediction stages is given in Sec-
tions III-A.1–III-A.4.

1) AUTO-ENCODING
In the first stage, we train the auto-encoder of the training data
comprising both Dengue and Temperature. Auto-encoding
is an unsupervised deep learning algorithm that produces
codifications for input data. The model is trained so that the
decodification resembles the input data as closely as possi-
ble [30]. The basic structure of an auto-encoder is defined
by the encoder-decoder architecture that is used to map an
input x onto the encoding y via an encoder network so that
y = σ (Wx + b), where σ is an element-wise activation
function, W is a weight matrix and b is a bias vector.
Weights and biases are usually initialized randomly and then
updated iteratively during training through back-propagation.
The encoding is in turn mapped to the reconstruction r by
means of a decoder network, so that r = σ ′(W′y + b′).
In particular, the auto-encoder is trained to minimize the
loss ||x − r||2 through a feedforward neural network that
reproduces the input data on the output layer. Both x and r
have the same dimension, while the auto-encoder has asmany
layers as needed, placed symmetrically in the encoder and
the decoder. Every unit located in any of the hidden layers
receives several inputs from the preceding layer. The unit
computes the weighted sum of these inputs and applies the
activation function to produce the output.

In this study, the input x is the collection of bivariate histor-
ical data points (Dengue andTemperature) recorded at each
state and at every monthly time point in the training period.
These data are scaled between 0 and 1 using the Exponential
Linear Unit (ELU) function. This is a recent, popular acti-
vation function in deep learning that is selected as it speeds
up learning and improves learning characteristics, compared
with other activation functions [31]. ADAM, an adaptive
learning rate optimization algorithm, which was designed
specifically for training deep neural networks, is adopted as
the algorithm for optimizing weights and biases with the
mean square error as the loss function [32]. The encoder is
made up of three layers of sizes 4, 2 and 1, including the
middle encoding one, while the decoder starts in the middle
one and also spans three layers (see Figure 2). This defines
an undercomplete neural network, where the inner encoding
layer (size 1) has a lower dimensionality than the input one
(size 2). The smaller number of units in the inner layer
imposes a restriction, so during training the auto-encoder
is forced to learn a more compact representation. This is
achieved by fusing the features according to the weights
assigned through the learning process.

Based upon the above theory, the output of the inner
encoder layer reduces the dimensionality of the input data to
a high capacity model that captures interactions and depen-
dencies hidden in the input, while rejecting noise from the

FIGURE 2. The autoencoder architecture trained to derive the univariate
model of Dengue and Temperature. It consists of an encoder function
mapping the input x to a hidden code r and a decoder producing the
reconstructed input r . It is learned by minimizing a loss function
||r − x||2. The encoder network adopted in this study is composed of
2× 4× 2× 1 layers, while the decoder is composed of 2× 4× 2× 1 layers.
With this architecture the hidden code r defines a univariate
representation of Dengue and Temperature.

input [33]. It acts in a manner similar to a non-linear combi-
nation of the input. The rationale of using this high capacity
model in this study is that the encoder layer allows us to
identify the latent variable that expresses some very fun-
damental information about a possible interaction between
Dengue and Temperature. In particular, the analysis of this
information in the clustering stage allows us to group the data
based on the specific interaction model they comply with.
In addition, the use of the univariate encoder representation of
Dengue and Temperature allows us to make the time series
clustering process simpler to perform. In fact, we halve the
number of learning parameters as a consequence of halving
the number of variates in the data representation.

2) COUNT-BASED WINDOW
In the second stage, we use the count-based window oper-
ator [34] to prepare the training data for the time-series
clustering stage. We decompose the historical training data,
collected at each state, into yearlong consecutive windows
of 12 monthly-spaced time points considered in series. This
corresponds to building one state-window unit of analysis,
denoted as SW , for every state S and for every yearlong
window W in the training dataset. For example, the count-
based window method, applied to the data of Dengue and
Temperature described in Section II, transforms monthly
measurements collected at 32 states over one yearlong win-
dow into 32 state-window units of analysis. The consecutive
monthly time points are locally enumeratedwithin SW . Every
point SW [i] (i = 1, . . . , 12) is one-to-one associated with
the triple 〈DSW [i],TSW [i],YSW [i]〉, where DSW [i] and TSW [i]
are the measurements of Dengue and Temperature, respec-
tively, as they are geo-located at state S and collected at time
point i of windowW . The YSW [i] is the encoder combination
of DSW [i] and TSW [i], as it is computed at the encoder layer
y of the auto-encoding stage.

3) TIME SERIES CLUSTERING
In the third stage, we perform the clustering of the
state-window units of analysis, which are built from the train-
ing dataset by applying the count-based window operator. For
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each state-window unit of analysis, we consider the univariate
time series associated with the encoder information Y and
process these univariate data with the trend cluster discovery
method formulated by [18]. This method is selected as it
implements an efficient threshold-based clustering algorithm
that partitions the univariate time series into trend-based clus-
ters.

By replicating the theory reported in [18], each discovered
trend cluster allows us to identify a group of state-window
units of analysis so that the cluster-spanned univariate
encoder representation of both Dengue and Temperature
depicts values which are homogeneous at the same time
point and evolve with a similar trend along the window time
horizon. Formally, every trend cluster Ck is a set of training
state-window units SW , which satisfy a homogeneity condi-
tion h(Ck ). This homogeneity condition is formulated on the
encoder variate Y . Formally,

h(Ck ) =


true if

(
max
SW∈Ck

YSW [i]− min
SW∈Ck

YSW [i]
)
≤ δ

for all i = 1, 2, . . . , 12
false otherwise,

(1)

where δ is a user-defined threshold that controls the granular-
ity of the clustering. It is noteworthy that, as Y is a univariate
model of Dengue and Temperature, trend clusters that sat-
isfy Equation 1 distinguish emerging trends in the interaction
between co-located values of Dengue and Temperature.

At the completion of the construction of a trend cluster Ck ,
we determine the cluster trend prototype time series of both
Dengue (Dk ) andTemperature (Tk ), associatedwith Ck . For
each i ranging between 1 and 12, we compute:

Dk (i) =
1
|Ck |

∑
SW∈Ck

DSW [i],

Tk (i) =
1
|Ck |

∑
SW∈Ck

TSW [i], (2)

where |Ck | denotes the cardinality of cluster Ck . The time
series couple composed of both Dk and Tk describes the
interaction of Dengue and Temperature spanned across the
trend cluster Ck . We note that a trend cluster may group
units of analysis, which comprise data collected at the same
state, but over various windows, as well as data collected
at the same window, but over various states. Therefore, this
cluster-level model of the training data can reveal spatial
and temporal extensions of similar interactions of Dengue
and Temperature. These interactions, modeled at the clus-
ter level, define the training samples for the NN prediction
method.

4) NEAREST NEIGHBOUR PREDICTION
In the final stage, the nearest neighbour (NN) method is
applied to predict any yearlong testing time series ofDengue
(dependent time series variable), based on the yearlong

co-located time series of Temperature (ancillary time series
variable). The NN method [35] is a non-parametric approach
to the multivariate prediction of a dependent variable. NN is
based on the similarity in the ancillary variable space between
a (target sample) unit, for which a prediction is desired,
and a set of reference units (training samples), for which an
observation of the dependent variable is available. That is,
NN is based on the computation of the Euclidean distance
between a test sample and the specified training samples.
In this study, the training samples comprise the trend time
series prototypes Dk and Tk , built during the clustering stage
(see Equation 2).

Every target sample to be predicted is composed of the
ancillary yearlong time series T ′, which is the series of the
known monthly measurements of Temperature as they are
observed along one testing year in one state. The NN predic-
tion task aims to yield an accurate estimate of the dependent
yearlong time series D′, which is the series of the unknown
monthly measurements of Dengue as they are co-located
at the testing time in the same state as T ′. To this purpose,
we first identify the trend cluster whose trend time series
prototype of Temperature T̂ is the closest to T ′, that is:

Ck = argmax
Tk

distance(Tk ,T ′), (3)

where distance(Tk ,T ′) =
∑12

i=1
(
Tk (i)− T ′(i)

)2 is the
Euclidean distance. Based upon Equation 3, we set the pre-
dicted dependent time series D′ equal to the trend time series
prototype ofDengue –Dk – associated with the NN-selected
trend cluster Ck that is identified with Equation 3.

B. COMPETITOR METHODS
1) TIME SERIES FORECASTING METHODS
The time series forecasting analysis is a machine learning
baseline that can be considered when the time series of
Dengue and Temperature, collected in every state, are dealt
with as separate training sets. Specifically, time series fore-
casting can be performed for each state, to take a distinct
model fit on the time series of the historical observations of
Dengue and Temperature as they are collected at the con-
secutive training time points of the specific state. This time
series model is then exploited to predict future observations
of Dengue for the state under consideration. We note that we
learn a distinct time series model for each state. For this study
we evaluate two well-known time series forecasting method
competitors, that is, Automatic AutoRegressive Integrated
Moving Average (auto.arima) [36] and Vector AutoRegres-
sion (VAR) [37].

auto.arima is one of the most powerful univari-
ate auto-regressive forecasting methods. For each state,
the Dengue forecasts are computed based on historical data
of Dengue observed in that state. Therefore, this method
ignores the ancillary temperature information. It differenti-
ates the original time series for an appropriate number of
times, until a test for the presence of unit roots ceases to pro-
vide statistically significant signals and the transformed data
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can finally be considered (at least approximately) stationary.
The optimal parameters (i.e., the orders of auto-regressive and
moving average components) of the fittingmodel are selected
according to a stepwise procedure. In the analysis of dengue
data, we train seasonal ARIMA models as reported in [13],
with the seasonal terms of the model involving backshifts of
the seasonal period (12 months).

VAR is a multivariate auto-regressive method to analyze a
system of multiple variables. That is, for each state, the fit-
ting model to forecast Dengue is computed considering the
historical data of Dengue and Temperature, co-located in
the state under consideration. Each variable has an equation
explaining its evolution, based on its own previous lagged
values, the previous lagged values of the other model variable
and an error term. The optimal number of lagged values is
selected with a sequential increase in the lag order, based
on the same sample size. The implementation of auto.arima
and VAR is available in the R packages forecast and vars,
respectively.

2) REGRESSION METHODS
The regression analysis is the additional machine learning
baseline that is considered in this study as a method for learn-
ing the relationships between Dengue (dependent variable)
and Temperature (ancillary, independent variable) by dis-
regarding the temporal information. This regression relation-
ship can then be used to predict an unknown value ofDengue
from the co-located observations of Temperature. In this
study, we consider a suite of well-known regression methods,
that is, M5′ [38], Support Vector Regression – SVR [39], and
k-Nearest Neighbourhood – kNN [40].

M5′ induces a structured tree that is composed of
non-terminal nodes, each one representing a test over
Temperature, and linking edges that partition the data
according to the test result. At the bottom of the tree the ter-
minal nodes hold linear regression models, which are formu-
lated according to the data that reach each given node. Hence,
for predicting the Dengue value for a given Temperature,
we walk along the tree from the root node to the bottom until a
terminal node is reached and then we apply the corresponding
linear model. Model trees result in a clear knowledge rep-
resentation, providing the user with information on how the
output was reached.

SVR is formulated as an optimization method by first
defining a convex ε-insensitive loss function to beminimized,
and finding the flattest tube that contains most of the training
data. Hence, a multi-objective function is constructed from
the loss function and the geometrical properties of the tube.
Then, the convex optimization is solved, using appropriate
numerical optimization algorithms. The hyperplane is repre-
sented in terms of support vectors, which are training samples
that lie outside the boundary of the tube. The support vectors
are the most influential training samples that affect the shape
of the tube, while the training and test data are assumed to
be independent and identically distributed, drawn from the
same fixed but unknown probability distribution function.

This method has excellent generalization capacity, with high
prediction accuracy. In this study, SVR is used with the Gaus-
sian kernel rule, while its parameters are optimally selected
according to a grid-search method.

kNN is a generalization of the nearest neighbour method.
The input consists of the k closest training samples in the
ancillary space. The output is the average of the values of
its k nearest neighbours. This method is well known for its
simplicity. It is independent of any data distribution, and it
only needs to be adjusted or assigned an integer parameter k .
M5′, SVR and kNN are implemented in Java in the software
toolkit Weka [41].

IV. EXPERIMENTAL SETTING
In the experiments, we split the state time series data col-
lected for Dengue and Temperature into training and
testing datasets. The training dataset comprises the data
observed between January 1985 and December 2009, while
the testing dataset comprises the data observed between Jan-
uary 2010 and December 2010.

The data for the case study were collected across 32 fed-
eral states of Mexico, and one experimental setting is cer-
tainly defined by considering all federal states together. How-
ever, [13] point out that if the primary interest of studying
these data is to assess models for forecasting dengue inci-
dence in endemic locations, the analysis may be restricted
to the 17 federal states where median monthly incidence of
dengue is greater than zero during the training period.1

Based upon these considerations, we evaluate the pre-
dictive accuracy of AutoTiC-NN, auto.arima, VAR, M5′,
SVR and kNN in both the complete and restricted exper-
imental settings of the case study. The evaluation consists
of using the training dataset to learn the model that is used
to predict unseen data of Dengue in the testing dataset,
based on the Temperature. We use the Root Mean Square
Error (RMSE) to measure the accuracy of the predictions.
The RMSE is computed as the square root of the second
sample moment (quadratic mean) of the differences between
observed and predicted values of Dengue in the testing
dataset. To compare the competitive models with the sug-
gested method, AutoTiC-NN, we also calculate the accuracy
gains as Gainj = 1 − RMSE2

AutoTiC-NN/RMSE
2
j , where j

denotes a competitive model (−∞ < Gainj < 1, where
Gainj = 0 means equally good performance of AutoTiC-NN
and the jth model, and Gainj → 1 means superiority of
AutoTiC-NN over the jth model).
In addition, we evaluate the performance of the methods

based on the computational time spent completing both the
training and testing phases. This estimate of the computa-
tional time, repeated on both the complete and restricted data
settings, allows us to explore how the considered methods
scale with the amount of data.

1The states selected according to these considerations of [13] are: Cam-
pache, Chiapas, Colima, Guerrero, Jalisco, Michoacan, Morelos, Nayarit,
Nuevo Leon, Oxaca, Puebla, Quintano Roo, Sinaloa, Tabasco, Tamaulipas,
Veracruz, and Yucatan.
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FIGURE 3. Dengue cases analysis: bar graph of gain values for comparing the competitive models with AutoTiC-NN. The p-values of Student’s
t-tests, computed for evaluating the statistical difference between squared residuals of AutoTiC-NN and competitive models, are reported in each
bar.

V. RESULTS
We analyze the performance of the methods illustrated in
Section III in the case study on dengue incidence in Mexico
presented in Section II and with the experimental setting
described in Section IV. We note that this experimental study
aims at validating the effectiveness of AutoTiC-NN com-
pared to that of competitor methods (time series forecasting
methods and regression methods) in terms of accuracy and
efficiency. Specifically, it aims to seek answers to the follow-
ing questions:

1) Can the cluster knowledge extracted through a
multi-stage combination of auto-encoding, window-
based data representation and trend-based temporal
clustering be effectively exploited to empower an accu-
rate time series nearest neighbour predictor?

2) Can the trend association-based nearest neighbour pre-
dictor be more accurate than the predictive models
discovered through the competitor methods?

3) How efficient are the training phase and the prediction
phase performed by the compared methods?

4) Is the descriptive skill of trend-based temporal clus-
tering actually able to highlight the existence of
temporal (and possibly spatial) dynamics in train-
ing data, by explaining the effectiveness of a time
series nearest neighbour predictor that uses this cluster
knowledge?

The presentation of the results is organized as follows.
Initially, the accuracy performance is evaluated to answer
questions 1–2. To this purpose, we analyze the overall
gain in accuracy achieved by AutoTiC-NN compared with
competitor methods and explore the gain results more in
depth by analyzing the accuracy of the compared methods
state-by-state. Subsequently, to answer question 3, we eval-
uate the computation time spent completing the training
and testing for each compared method. Finally, we ana-
lyze the cluster model built by AutoTiC-NN – the only
method in this study equipped with a clustering descrip-
tive skill in addition to the predictive one – to answer
question 4.

FIGURE 4. The time series of the residuals (computed as the difference
between the ground truth value of the dengue cases and their prediction)
collected at Chiapas with AutoTiC-NN run in the settings with 32 states
and 17 states.

A. PREDICTIVE ACCURACY
We start analyzing the overall accuracy performance of the
compared methods. Based on the gain in accuracy achieved
by AutoTiC-NN in comparison with other considered meth-
ods, the AutoTiC-NN outperforms its competitors in both
full and reduced data settings (see Figures 3(a) and 3(b)).
The p-values of Student’s t-tests for testing the difference of
mean squared residuals of AutoTiC-NN and each other jth
model (reported in the bars in Figure 3) also show that the
better performance of AutoTiC-NN is commonly statistically
significant with VAR, auto.arima, and kNN.
However, since the analysis illustrated by [13] is performed

at the level of each federal state, we interpret the gain results
more in depth by analyzing the accuracy of the compared
methods state-by-state. In particular, Tables 1 and 2 show that
AutoTiC-NN should be the preferred method for many of the
states, both with low and high dengue rates. The last row of
Tables 1 and 2 summarizes the results by counting how many
times each method achieves the lowest error in the compara-
tive analysis in the experimental setting with 32 federal states
(Table 1) and 17 federal states (Table 2). In both settings,
the number of federal states, where AutoTiC-NN achieves
the lowest RMSE, is higher than the number of federal states
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TABLE 1. RMSE of predictions of dengue incidence between January 2010 and December 2010 in all federal states of Mexico. The lowest error per state is
in bold. The last row reports the number of federal states of Mexico where each method achieves the lowest RMSE in the comparative study.

TABLE 2. RMSE of predictions of dengue incidence between January 2010 and December 2010 in the 17 federal states of Mexico, reporting dengue cases
in at least half of the months in the training. The lowest error per state is in bold. The last row reports the number of federal states of Mexico where each
method achieves the lowest RMSE in the comparative study.

where any other competitor is the best. In addition, Figure 4
plots the residuals computed, month-by-month, on the pre-
dictions of dengue cases in Chiapas as they are yielded by
AutoTiC-NN in the two settings. This analysis shows two
error peaks in the setting with 32 states (in June 2010 and
in October 2010, respectively), while only one error peak (in
June 2010) in the setting with 17 states.

Finally, we investigate the poor overall behaviour of
the time series forecasting analysis. The state-level errors
reported in Tables 1 and 2 show that there are federal states
(e.g., Morelos) where both auto.arima and VAR are able
to learn a good predictive model. On the other hand, there
are also federal states (e.g., Jalisco) where these methods
yield outlying predictions with high errors that decrease the
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FIGURE 5. Time series of dengue cases collected at (a) Jalisco and (b) Morelos. The black line depicts the training
data. The red line depicts the testing data. The blue line depicts the testing data predicted by the model learned
with auto.arima.

overall estimate of the accuracy. To explain this phenomenon,
we analyze the trend in the dengue time series for Jalisco and
Morelos (see Figures 5(a) and 5(b), respectively). We note
that the testing dengue data for Morelos resemble very well
their closest past training data, while the testing dengue
data for Jalisco drift with respect to the closer past training
data (see, in particular, the training data in 2009 and the
testing data in 2010 for both federal states). This explains
the poor performance of the statistical model learned by
both auto.arima and VAR for the state of Jalisco, as both
models are affected by the presence of a sudden concept drift
occurring at the testing time.

B. COMPUTATIONAL EFFICIENCY
We analyze the computational time for both the training
and testing of each compared method. For this analysis,
we run AutoTiC-NN implemented in Java 8, except for
the auto-encoder that is realized in Python 3.5; auto.arima
and VAR implemented in R×64 3.4; M5′, SVR and kNN
implemented in Weka 3.6 and run with Java 8. For each
method, the computation time is measured in milliseconds on
an Intel(R) Core(TM) i7-4720U CPU@2.60 GHz and 16 GB
RAM running Microsoft Windows 8.1 (64 bits).

The computational times reported in Table 3 show that
AutoTiC-NN scales well with the size of the training data,
as it spends about 1.9 seconds computing the model of a
training set of 5100 bivariate data points (12monthly observa-
tions of dengue and temperature across 25 years at 17 federal
states), and 3.5 seconds computing the model of a training
set of 9600 bivariate data points (12 monthly observations
of dengue and temperature across 25 years at 32 federal
states). The prediction phase of AutoTiC-NN is very quick
(nomore than 1millisecond) in both data settings. In addition,
although there are a few competitors (i.e., M5′ and kNN) that
complete the training phase spending less computational time
than AutoTiC-NN, the competitors are slower in their use of
the learning model to yield the testing predictions. The only

TABLE 3. Computational time (milliseconds). Training period corresponds
to 1985–2009; testing – to 2010.

exception is M5′ that, similarly to AutoTiC-NN, yields the
testing predictions within 1 millisecond.

C. CLUSTER ANALYSIS
To complete this study, we inspect the cluster model built
by AutoTiC-NN in the considered case study. The ability of
building a clustering model of the historical measurements
of Dengue and Temperature and using it as a base for
the nearest neighbour prediction of the dengue incidence
equipsAutoTiC-NNwith a descriptive skill, in addition to the
predictive one. While regression and time series competitors
can be used only for the predictive scope,AutoTiC-NN is also
able to discover the spatial and temporal arrangement of the
pattern according to Dengue and Temperature association
in the historical data.

Table 4 reports the number of clusters detected in both
settings, with the results for 17 states visualized in Figure 6.
This model highlights the existence of a pattern of spatial and
temporal continuity in the association between temperature
and dengue incidence. For example, data in Campeche are
grouped in the same cluster at the consecutive years except
for the measurements collected on 2003 (see the blue cluster
in Figure 6). In addition, data in the neighbouring states
of Campeche, Quintana Roo and Yucatan are repeatedly
grouped in the same cluster over time (see the blue cluster
in Figure 6). On the other hand, the cluster model is also
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FIGURE 6. Cluster model discovered by AutoTiC-NN from the training data of dengue incidence and temperature monthly collected between
January 1985 and December 2009 in 17 federal states of Mexico. The colors represent 37 clusters of the state-year units of analysis.

TABLE 4. Number of clusters discovered by AutoTiC-NN from the training
data of dengue incidence and temperature collected monthly between
January 1985 and December 2009.

able to identify possible discontinuity points in this pattern
by isolating data changed with respect to the temporal and
spatial surrounding in separate clusters (e.g., data on 1998,
2003 and 2009 in Yucatan, Figure 6). This helps in a finer
modeling of the changes occurring over space and time in
cluster-spanned associations preventing the outlier associa-
tion patterns, if enclosed in a global model, from diminishing
the accuracy of predictions. This skill can be considered one
of the reasons of the higher overall accuracy of AutoTiC-NN
with respect to the competitors in this study (see Figure 3).

VI. CONCLUSION AND FUTURE WORK
This paper proposes a new multi-stage machine learning
strategy called AutoTiC-NN that combines auto-encoding,
window-based data slicing and cluster analysis to discover
the temporal dynamics in historical measurements of temper-
ature and dengue variables. The cluster analysis allows us to
model the spatial and temporal continuity of the trend pattern
in the associations between historical data of temperature and
the dengue variable. This cluster knowledge is then exploited
to empower a time series nearest neighbour predictor.

We analyze the performance of the formulated method in
a real case study that involves the number of dengue and
dengue fever hemorrhagic cases collected monthly in several
federal states of Mexico. The predictions account for both the
co-located measurements of temperature and for the resem-
bling trends in the associations between the temperature and
the dengue variable discovered in the historical data. In our
case study, we validate the predictive performance of the pro-
posed new AutoTiC-NN procedure against a broad range of

benchmark competitors. The results show that AutoTiC-NN
tends to outperform all considered competing forecasting
approaches. In particular, the proposed strategy has clear
advantages (in terms of predictive accuracy), enabling us to
account for association patterns in data collected over both
space and time. In the considered case study, the ability to
isolate specific association patterns in separate trend clusters
is found to be closely connected to an observable gain in the
predictive accuracy.

We note that the proposed AutoTiC-NN approach can then
be employed for the continuous forecasting of future dengue
outbreaks, while repeating the trend cluster discovery on the
extended training data set to integrate newly available records
of dengue incidences and environmental factors upon their
arrival. A future development will be to properly frame the
method in a data stream environment [17], [18] so that trend
clusters may be adaptively incremented upon the arrival of
new data records. However, to properly handle a data stream,
one of our primary future research tasks will be to extend
the proposed AutoTiC-NN approach by adding mechanisms
for dealing with concept drift and incremental learning. This
will discover and account for possible changes in data (e.g.,
climate changes), as well as adapt the cluster knowledge from
past data to new data without repeating the entire learning
phase from scratch.

When data are available, the transmission properties of
dengue may be studied in association with various climatic,
demographic and socio-economic factors, as well as micro-
biological data on dengue serotypes, which may be included
as additional variables. Hence, another future research task
will be to extend the proposed AutoTiC-NN approach from
a bivariate to multivariate scenario, exploring the use of
auto-encoding in modeling multivariate associations and
studying the impact of these cross-domain associations in
modeling dengue incidence.

Another important question to address is the transferability
of the proposed AutoTiC-NN approach to other geograph-
ical regions. While the question of a model transferable to
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other regions, such as South Asia or sub-Saharan Africa,
remains open until justified by the actual data analysis,
we hypothesize that the proposed AutoTiC-NN approach is
expected to exhibit a certain level of geographic transferabil-
ity. Indeed, the AutoTiC-NN methodology is not explicitly
based on the particular specifics of the Dengue spread in
Mexico, but rather on data availability/data quality and on
how well the data can be partitioned into clusters. Concern-
ing the question of data availability/data quality, we per-
formed an additional analysis of the proposed AutoTiC-NN
methodology, based on the Google search queries data (i.e.,
Google Dengue Trend) instead of the official data of the
dengue incidences. Our analysis produced similar conclu-
sions on the predictive performance of AutoTiC-NN com-
pared to the benchmark methods (the results are available
from the authors upon request). Since Google search queries
data are available wherever Google is in use, we believe
that these findings offer a reasonable prospective to employ
AutoTiC-NN for predicting dengue in other geographical
regions. If Google is not in use, alternative web queries can be
utilized instead, similarly to the Baidu flu queries which are
used in China (for more details see, e.g., [42], [43]). A related
topic is how well the data can be partitioned into clusters
changing the geographic setting. This is more challenging
and largely depends on local socio-demographic specifics –
thereby requiring standalone validation for every geograph-
ical region. We leave this extension as a future research
task. In any case, in terms of directions for future research,
we think that new developments can also be fulfilled in this
research topic by capitalizing on the recent achievements of
transfer learning [44] in tasks of spatial and spatio-temporal
prediction [45], [46]. A transfer learning method, specifically
designed for the trend-based temporal clusters, discovered
through the multi-stage machine learning methodology of
AutoTiC-NN, may also allow us to transfer a cluster model,
learned in a geographical area with adequate data, to a new
area with few data.

Furthermore, motivated by the increasing interest in appli-
cations of deep learning in biosurveillance, we plan to explore
the utility of deep learning in modelling and predicting
the spread of dengue and other emerging climate-sensitive
mosquito borne diseases. Indeed, recent research in remote
sensing has highlighted the potential of convolutional learn-
ing in extracting spatio-temporal features (see, e.g., [47]
and references therein). Following the same research direc-
tion, [48] have achieved promising results in spatio-temporal
feature extraction by combining convolution neural net-
works and long short-term memory, and improving the
accuracy of both classification and regression tasks. An inter-
esting research direction is the tracking of trends in
features extracted in massive data scenarios with sophis-
ticated deep learning architectures and exploiting these
trends to empower the accuracy of the considered prediction
task.

We also consider the opportunity of developing an
approach to forecast dengue spread via only the temperature

data. In principle this is possible, but not via the verbatim
application of AutoTiC-NN. It requires developing a con-
nection between clustering dynamics and shape patterns of
temperature and the dynamics of dengue spread. We are cur-
rently exploring this direction using topological data analysis
tools.

Finally, we intend to explore the effectiveness of other
algorithms for time series clustering such as the algorithms
experimented in [23] and [24].
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