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ABSTRACT Fractal image compression (FIC) is a very popular technique in image compression applications
due to its simplicity and superior performance. However, it has a major drawback, which is the long encoding
time. This is due to the requirement of performing huge similarity search for encoding each small portion
in the image. Thus, reducing the search time of FIC while keeping the quality of reconstructed images at
acceptable level is still an active research topic. Therefore, this paper has focused on studying the search
problem of the conventional full-search FIC algorithm and the impact of employing a spatial dynamic search
technique instead with the matching threshold strategy. Unlike the conventional full-search method that is a
spatially static where the search starts from a fixed position (normally from the top-left corner of the image to
the bottom-right corner) regardless of the position of the range block being encoding, the idea of the dynamic
search method is simple, but effective, and it is based on starting the search from the closest domain block
to the range block that needs to be encoded. These two search schemes are tested under different matching
threshold values, in which the search is terminated whenever a domain block with an acceptable matching
level is found. To make the study comprehensive, the test is performed for different image sizes and types,
range block and partitioning step sizes, and quantization levels. The experimental results show the significant
impact of using the dynamic search method instead of the conventional search method specifically when the
threshold is large. For the best encoding parameters, the improvement amount that can be achieved is near
to 90 % in terms of search reduction and 1.6 dB PSNR in terms of image quality.

INDEX TERMS Fractal image compression, fast search method, full search scheme.

I. INTRODUCTION
Nowadays, images are produced in huge numbers from
countless devices used in our daily life, such as mobile
phones, surveillance systems, medical devices, etc. As a
result, the amount of data produced every single minute is
extremely huge, thus making the process of storing these data
on digital devices a very costly problem. Furthermore, trans-
mitting such big data through the internet network requires a
high-speed and unlimited data package, which adds an addi-
tional cost into the operating expenses. Therefore, an efficient
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solution is to use one of the compression methods to reduce
the transmission cost and time, as well as storage volume.

Among the most-effective image compression methods,
FIC method is simple and has unique features such as res-
olution independent and high compression rate [1]–[3]. Due
to these features, FIC has been not only used for compres-
sion ordinary images, but also for compression images like
magnetic-resonance-imaging (MRI) [4], [5] and hyperspec-
tral types [6], [7]. In general, fractal algorithm is a lossy
compression method which is reliant on portioned iteration
function system (PIFS). It attempts to find out the similarities
between the image blocks and use them for encoding the
image [8]. In the encoding process, an image is partitioned
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into small non-overlapping blocks called range blocks, and
large blocks called domain blocks (usually four times larger
than the range block size). For each range block, the search
process attempts to find the best-matched domain block.
To do so, all domain blocks need to be examined and the one
with the least matching error is selected as the best-matched
domain block [2]. Since each range block requires thousands
of matching processes, the overall procedure is very time
consuming. This is considered as the main drawback for
FIC [9]. Therefore, many researchers seek to develop new
fractal-based compression methods which can reduce the
number of searches as means for speeding-up the encoding
time [4]. So far, various schemes and speed-up methods
have been proposed [10]–[13]. Depending on the search
approach used, the developed FIC methods can be catego-
rized into three different types: (1) full search [13], (2) partial
search [10], [11], and (3) searchless [12] based methods.
Among these search approaches, the full-search is consid-
ered the most-time consuming. This is due to the fact that
for each range block, the entire image must be searched in
order to find the best-matched domain block. On the other
hand, the partial search is the second most-time consuming
approach that reduces the search space in order to improve the
encoding time; generally, the smaller the search space size,
the lower the encoding time. Based on this approach, it can
be found in literature hundreds of published articles that intro-
duce different methods for decreasing the search amount,
such as using genetic algorithm [14], [15], DCT [16], [17],
DWT [7], [18], standard deviation [17, 20], nearest neigh-
bour search [20], [21], feature vector [22], etc in Although
all these developed partial-search FIC methods have suc-
cessfully reduced the encoding-time, they suffer from two
main weaknesses. First, the quality of the decoded image
is relatively low as the best-matched domain blocks can be
discarded when the search space is limited. Second and the
most important one is, they usually use complex approaches,
along with the fractal algorithm, to help for reducing or lim-
iting the search. This is resulting to increase the complexity
of the implementation, especially if they are going to be
implemented in hardware. Thus, these method rarely utilized
in developing fractal-based coding chips. Since this work is
the kernel for designing a real-time fractal encoding hardware
architecture, the developed method must be efficient, simple
as possible and hardware friendly.

As the encoding time of the partial-search based methods
is still high and not always sufficient for high-speed applica-
tions, the researchers have also proposed various fractal algo-
rithms based on the searchless approach such as [23], [24].
Although these methods are the fastest among the others,
they are suffering from poor reconstruction fidelity [12], [25].
When the researchers try to overcome the fidelity problem
through encoding the image blocks in small sizes, another
drawback arose which is the low compression rate. In this
case, the range block size can be smaller as 2×2 or even 1×1
pixel in order to maintain the image quality at an acceptable
level [26]. In conclusion, this type of method is not useful for

the applications targeting good reconstruction image quality
or high compression rate.

As full-search FICmethod is usually much simpler and has
relatively higher compression rate and image quality com-
pared to the partial- and non-search based methods, this paper
aims to study its search problem and the advantage of the
dynamic search approach in comparison to the conventional
static search approach. Unlike the later approach, the former
is based on giving a search priority to the closest domain
blocks over the farthest one. In this case, for a given range
block, the search process will start from the spatial nearest
domain block and expand further until finding an acceptable
matched domain block or covering the entire image. The
acceptance level is predefined with a matching threshold
value based on the image quality requirement. In this case,
the bigger the threshold, the faster the matched domain block
is found, but the lower the compression quality obtained.

To the best of the authors knowledge, all developed full-
search FIC methods are based on the conventional search
approach. Accordingly, the search process starts from a cer-
tain position, usually from the top left corner of the image to
the bottom right corner, regardless of the position of the range
block required to be encoded. In this case, there is no priority
giving to such domain block over the others. The adoption of
this approach is, in fact, due to the results of a previous study
done by Fisher [27]. In this study, it has been computed the
distributions of the differences in the positions of the range
blocks and their matched domain blocks. The study results
show that there is no real advantage of the close domain
blocks over the far ones in general. Consequently, the devel-
oped full-search based methods such as [13], [28] did not
give higher priority for the adjacent domain blocks. However,
when looking deeply into Fisher [27] study, it can be seen
that the study’s results are only valid for a special case; that
is, no matching threshold (i.e. thr = 0) was applied in the
search process. For the other case that is typically used (i.e.
when a threshold is set), the advantage of the close domain
blocks has not been tested comprehensively. Therefore, this
paper aims to study the impact of utilizing the dynamic
search approach when the matching threshold is applied.
Thus, the number of searches performed to encode an image
and the quality of the decoded image are analysed for various
threshold values, image types, partitioning steps and range
block sizes. Besides, the typical quantization bit sizes used for
the contrast scaling coefficients have also been considered in
order to study their effect on the search number. The overall
results show a significant reduction in the search amount
when utilising the dynamic search strategy compared to the
conventional search strategy. Moreover, the decoded image
quality is generally improved. Thus, adopting this approach
in such hardware works as in [13], [28] or in similar future
works will result to improve their encoding-time performance
significantly with only a slight modification required in their
architectures, particularly the memory control unit.

This paper is organized as follows: Section II includes
a review of related works. Then, the conventional full
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search FIC algorithm is illustrated in Section III. Section IV
describes the dynamic search scheme. Section V shows the
experimental results and the study findings. Finally, a con-
clusion is made in Section VI.

II. RELATED WORK
In the literature, there are several published works that focus
on reducing the encoding time of the fractal method, with
the help of various techniques [10], [14], [16], [17], [19],
[29]–[32]. For instance, Jaferzadeh, et al. [33] have intro-
duced a fractal method based on a new local binary feature
scheme that is similar to the local binary patterns method
Wang, et al. [34] have developed a fractal compression
method based on quadtree division, neighbour search and
asymptotic strategy. In another work, Wang, et al. [35] have
used the standard deviation feature to segment the range
blocks into two classes, where the range blocks of only
one class are encoded by searching of the suitable matched
domain block with the help of particle swarm optimisation
technique, while the range blocks in the other class are
encoded directly without search by storing their average val-
ues. Similarly, but with more defined classes, the research
articles [10], [22], [36], [37] have introduced different meth-
ods to divide the image blocks into groups, and restricting
the search within the blocks of the same class only. Quite
similar to this approach is the approach of neighbourhood
search, or nearest neighbour search, where the search is
restricted to a small set of the domain blocks that share sim-
ilar feature vector with the corresponding range block [20],
[21], [38], [39]. This approach has been employed in both
spatial and frequency domain using discrete cosine [40] and
discreet wavelet [41] transforms.

In the same track, Kovács [10] has proposed a frac-
tal encoding method based on an improved classification
scheme. With this scheme, the image blocks are sorted into
disjoint classes with the help of two parameters, i.e. the
direction of approximate first derivative and the normalized
root-mean-square error of the fitting plane in the corre-
sponding block. In [17], the image blocks are classified into
smooth, diagonal/sub-diagonal edge and horizontal/vertical
edge classes. The classification task is performed using only
the lowest horizontal and vertical DCT coefficients of the
given block. In [18], fast wavelet transform-based classifi-
cation is introduced. On the other hand, Tong and Pi [31]
have proposed fractal compressionmethod based on reducing
the domain pool size through removing unqualified domain
blocks. This requires compute the standard deviations STDs
for each range and domain blocks, and for a pair of range
and domain blocks, if the difference in their computed stan-
dard deviation value is larger than the defined threshold, the
domain block will be considered as an unqualified block
and hence be rejected. Four years later, Wu, et al. [19] has
enhanced the Tong’s STD method by introducing a domain
intelligent classification algorithm that classify the domain
blocks based on their STD values and those with a sim-
ilar STD values are grouped together in one class. For a

given range block, STD value is computed first to deter-
mine the proper class; the class that contains domain blocks
of similar STD values; for the search process. However,
Wang, et al. [16] found that, for some range blocks which
have more texture characteristics and few self-similarity,
the quality of the reconstructed image is poor. To solve this
problem, they have proposed a hybrid encoding method using
STD and DCT.

Using hybrid methods to further investigate new tech-
niques, Xing-Yuan, et al. [14] have employed genetic algo-
rithm and simulated annealing algorithmwith fractal method.
Similarly,Wu, et al. [15] have used genetic algorithm but with
schema theorem to help restrict the search on a particular
region Jaferzadeh, et al. [30] utilized fuzzy clustering and
DCT algorithms. Although all these discussed approaches
were able to improve the encoding time noticeably, how-
ever, their attained speeds which usually above 1 s are still
not sufficient for the most of high-speed applications, such
as those producing numerous of images every second like
video applications. In order to solve this problem, in fact,
it is required to have hardware solutions. To do that, it must
first develop simple, efficient and hardware-friendly fractal
compression algorithm that incudes simple and less number
of operations. These features are not available in the previous
discussed methods which contain pre-processing tasks and/or
hybrid complicated algorithms. For this reason, it has been
taking into account developing a fractal image compression
algorithm that is simple, but efficient, and does not require
massive additional operations.

III. FULL-SEARCH FRACTAL IMAGE COMPRESSION
ALGORITHM
Fractal image compression algorithm searches for a set of
transformations that map an image into itself. In essence
FIC divides an image into non-overlapping r × r square
blocks called range blocks (referred to as R) and overlapping
d × d blocks called domain blocks (referred to as D). The
overlapping partitioning for constructing the domain blocks
is performed with step-size stp that can be in the range of 1
to d , the larger the stp value, the lower the number of the
domain blocks constructed. The domain blocks number Nd
for an W × H image size can be computed by the following
formula:

Nd = (
(W − d)
stp

+ 1)× (
(H − d)
stp

+ 1) (1)

Since the size of the domain blocks is generally 4 times
larger than the range blocks’ sizes (i.e. d = 2 × r), every
domain block must be spatially contracted to the size of the
range block during matching process. Contraction is per-
formed by taking the average of every 2× 2 pixel.

For increasing the match level between a couple of range
and domain blocks, the affine transform is applied. The affine
transformer adjusts the intensity values of the contracted
domain block by multiplying them with a particular contrast
scaling factor σ and then adding brightness offset value β to
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the results. The scaling factor must lie between −1 and 1 to
ensure the contractivity of PIFS [24], [42]. The transforma-
tion is given as

T (D) = σ.D+ β.I (2)

where D is the contracted domain block, and I is all-ones
matrix of r × r dimension (i.e. all the elements are equal
to one). The similarity between two blocks is measured by
mean-squared error (MSE) as follows:

MSE =
1
N

∑N

i=1
(Ri − (σ · Di + β))2 (3)

where N is the number of pixels in the range block (i.e.
N = r × r), Ri and Di are the ith intensity values of range
and contracted domain blocks, respectively. To minimize the
matching error computed by (3), the coefficients σ and β
require to be computed as follows:

σ =
N
∑N

i RiDi −
∑N

i Ri
∑N

i Di
N
∑N

i D
2
i −

∑N
i Di

∑N
i Di

(4)

β =

∑
R− σ

∑
D

N
(5)

Following the computation, the values of σ and β are
quantized into specific bit-size, usually between 5 to 2 bits for
σ and 7 bits for β. For a given R, D blocks are searched and
matched one by one in order to find D with MSE less than a
pre-defined threshold value, thr . The fractal codes associated
with the located matched D need to be stored for decoding
purpose. The codes are σ , β and the coordinates for located
matchedD (denoted as (xd, yd) for x- and y-axes). Altogether
for all R will form the compressed image file. Therefore,
the size of the compression file CFSize can be computed by
the following expression:

CFSize = NR
(
σBitSize + βBitSize + xdBitSize + ydBitSize

)
(6)

where NR is the total number of the range blocks in the
encoded image and equal to NR = (W × H )/(r × r)). The
remaining coefficients are the bit-sizes of the fractal codes.
Based on (6), the compression ratio CR can be calculated as
CR = OFSize/CFSize, where OFSize is the original image file
size.

The conventional full-search mechanism is demonstrated
in Fig. 1. As it is clear from the figure, the search is performed
based on Raster Scan method, where the search starts from
the domain block located at the top-left corner of the image
and ends with the domain block at the bottom-right corner.
For every range block, the starting point is always the same
regardless of its location. The search can be stoppedwhenever
an acceptable matched domain block is found. This process
is repeated for each R.

IV. DYNAMIC FULL-SEARCH METHOD
Unlike the conventional full-search method, the spatially
dynamic search method is based on giving a priority for the
nearest domain blocks over the farthest ones. In this case,
the search will start from the closest domain block for the

FIGURE 1. Conventional full-search mechanism demonstration.

corresponding range block and moving further away from
this point until an acceptable matched domain block is found
or the whole image is searched. To demonstrate the search
mechanism, two scenarios of range block locations are shown
in Fig. 2, where Fig. 2(a) shows the search scenario for the
range block R located at the centre of the image, and Fig. 2(b)
shows the search scenario for the range block R located at
the top-left corner. For both scenarios, it is obvious that the
closest domain block for R is the domain block that com-
pletely contains R inside it, and it is denoted as D0 in Fig. 2.
In the case whereD0 does not match with R, the search space
is expanded one-step in all directions to involve the second-
closest domain blocks in the search. This will form a search
window size of 3× 3 domain blocks. The expanding process
is continued further by increasing the search window size into
5 × 5, 7 × 7 and so on until an acceptable matched domain
block is found or the entire image is searched. At every time
the search is expanded, the search will start from the domain
block that lies on the same horizontal line as D0, but from the
right side (e.g. D1 in Fig 2. (a) and D1 and D4 in Fig. 2(b)),
and then moves clockwise as illustrated by the arrows drawn
in the figure.

As seen in Fig. 2(b), the domain blocks do not surround
the range block from all directions, only from the right and
bottom sides, therefore the search can be expanded only in
these two directions. In other words, the domain blocks inside
the search window as well as the image will be only consid-
ered and the others will be ignored (i.e. having a negative
coordinate). For example, the 3 × 3 search window shown
in Fig2. (b) includes only four domain blocks inside (i.e. from
D0 to D3) compared to nine domain blocks (i.e. from D0 to
D8) as in Fig. 2(a).
The flowchart of the full-search fractal image encoding

algorithm used for evaluation the dynamic and conventional
search approaches is shown in Fig. 3. As shown in the
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FIGURE 2. Dynamic search mechanism examples for range blocks existing
in: (a) the centre of the image, and (b) the top left corner of the image.

flowchart, the image is input first and then its size, the width
W and height H , is measured. In order to study the impact of
using dynamic search approach over the conventional static
search approach under various typical coding parameters,
the range block size r , the partitioning step-size of domain
blocks stp, the quantization bit-size of the contrast scaling
coefficient σBitSize, and the MSE threshold mse-thr need to
be defined in the beginning. With these defined parameters,
the number of range blocks NR and domain blocks ND are
computed to determine the end of search and encoding.
For each Ri,∀i = {0, 1, . . . ,NR − 1}, the domain blocks
Dj=0,1,...ND−1 will be matched one by one, starting from D0
onwards. As mentioned earlier, the location of D0 and other
domain blocks are fixed for the conventional search method,
but not for the dynamic searchmethod. Therefore, for eachRi,
the locations of all Dj (i.e. (x, y)Dj ) must be computed again

FIGURE 3. Flowchart of the tested full-search fractal image compression
algorithm used for evaluation dynamic and conventional search
approaches.

to coincide with what is shown in Fig. 2. Algorithm 1 shows
in details the computation performed and the whole search
process of the dynamic approach.

In the matching process of a pair of Ri and Dj, the follow-
ing coefficients σ , β and mse are computed with the equa-
tions (4), (5) and (3), respectively. If mse is less than or equal
to the definedmse-thr value, thenDj will be considered as the
matched domain block for Ri. In this case, the corresponding
values of σ , β together with the coordinates ofDj(x, y)Dj will
be stored as the fractal codes for Ri. If not, the search will
continue until finding a Dj with mse ≤ mse-thr or reaching
the end of search (i.e. when j = ND − 1). For the latter
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case, that the search has reached the end without finding
the desirable matched domain block, the fractal codes of the
most-suitable Dj will be stored instead. To do so, every time
found Dj with mse ≤ MinMSE (the lowest mse obtained so
far), its fractal codes are stored in temporary variables (i.e. σi,
βi and (xd, yd)). Hence, if the search is reached the end, these
variables will retain the fractal codes of the most-suitable
matchedDj, and they will be stored easily in the compression
file. These processes are repeated for each Ri in the encoded
image.

V. RESULTS AND DISCUSSIONS
Full-search fractal image compression using dynamic and
conventional static search methods is implemented on
MATLAB R2018a to study if there is a preference of starting
the search from the nearest region for the range block over
the starting from a fixed-region regardless of the locations
of the range blocks. To do so, a dataset of eight grayscale
images that have been shown in Fig. 4 are used in the study.
In this dataset, there are four images for each 256× 256 and
512× 512 image size. The 256× 256 images are Lena, Lift-
ingBody, CameraMan and LivingRoom, and the 512 × 512
images are Goldhill, Lake, Aerial and Elaine. These images
with different sizes and textures are used to make the study
more comprehensive.

The performance of both search methods is analyzed
using (1) the number of searches required for encoding
an image, and (2) the peak signal-to-noise ratio (PSNR)
for the decoded image. For particular image and encod-
ing parameters, the number of searches required by each
search method is computed, where the lower the search num-
ber computed, the higher the encoding speed that will be
achieved. The amount of speed improvement will approx-
imately equal the amount of improvement in the searches
number as it is the dominant task. For the second performance
parameter, which is the quality of the decoded image, it has
used the PSNR formula as:

PSNR = 10 log10
255× 255

1
W×H

∑(
f − f̃

)2
where f and f̃ are the original and decoded images, respec-
tively.

In addition to testing the dynamic search approach with
different image types and sizes, it has also been tested under
different range block sizes r , partitioning steps stp, contrast
scaling coefficient bit-sizes σBitSize, and matching thresholds
thr . Since these parameters are set differently according to
performance requirement, but with regular values such as
r = 4, 8, stp = 4, 8, and σBitSize = 2, 5, the combination
of all of these common values have been considered in the
evaluation. All together, they form eight combinations. For
each combination, various thr values between 0 to 700 are
tested to study the efficiency of the dynamic search method
when the value of thr increases. The results from all these
tested parameters lead to have a broad view.

Algorithm 1 Dynamic Search Algorithm
BEGIN
1 INPUT: −r, stp,N //N is the image width or height, con-
sidering square image size

2 OUTPUT: −FRACTAL CODES
3 Nr = N

r ;Nd =
(
N−2r
stp

)
+1; //Nr and Nd are the number

of range and domain blocks in one row or column, respectively.
4 FOR EACH Rii = 0 · · · (Nr )2 − 1
5 // Compute x and y coordinates of Ri and Dj=0
6 xr = mod

(
i
Nr

)
∗ r; yr = int

(
i
Nr

)
∗ Nr ;

7 xD0 = int
(
xr
stp

)
∗ stp; yD0 = int

(
yr
stp

)
∗ stp;

8 j = 1;
9 FOR l = 1 TO (N−2r)

stp // l determines the search
window size

/∗Compute the coordinates of every Dj in
(2l + 1)× (2l + 1) search window size as follows∗/
//With clock-wise search direction and starting from the
Dj that lies on the same horizontal line as D0 but from
the right-side.
//First, get Djlocated at the low-half of the right-side
of the search window

10 xDj = xD0 + l ∗ stp;
11 FOR yDj = yD0TO yD0 + l ∗ stp STEP stp
12 IF VALID (xDjyDj ) THEN //to ignore the

coordinates not in the image
13 Read Dj at (xDjyDj )

// . . . .Do Matching process for Ri and Dj blocks
. . . .

14 j = j+ 1
15 END IF
16 END FOR

// Get Dj located at the bottom-side
17 yDj = yD0 + l ∗ stp;
18 FOR xDj = xD0 + (l − 1) ∗ stp TO xD0 − l ∗ stp STEP

stp
19 Check validity and do matching as in lines 12− 15
20 END FOR

// Get Dj located at the left-side
21 xDj = xD0 − l ∗ stp;
22 FOR yDj = yD0 + (l − 1) ∗ stp TO yD0 − l ∗ stp STEP

stp
23 Check validity and do matching as in lines 12− 15
24 END FOR

// Get Dj from the top-side
25 yDj = yD0 − l ∗ stp;
26 FOR xDj = xD0 − (l − 1) ∗ stp TO xD0 + l ∗ stp STEP

stp
27 Check validity and do matching as in lines 12-15
28 END FOR

// Last, get Djlocated at the top-half of the right-side
29 xDj = xD0 + l ∗ stp;
30 FOR yDj = yD0 − (l − 1) ∗ stp TO yD0 − stp STEP stp
31 Check validity and do matching as in lines 12-15
32 END FOR
33 END FOR
34 END FOR
END

For clarity, it has presented the results in two sub-sections;
the first sub-section presents the results from having a small
range block size (i.e. r = 4), while the second sub-section
presents the results from having a large range block size
(i.e. r = 8).
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FIGURE 4. Dataset of eight standard images of different textures and sizes used for evaluating the dynamic search FIC method.

A. RESULTS FOR 4× 4 RANGE BLOCK SIZE
For this size of range block, the dynamic and conventional
search methods have been tested for all 256 × 256 images
in the dataset and for various thr values. The amounts of
search reduction achieved by utilising the dynamic search
method are shown in Fig. 5. The embedded four graphs in
this figure show the results from the four defined combi-
nations of stp and σBitSize values. As it is clear from this
figure, the percentage of the search reduction accomplished
increases steadily as thr increases. For the values of thr near
to zero, the dynamic and the conventional search methods
have a similar search amount and there is no clear advantage
for the close domain blocks over the farther ones. In fact, this
result is similar to that found by Fisher [27]. However, for the
other case, i.e. thr � 0, the improvement is clear and steady,
which indicates an increase in the probability of finding an
appreciate matched domain block close to the corresponding
range block. On other words, when thr � 0, it can be said that
there is a preference for the nearest domain blocks over the
farthest ones. However, the improvement amounts as shown
in Fig. 4 are different for each combination of stp and σBitSize
values, and images.

Among the four combinations of stp and σBitSize values, the
combination of stp = 4 and σBitSize = 5 has the best search
reduction for all four images as shown in Fig. 5(a). This was
expected as this combination holds the smaller stp and the
higher σBitSize values. Accordingly, the encoded image has

been partitioned into greater number of domain blocks ND
(exactly four times of that for stp = 8, use (1) to calculate
the exact number of ND for the both situations), and there-
fore there are greater chances to find an acceptable matched
domain block near to the encoded range block. Additionally,
the higher defined precision of σ makes the convergence
faster as the candidate domain block becomes more fit to
the mapped range block. As a result, the dynamic search was
able to reduce the searches number by more than 40% for all
tested images and about 90% for LiftingBody image when
thr = 700.
For the lower precision of σ (i.e. σBitSize = 2) as in Fig. 5(c)

or the larger stp (i.e. stp = 8) as in Fig. 5(b), the amounts of
search reduction achieved by the dynamic search method are
approximately similar, but lower than that shown in Fig. 5(a)
for stp = 4 and σBitSize = 5. Among the tested images,
the amounts of decreases for Lena and LiftingBody images
were higher than that for CameraMan and LivingRoom
images. For example, at thr = 700, the amount of decrease
was over 20 % for Lena and Lifting body images, and only
around 5% for the remaining images. The reason for that
is more likely because the image of Camera-man and Liv-
ingroom has generally larger small details compared to the
image of Lena and Lifting Body as shown in Fig. 5, and this
makes the preference of the close domain blocks less.

For the last combination shown in Fig. 5(d) for lower
σBitSize = 2 and the larger stp = 8, the percentage of
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FIGURE 5. Dynamic search scheme performance in term of search improvement for various thr values, four 256× 256 sample images,
r = 4, and the combinations of (a) stp = 4, σBitSize = 5, (b) stp = 8, σBitSize = 5, (c) stp = 4, σBitSize = 2, and (d) stp = 8, σBitSize = 2.

search improvement achieved by dynamic searchmethod was
the lowest compared to the results of other combinations.
This is expected as both defined values for stp and σBitSize
were the worst. However, the dynamic search method was
able to reduce the search significantly when thr is large.
For example, at thr = 700, the search reduction is more
than 25 %.

B. RESULTS FOR 8× 8 RANGE BLOCK SIZE
Similar to the previous section for 4× 4 range block size, but
for 8× 8 range block size in this section, the dynamic search
method has been tested with all combinations of σBitSize and
stp and the results are shown in Fig. 6. Comparing the results
shown in this figure with that in Fig. 5, it can be seen that
the amount of search reductions obtained from 8 × 8 range
block size is lower than that for 4× 4 range block size for all
combinations. This is not strange since for larger block size,
the matching degrees between image’s blocks become lower
generally. For this reason, the similarity level between the
adjacent blocks is also reduced, resulting in less preference
of the close domain blocks over the farther ones.

An in-depth look into the results of each combination
in Fig. 6 has clearly shown that the amount of search reduc-
tion shown in Fig. 6 (a) for the combination σBitSize = 5
and stp = 4 was the highest among others, then the
results from the combinations involving either σBitSize = 2
or stp = 8 as in Figs. 6 (b) and (c), and the last
is the results from the combination σBitSize = 2 and
stp = 8 shown in Fig. 6 (d). For the best combination,
the amount of search reduction started to improve notice-
ably from thr > 100 for all tested images, except for
the LiftingBody image, where it started immediately from
thr > 0. At thr = 700, improvement amounts were between
20 % to 50 %.

For the results of the second best combinations shown
in Figs. 6 (b) and (c), it can be seen that there are around
10 to 15 % drop maximum in the search reduction amount
compared to the results of the best combination in Fig. 6(a).
It can be seen also that the results from the combination with
high precision of σ (i.e. σBitSize = 5) are slightly better than
that with low stp (i.e. stp = 4). This is similar also to that for
r = 4.
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FIGURE 6. Dynamic search scheme performance in term of search improvement for various thr values, four 256× 256 sample
images, r = 8, and the combinations of (a) stp = 4, σBitSize = 5, (b) stp = 8, σBitSize = 5, (c) stp = 4, σBitSize = 2, and
(d) stp = 8, σBitSize = 2.

For the results of the last combination shown in Fig. 6
(d), the improvement amounts are the lowest, but are still
comparable to the results in Fig. 6 (c). The drop in the
performance of the dynamic search scheme is, as mentioned
earlier, because the similarity degree between adjacent blocks
is reduced generally when the block and step sizes are larger,
and the precision of contrast scaling coefficient is lower. As a
result, the efficiency of the dynamic search method compared
to the conventional static search method is dropped to the
lowest level.

To make the comparison between the dynamic and conven-
tional static search methods complete, it is necessary to take
into account the quality of the decoded images resulting from
each search method. Accordingly, PSNR has been computed
for the resultant images in respect of the defined combina-
tions of r , σBitSize and stp. Based on the results obtained,
it can be said that the dynamic search method is superior
to the conventional static search method generally. However,
for rare cases, the conventional search method shows slightly
better PSNR values with a maximum increase of 0.2 dB.
In fact, this amount of improvement is insignificant when it

is compared to what can be achieved by the dynamic search
method, i.e. nearly 10x superior. Fig. 7 is evidence for the
superiority of the dynamic search method in respect of all
combinations. In this figure, the average amount of improve-
ment for all tested images at various thr values are shown,
where Fig. 7 (a) shows the average improvements resulting
from the four combinations of σBitSize and stp when r = 4
and Fig. 7 (b) shows the results for the similar combinations
but for r = 8. From these two sub-figures, it can be clearly
seen that the results for r = 4 are better than that for r = 8,
and this is also similar to the search reduction results shown
in Figs. 5 and 6. This is due to the same reason mentioned
earlier; the smaller the range block size r , the higher the
degree of matching between the adjacent blocks, hence the
search is reduced and the decoded image quality is improved
when utilizing the dynamic search method. The amount of
improvement becomes clearer when thr is large.

Among the results of the four combinations of σBitSize and
stp shown in Fig. 7 for both r = 4 and 8, the results from the
best combination (σBitSize = 5 and stp = 4) still shows the
best performance among the others, and then the results from
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FIGURE 7. PSNR average improvement vs varies thr using dynamic search method for the four combinations of σBitSize and stp, where (a) for r = 4
and (b) for r = 8.

the combinations (σBitSize = 5 and stp = 8), (σBitSize = 2
and stp = 4) and (σBitSize = 2 and stp = 8), respectively.
This is identical to the order of each combination in the
search reduction performance. From Fig. 7, it can also be seen
that the improvement amount in the quality of the decoded
images when adopting the dynamic searchmethod is enlarged
as thr is increased. From the best combination, the average
improvement in PSNR at thr = 700 is about 1 dB for r =
4 and 0.7 dB for r = 8.
For subjective assessment, it has displayed a sample of

decompressed images encoded by both the dynamic and
conventional static search methods in Fig. 8. The displayed
images are the results from the best combination of r, σBitSize
and stp, and thr = 700. From this figure, it is clear that the
images encoded by the dynamic search method are visually
superior to that for the conventional searchmethod. It can also
be seen that for this large defined thr value, the conventional
search method yields more blocking artifacts compared to
the proposed dynamic search method. This is because, when
the thr value is large, the first located domain block with
mse ≤ thr can be either a good match as mse value is close
to zero or a low match as mse is close to the predefined
thr . Hence, in the case of dynamic search method, which is
starting the search from the adjacent domain blocks for the
corresponding range block, the first located matched domain
blocks are mostly having low mse as the similarity between
the adjacent blocks is generally higher than that between the
far ones. However, in the case of the conventional search
method, the mse for the first located matched domain blocks
are usually high.

For 512 × 512 image size, the dynamic search still
shows superior performance in terms of number of searches
performed and PSNR, in comparison to the conventional
search. The amount of improvements achieved from each

TABLE 1. Performance comparison between the dynamic and
conventional search methods for r = 4, σBitSize= 5, stp = 4 and thr = 700.

combination of σBitSize, r and stp are quite similar to that
obtained for 256× 256 image size.

The numerical results and improvement amounts attained
by dynamic search approach for each image in Fig. 7 are
shown in Table 1. From this table, it can see the effective-
ness of the dynamic search approach in comparison to the
conventional search approach.

In order to make the evaluation of the presented dynamic
search scheme complete, it was necessary to compare its
performance with other similar works. Hence, the presented
fractal method has been compared in Table 2 with five
other existing fractal methods in terms of speed, PSNR and
compression ratio. In this table, it has tabulated the results
from the presented method for two image sizes of Lena
(i.e. 256 × 256 and 512 × 512). For these both image sizes,
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FIGURE 8. PFIC decompression results of four 256× 256 tested images encoded by dynamic and conventional search methods.

TABLE 2. Performance comparison between the presented method and various existing fractal methods.

the encoding parameters were defined as thr = 700, stp = r
and σBitSize = 5. In addition, for the image size 256 × 256,
the range block size was 4×4 while for 512×512 was 8×8.
As a result, it can evaluate the proposed method for low and
high compression rates performance.

From Table 2, it is clearly that the presented method has the
lowest encoding time compared to the others. The encoding
time of the presented method is less than 1 s for both image
sizes, then [34] 1.9 s, [10] 2.5 s, [33] 4.2 s, [35] 6.4 s
and last [18] with 56.4 s. While in term of PSNR, the pre-
sented method comes at the intermediate level after [10] with
26.5 dB for 512×512 Lena image and [33], [34] with 29.4 dB

for 256×256 image size, then [35] and [18], respectively. The
increase in the PSNR value for [10] and [34] is attributed to
the use of quadtree partitioning scheme with low matching
error tolerance. However, the presented method is 14x faster
than [33], 6x than [34] and 2.5x than [10] for a similar image
size. Furthermore, the compression rate of the presented
method is similar to [33], but 4x higher than [10]. Overall,
it is very clear that the presented dynamic search scheme is
significantly fast although it is simple.

Due to the simplicity and efficiency of the presented
dynamic search method compared to the other existing
complicated approaches, this method can be adopted in
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developing hardware implementations for further decease in
the processing time, without much overhead in implemen-
tation. Additionally, substitute the conventional full-search
method used in [13], [28] by the presented method can
increase the encoding speed by around 2 minimum (see
Table 1). Thus, the planned future work is to utilise this
dynamic search method in designing real-time image com-
pression system on FPGA. Moreover, the presented method
can be utilized in identical applications that require intensive
self-similarity search of the image.

VI. CONCLUSION
This paper has studied and analyzed the impacts of dynamic
and conventional static search mechanisms on the mapping
speed and resultant image quality for the fractal image com-
pression technique. The study has been conducted for various
coding conditions and matching thresholding values. Unlike
the conventional static search method, the dynamic search
method is concerned with the high similarities between
adjacent image blocks. Hence, for a given range block,
the dynamic search method starts the search from the closest
domain block and goes further until finding an accepted
matched block or covering the entire image. On the other
hand, the conventional static search method starts the search
from a fixed location every time, regardless of the location
of the encoded range block. By doing so, the experimental
results showed that the dynamic search method outperforms
the conventional search method in all aspects. However,
the gap is increased significantly when the threshold value is
defined larger, and differently based on the defined encoding
parameters. For the best combination of the encoding param-
eters (i.e. r = 4, σBitSize = 5 and stp = 4), the improvement
amount was the greatest and can reach over 90 % in terms
of search reduction and 1.6 dB in terms of the quality of the
decoded image. In conclusion, it can be said that there is a
clear preference for the close image blocks over the far blocks
when matching threshold strategy is implemented.
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