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ABSTRACT The two-mode-dependent controller design problem for networked Markov system with time-
delay in both S/C link and C/A link is investigated in this paper. Two independent Markov chains are used
to describe the time-delay in S/C link and C/A link. A two-mode-dependent state feedback controller is
proposed that depends on both the S/C time-delay and themode of theMarkov controlled plant. The sufficient
conditions on the stochastic stability of the closed-loop system are established. The design method of the
controller is also proposed on condition that the transition probability matrices of S/C time-delay and mode
of the controlled plant are completely known and partly unknown respectively. A numerical example is
exploited to illustrate the effectiveness and superiority of the proposed method.

INDEX TERMS Markov jump system, stochastic stability, two-mode-dependent, closed-loop system,
stabilization.

I. INTRODUCTION
Networked control system (NCS) has gained great attentions
during the past decades and it is applied widely in real-
time industrial control, environmental monitoring, military,
telemedicine and other fields [1]–[4]. The stability analysis
and controller design for NCS with time-delay and data
packet dropout has become a hot research filed on account
of its essential impact on modern control theory, and a great
many literatures have been reported [5]–[7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Shen .

One of the focuses of research for NCS is the time-delay,
which may degrade the performance of the system or even
cause instability [8], [9]. How to explicitly incorporate
the time-delay into the controller design is the object of
the related research. Modeling the time-delay as a random
sequence of Bernoulli distribution is one of the common
methods in research of NCS. However this method can only
deal with one-step time-delay [10], [11]. The time-delay was
modeled as a random sequence of Bernoulli distribution,
and the robust H∞ filtering problem for NCS with both
random time-delay and packet dropout was researched. The
sufficient condition on making the filtering error system
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exponentially stable was given [10]. The optimal linear esti-
mation problem of NCS with random time-delay and packet
dropout was researched. Two random variables that satisfied
Bernoulli distribution were used to describe the one-step
random time-delay and multiple packet loss that may exist
in network data transmission. The optimal linear state filter,
predictor and smoother under linear minimum variance were
proposed [11].

Another method to deal with the time-delay is to model
the time-delay as a Markov chain. The Markov chain can
not only describe the dependency between the current time-
delay and the previous time-delay, but also include packet
dropout, and it is an effective method to describe the time-
delay in NCS [12]–[16]. A time-delay compensation control
scheme was proposed, in which the random time-delay was
modeled as a Markov chain, thus the closed-loop system
was modeled as a Markovian jump linear system (MJLS).
To perform the stability analysis, a new necessary and suf-
ficient condition was established [12]. The time-delay τk
from sensor to controller (S/C) and the time-delay γk from
controller to actuator (C/A) were modeled as two Markov
chains. An asymptotic mean-square stability criterion was
established to compensate for the random time-delay and
packet losses in both S/C link and C/A link [13]. The state
feedback control problem for a class of nonlinear NCS with
S/C time-delay τk was researched. The state augmentation
method was used to obtain the model of the closed-loop
system based on that τk was modeled as a Markov chain.
The sufficient conditions on stochastic stability of the closed-
loop system were given [14]. Considering the S/C time-delay
τk and C/A time-delay γk , based on the free weight matrix
method, the sufficient conditions on the stochastic stability of
closed-loop systems underH∞ performance constraints were
obtained. The design method of mode-dependent H∞ state
feedback controller was given [15]. Both the S/C time-delay
and C/A time-delay were modeled as Markov processes, and
the resulting closed-loop system was modeled as a MJLS.
A state feedback controller that made the closed-loop system
stochastically stable was designed, which could be solved by
the proposed algorithm [16].

In all the aforementioned references, the controlled plant
was described by the deterministic model which was lin-
ear or certainty kind of nonlinear system. However, the deter-
ministic model cannot be used to represent the behavior
of many actual systems, because the phenomena embod-
ied by these systems are not specific, and their structures
and parameters have characteristics of random changes.
These random changed are often caused by system jumps,
such as random failures and repairs of system compo-
nents, changes in internal interconnected systems, sudden
changes in the environment. In this regard, Markov con-
trolled plant exists widely in communication, power sys-
tems, and aircraft control systems [17]–[19]. Therefore,
the design and research of NCS controller based on Markov
controlled plant has important theoretical and practical
significance.

FIGURE 1. Structure of networked Markov system with time-delay.

Some literatures for Markov controlled plant based NCS
have been reported [20], [21]. The event-triggered H∞ con-
trol problem for networked Markov jump system subject
to repeated scalar nonlinearities was researched. An event-
triggered transmission scheme was adopted and an event
generator was presented between the controller and the
sensor [20]. The stabilization problem for a kind of net-
worked Markovian jump systems with random time-delay
was researched. The closed-loop system model was estab-
lished through the state augmentation technique and the
necessary and sufficient conditions on the stochastic stabil-
ity were derived [21]. However, the controller in [20] and
[21] was designed without the consideration of the system
mode or even independent of the time-delay. To the best
of the authors’ knowledge, involving time-delay and system
mode to design the state feedback controller has not been
researched, which motivate this investigation. The main con-
tributions of this paper can be exhibited in the following two
aspects:

1) Through the analysis of time-delay and system mode
information, a two-mode-dependent state feedback
controller that simultaneously depends on both τk and
δk−τk is proposed for the networked Markov system.

2) By constructing proper Lyapunov-Krasovskii func-
tional, the design method of state feedback controller
gain matrix is derived on condition that the transi-
tion probabilities are completely available and partly
unavailable, respectively.

The rest content of the paper is organized as follows.
In Section II, the available time-delay and system mode
information is analyzed and a two-mode-dependent controller
is proposed. The sufficient conditions on the stochastic sta-
bility of the closed-loop system are presented first and the
equivalent conditions with constrains are derived in section
III. In Section IV, a simulation example is given to illustrate
the effectiveness of the proposed controller. The conclusions
are addressed in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES
The structure of the NCS with random time-delay considered
in this paper is shown in Figure 1, where the controlled plant
is a MJLS and the state equation of which is as follows:

xk+1 = Aδk xk + Bδkuk (1)
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where xk is the system state vector, uk is the control input
vector, Aδk and Bδk are known real constant matrices with
appropriate dimensions. δk takes value from the set W =

{1, · · · ,D}, and the transition probability matrix of δk is2 =
[ρpq], where ρpq is defined as ρpq = Pr{δk+1 = q|δk = p},
D∑
q=1

ρpq = 1, ρpq ≥ 0, p, q ∈W .

τk and γk stands for the time-delay in S/C link and the time-
delay in C/A link and takes value from the finite set M =

{0, · · · , τ }, N = {0, · · · , γ }, respectively. The transition
probability matrix of τk and γk is 4 = [ωij] and 5 = [πrs],
respectively, where ωij and πrs is defined as ωij = Pr{τk+1 =
j|τk = i}, πrs = Pr{γk+1 = s|γk = r}, respectively, where
τ∑
j=0
ωij = 1,

γ∑
s=0

πrs = 1,ωij ≥ 0, πrs ≥ 0, i, j ∈M, r, s ∈ N .

On one hand, due to the existence of S/C time-delay τk ,
the system state obtained at the controller node at time instant
k is as follows:

x̃k = xk−τk (2)

On the other hand, at time instant k , the information of the
S/C time-delay τk and the system mode δk−τk is available to
the controller node. Hence, the state feedback controller that
depends both τk and δk−τk can be designed as follows:

ũk = Kτk ,δk−τk xk−τk (3)

Apparently, the controller in (3) is two-mode-dependent.
Due to the existence of C/A time-delay γk , the control input

acting on the controlled plant at time instant k is as follows:

uk = ũk−γk (4)

The state equation of the closed-loop system can be obtained
from (1)-(4):

xk+1 = Aδk xk + BδkKτk ,δk−τk xk−τk−γk (5)

Remark 1: By applying the two-mode-dependent con-
troller in (3), the resulting closed-loop system (5) is not a
standard MJLS, due to the fact that the closed-loop system
depends on δk , τk , δk−τk and τk + γk . Furthermore, δk−τk is
related with both δk and τk , which makes the system stability
analysis and controller design more complex.

The objective of this paper is to design the two-mode-
dependent controller in (3) to guarantee the stochastic stabil-
ity of the closed-loop system (5).

The notion of stochastic stability is introduced as follows:

Definition 1 [22]: The closed-loop system (5) is stochas-
tically stable if for every initial state x0 and initial mode
τ0 ∈ M, δ−τ0 ∈ W , there exists a positive-definite matrix

R > 0 such that E
{
∞∑
k=0
‖ xk‖2|x0, τ0, δ−τ0

}
< xT0 Rx0 holds.

Before the main results are given, two related lemmas are
introduced as follows:
Lemma 1 [23]: If the transition probability matrix from

δk to δk+1 is 2, then the transition probability matrix from

δk−τk to δk+1−τk+1 is 21+τk−τk+1 , which is still a transition
probability matrix.

Lemma 2 [24]: (θ − θ0 + 1)
θ∑

ρ=θ0

υTρ Xυρ ≥
θ∑

ρ=θ0

υTρ X

θ∑
ρ=θ0

υρ holds for any positive-definite matrix X > 0 and

arbitrary vector υ, where θ and θ0 two scalars which satisfies
θ ≥ θ0 ≥ 1.
Remark 2: If an embedded processor is placed at the actu-

ator node, by comparing the current time with the time-stamp
of the control input received by the embedded processor,
the C/A time-delay γk can be calculated, and the information
of γk−τk at time instant k would be available to the con-
troller node. Further, the controller ũk = Kτk ,γk−τk ,δk−τk xk−τk
which simultaneously depends on τk , δk−τk and γk−τk can
be designed. However, this will increase the system cost and
make the system structure more complicated.

III. MAIN RESULTS
In this section, the sufficient conditions on the stochastic
stability for the closed-loop systems (5) will be presented and
the equivalent conditions of linear matrix inequalities (LMIs)
with nonconvex constraints will be derived.
Theorem 1: Under the state feedback control law (3),

the resulting closed-loop system (5) is stochastically stable
if there exist positive-definite matrices Pi,r > 0, Pj,q > 0,
S1 > 0, S2 > 0, Z > 0 andmatrixKi,r such that the following
matrix inequality

3 =

311 ∗ ∗

321 322 ∗

0 Z −S2 − Z

 < 0, (6)

where

311 = ATδk P̃j,qAδk + (τ + γ )
2(Aδk − I)TZ (Aδk − I)

+ (τ + γ + 1) S1 + S2 − Z − Pi,p,

321 = ATδk P̃j,qBδkKi,p + (τ + γ )
2(Aδk − I)TZBδkKi,p

+Z ,

322 =
(
BδkKi,p

)T P̃j,qBδkKi,p − 2Z − S1

+(τ + γ )2
(
BδkKi,p

)TZBδkKi,p,
P̃j,q =

τ∑
j=0

D∑
q=1

ωij2
i−j+1
pq Pj,q,

holds for all i, j ∈M, p, q ∈W . �
Proof: For the closed-loop system (5), construct the follo-
wing Lyapunov-Krasovskii functional:

V (xk , τk , δk−τk ) =
4∑
l=1

Vl(xk , τk , δk−τk )
1
= xTk �τk ,δk−τk xk ,

where

V1(xk , τk , δk−τk ) = xTk Pτk ,δk−τk xk ,
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V2(xk , τk , δk−τk ) =
0∑

n=−τ−γ+1

k−1∑
m=k+n

xTmS1xm

+

k−1∑
l=k−τk−γk

xTl S1xl,

V3(xk , τk , δk−τk ) =
k−1∑

l=k−τ−γ

xTl S2xl,

V4(χk , τk , δk−τk ) =
0∑

n=−τ−γ+1

k−1∑
m=k+n

(τ + γ ) χTmZχm,

χm = xm+1 − xm.

It is noted that �τk ,δk−τk > 0.

E {1V1}

= E
{
xTk+1Pτk+1,δk+1−τk+1

xk+1 |τk = i, δk−τk = p
}

−xTk Pτk ,δk−τk xk .

From Lemma 1, one can obtain that the transition probabil-
ity matrix from δk−τk to δk+1−τk+1 is 2

i−j+1, and the transi-
tion probability from δk−τk to δk+1−τk+1 under the transition
probability matrix 2i−j+1 is denoted as 2i−j+1

pq . Hence, one
has:

E
{
xTk+1Pτk+1,δk+1−τk+1

xk+1 |τk = i, δk−τk = p
}

−xTk Pτk ,δk−τk xk

= E
{(
Aδk xk + BδkKi,pxk−τk−γk

)T} τ∑
j=0

D∑
q=1

ωij2
i−j+1
pq

Pj,q
(
Aδk xk + BδkKi,pxk−τk−γk

)
− xTk Pi,pxk

= xTk A
T
δk
P̃j,qAδk xk + x

T
k A

T
δk
P̃j,qBδkKi,pxk−τk−γk

+xT
k−τk−γk

(
BδkKi,p

)T P̃j,qBδkKi,pxk−τk−γk
+xT

k−τk−σk

(
BδkKi,p

)T P̃j,qAδk xk − xTk Pi,pxk . (7)

E {1V2}

= (τ + γ ) xTk S1xk −
k∑

l=k+1−τ−γ

xTl S1xl + x
T
k S1xk

−xTk−τk−γkS1xk−τk−γk +
k−1∑

l=k+1−τk+1−γk+1

xTl S1xl

−

k−1∑
l=k+1−τk−γk

xTl S1xl

= (τ + γ ) xTk S1xk −
k∑

l=k+1−τ−γ

xTl S1xl + x
T
k S1xk

−xTk−τk−γkS1xk−τk−γk +
k−1∑

l=k+1−τk−γk

xTl S1xl

+

k−τk−γk∑
l=k+1−τk+1−γk+1

xTl S1xl −
k−1∑

l=k+1−τk−γk

xTl S1xl

≤ (τ + γ ) xTk S1xk −
k∑

l=k+1−τ−γ

xTl S1xl + x
T
k S1xk

−xTk−τk−γkS1xk−τk−γk +
k−1∑

l=k+1−τk−γk

xTl S1xl

+

k∑
l=k+1−τ−γ

xTl S1xl −
k−1∑

l=k+1−τk−γk

xTl S1xl

= (τ + γ ) xTk S1xk + x
T
k S1xk−x

T
k−τk−γkS1xk−τk−γk .

(8)

E{1V3}=xTk S2xk−x
T
k−τ−γ S2xk−τ−γ . (9)

E {1V4}

=E
{
(τ + γ )2χTk Zχk

}
−

k−1∑
l=k−τ−γ

(τ + γ ) χTl Zχl

=E
{
(τ + γ )2

((
Aδk − I

)
xk + BδkKi,pxk−τk−γk

)T
Z
((
Aδk − I

)
xk + BδkKi,pxk−τk−γk

)}
−

k−1∑
l=k−τ−γ

(τ + γ ) χTl Zχl

=(τ + γ )2xTk
(
Aδk − I

)TZ (Aδk − I) xk
+(τ + γ )2xTk

(
Aδk − I

)TZBuδkKi,pxk−τk−γk
+(τ + γ )2xT

k−τk−γk

(
BδkKi,p

)TZ (Aδk − I) xk
+(τ + γ )2xT

k−τk−γk

(
BδkKi,p

)TZBδkKi,pxk−τk−γk
−

k−1∑
l=k−τ−γ

(τ + γ ) χTl Zχl

=(τ + γ )2xTk
(
Aδk − I

)TZ (Aδk − I) xk
+(τ + γ )2xTk

(
Aδk − I

)TZBuδkKi,pxk−τk−γk
+(τ + γ )2xT

k−τk−γk

(
BδkKi,p

)TZ (Aδk − I) xk
+(τ + γ )2xT

k−τk−γk

(
BδkKi,p

)TZBδkKi,pxk−τk−γk
−

k−1∑
l=k−τk−γk

(τk + γk) χ
T
l Zχl

−

k−τk−γk−1∑
l=k−τ−γ

(τ + γ − τk − γk) χ
T
l Zχl .

By Lemma 2, one has:

E {1V4}

≤ (τ + γ )2xTk
(
Aδk − I

)TZ (Aδk − I) xk
+(τ + γ )2xTk

(
Aδk − I

)TZBδkKi,pxk−τk−γk
+(τ + γ )2xT

k−τk−γk

(
BδkKi,p

)TZ (Aδk − I) xk
+(τ + γ )2xT

k−τk−γk

(
BδkKi,p

)TZBδkKi,pxk−τk−γk
−
[
xk−xk−τk−γk

]TZ [xk−xk−τk−γk ]
−
[
xk−τk−γk−xk−τ−γ

]TZ [xk−τk−γk−xk−τ−γ ] . (10)
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From (7)-(10), one can obtain:

E
{
1V

(
xk , τk , δk−τk

)}
≤ ξTk 3ξk , (11)

where ξTk =
[
xTk xTk−τk−γk xTxk−τ−γ

]
.

Hence, if 3 < 0, one has

E
{ T∑
k=0

‖ xk‖2
}
≤−λmin(−3)ξTk ξk

≤−λmin(−3)xTk xk
=−λmin(−3)‖xk‖2. (12)

For any positive integer T ≥ 1, the follows holds:

E
{ T∑
k=0

‖ xk‖2
}

≤
1

λmin(−3)

(
E
{
V
(
x0, τ0, δ−τ0

)}
−E

{
V
(
xT+1, τT+1, δT+1−τT+1

)})
≤

1
λmin(−3)

E
{
V
(
x0, τ0, δ−τ0

)}
=

1
λmin(−3)

xTk �τ0,δ−τ0 xk . (13)

From the Definition 1, the closed-loop system (5) is
stochastically stable, which completes the proof. �

Theorem 1 presents the sufficient conditions on the exis-
tence of the state feedback controller. To get a feasible
solution for controller gain matrix Kτk ,δk−τk , the equivalent
LMIs conditions with nonconvex constraints will be given in
Theorem 2.
Theorem 2: There exists a controller (3) such that the

closed-loop system (5) is stochastically stable if there exist
positive-definite matrices Pi,p > 0, Lj,q > 0, S1 > 0, S2 > 0,
Z > 0, Y > 0 and matrix Ki,r such that611 ∗ ∗

621 −Y ∗

631 0 633

 < 0, (14)

Pj,qLj,q = I , ZY = I , (15)

where

611=

6̃11 ∗ ∗

Z S1 − 2Z ∗

0 Z S2 − Z

 ,
6̃11=(τ + γ + 1) S1 + S2 − Z − Pi,p,

621=(τ + γ )
[
Aδk − I BδkKi,p 0

]
,

6T
31=

[√
λi12

i−j+1
p1 ϑT · · ·

√
λiτ2

i−j+1
pD ϑT

]
,

ϑ=
[
Aδk BδkKi,p 0

]
,

633= Diag {L01, · · · ,LτD} ,

hold for all i, j ∈M, p, q ∈W . �
Proof: Letting Y = Z−1,Lj,q = P−1j,q , j ∈ M, q ∈ W and
by applying the Schur complement, the proof can be readily
completed. �

The conditions stated in Theorem 2 are in fact a set of
LMIs with some matrix inverse constraints. Although they
are nonconvex, which bring difficulties in using the existing
convex optimization tool to solve them, one can use the cone
complementary linearization (CCL) algorithm to transform
this problem into the nonlinear minimization problem with
LMI constraints as follows:

Min tr
( τ∑
j=0

D∑
q=1

Pj,qLj,q + ZY
)
s.t. (14), (16) and (17).

[
Pj,q I
I Lj,q

]
>0, j ∈M, q ∈W, (16)[

Z I
I Y

]
>0. (17)

Further, the procedure for solving the state feedback con-
troller gain matrix Ki,p is exhibited in Algorithm 1.
The state feedback controller gain matrix Ki,p is derived in

Theorem 2 on condition that all elements in4 and2i−j+1 are
completely known. However, it is usually difficult to obtain
the full transition probabilities, and the controller gain matrix
Ki,p will be derived on Theorem 3 on condition that there are
some unknown elements in 4 and 2i−j+1.
For notational clarity, ∀j ∈ M, let M = Mi

k +

Mi
uk with Mi

k = {j : ωij is known}, Mi
uk = {j :

ωij is unknown}. If Mi
k is not empty, it can be further

described as Mi
k={Mk i1

,Mk i2
, · · · ,Mk ia

}, where Mk ia
rep-

resents the column index of the a th known transition prob-
ability in the i th row of 4. Mi

uk can be described as
Mi

uk={Mk̄ i1
,Mk̄ i2

, · · · ,Mk̄ iτ−a
}, where Mk̄ iτ−a

represents
the column index of the (τ − a) th unknown transition prob-
ability in the i th row of 4.

Similarly, ∀q ∈ W , let W = Wp
k + Wp

uk with Wp
k =

{q : ωpq is known}, Wp
uk = {q : ωpq is unknown}.

If Wp
k is not empty, it can be further described as

Wp
k={Wkp1

,Wkp2
, · · · ,Wkpb

}, where Wkpb
represents the col-

umn index of the b th known transition probability in
the p th row of matrix 2i−j+1. Wp

uk can be described as
Wp

uk={Wk̄p1
,Wk̄p2

, · · · ,Wk̄pD−b
}, where Wk̄pD−b

represents the
column index of the (D−b) th unknown transition probability
in the p th row of matrix 2i−j+1.
Theorem 3: If there exist positive-definitematrixPi,p > 0,

Lj,q > 0, S1 > 0, S2 > 0, Z > 0, Y > 0 and matrix Ki,r
satisfying

ω̃
∑

q∈Wp
k

2
i−j+1
pq 611 ∗ ∗

ω̃
∑

q∈Wp
k

2
i−j+1
pq 621−ω̃

∑
q∈Wp

k

2
i−j+1
pq Y ∗

ϒMi
k ,W

p
k

0 6Mi
k ,W

p
k

 < 0,

(18)
∑

q∈Wp
k

2
i−j+1
pq 611 ∗ ∗∑

q∈Wp
k

2
i−j+1
pq 621 −

∑
q∈Wp

k

2
i−j+1
pq Y ∗

ϒMi
uk ,W

p
k

0 6Mi
uk ,W

p
k

 < 0,
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Algorithm 1 Procedure for Solving the Controller Gain Matrix Ki,p
1: Set the maximum number of iterations Rmax
2: Find a set of feasible solution (P0j,q,L

0
j,q, S

0
1 , S

0
2 ,Z

0,Y 0,K 0
i,p) satisfying (14), (16) and (17), and let k = 0

3: Solve the following optimization problem for variables:

Min tr
( τ∑
j=0

D∑
q=1

Pj,qLj,q + ZY
)
, s.t. (14), (16) and (17)

4: Set (Pkj,q = Pj,q,Lkj,q = Lj,q, Sk1 = S1, Sk2 = S2,Z k = Z ,Y k = Y ,K k
i,p = Ki,p)

5: while number of iterations < Rmax do
6: if (14), (15) is satisfied then
7: break
8: else
9: k = k + 1, go to step 3.
10: end if
11: end while

j ∈Mi
uk , (19) ω̃611 ∗ ∗

ω̃621 −ω̃Y ∗

ϒMi
k ,W

p
uk

0 6Mi
k ,W

p
uk

 < 0, q ∈Wp
uk , (20)

 611 ∗ ∗

621 −Y ∗

ϒMi
uk ,W

p
uk

0 6Mi
uk ,W

p
uk

 < 0, j ∈Mi
uk , q∈W

p
uk ,

(21)

Pj,qLj,q=I ,ZY = I , (22)

where

ϒT
Mi

k ,W
p
k
=

[√
λi12

i−j+1
p1 ϑT · · ·

√
λia2

i−j+1
pb ϑT

]
,

6Mi
k ,W

p
k
=Diag{−LM

ki1
,Wkp1

, . . . ,−LM
kia
,Wkpb
},

ϒT
Mi

uk ,W
p
k
=

[√
2
i−j+1
p1 ϑT · · ·

√
2
i−j+1
pb ϑT

]
,

6Mi
uk ,W

p
k
=Diag{−Lj,Wkp1

, . . . ,−Lj,Wkpb
},

ϒT
Mi

k ,W
p
uk
=
[√
λi1ϑ

T
· · ·
√
λiaϑ

T
]
,

6Mi
k ,W

p
uk
=Diag{−LM

ki1
,q, . . . ,−LM

kia
,q},

ϒT
Mi

uk ,W
p
uk
=
[
ϑT · · ·ϑT

]
,

ω̃=
∑
j∈Mi

k

ωij,

for all i, j ∈M, p, q ∈ W , the closed-loop system (5) under
the controller (3) is stochastically stable. �
Proof: By the Schur complement, 3 < 0 is equivalent to[

611 ∗

621−Y

]
+

[
ϑ

0

]T
P̃j,q

[
ϑ0
]
< 0, (23)

which can be written as( ∑
j∈Mi

k

∑
q∈Wp

k

ωij2
i−j+1
pq +

∑
j∈Mi

uk

∑
q∈Wp

k

ωij2
i−j+1
pq

+

∑
j∈Mi

k

∑
q∈Wp

uk

ωij2
i−j+1
pq +

∑
j∈Mi

uk

∑
q∈Wp

uk

ωij2
i−j+1
pq

)

( [
611 ∗

621−Y

]
+

[
ϑ

0

]T
P̃j,q

[
ϑ 0

] )
=ω̃

∑
q∈Wp

k

2i−j+1
pq

( [
611 ∗

621−Y

]
+

[
ϑ

0

]T
P̃j,q

[
ϑ 0

] )

+ω̄
( ∑
q∈Wp

k

2i−j+1
pq

( [
611 ∗

621−Y

]
+

[
ϑ

0

]T
P̃j,q

[
ϑ 0

] ))

+

∑
q∈Wp

uk

2i−j+1
pq

(
ω̃
( [
611 ∗

621−Y

]
+

[
ϑ

0

]T
P̃j,q

[
ϑ 0

] ))

+ω̄
∑

q∈Wp
uk

2i−j+1
pq

( [
611 ∗

621−Y

]
+

[
ϑ

0

]T
P̃j,q

[
ϑ 0

] )
,

where ω̄ =
∑

j∈Mi
uk

ωij.

Appling Schur complement again, one can get:

∑
j∈Mi

k

∑
q∈Wp

k

ωij2
i−j+1
pq

([
611 ∗

621−Y

]

+

[
ϑ

0

]T
P̃j,q

[
ϑ0
] )

< 0 (24)

is equivalent to (18).
Therefore, if (18) holds, then (24) holds. Because ωij ≥ 0,

πrs ≥ 0, if (18)-(22) hold, then 3 < 0 holds, that is,
the closed-loop system (5) is stochastically stable. This com-
pletes the proof. �
Remark 3: If there are some unknown elements in matrix

2, then matrix 2i−j+1 has more unknown elements than

2, for example, if 2 =
[
? ?
0.5 0.5

]
, then all the elements

are unknown in 22. In this case, only (20)-(22) should be
satisfied to guarantee the stochastic stability of the closed-
loop system (5).
Remark 4: Similar to Theorem 2, (18)-(22) in Theorem 3

can also be solved by the CCL algorithm, the detail procedure
is omitted here.
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FIGURE 2. The boost converter.

IV. NUMERICAL EXAMPLE
To illustrate the effectiveness of the proposed method,
the results in this paper are applied to the pulse-width-
modulation (PWM)-driven boost converter as shown in Fig-
ure 2, where the switch s(t) is controlled by a PWM device,
R is the resistance, L is the inductance, C is the capacitance,
and es(t) is the power source [25]. The converter is used
to transform the source voltage into a higher voltage. With
different closed positions of the s(t), the state space equation
of the converter is also different, which can be modeled as
a typical Markov jump system. The state space model of the
converter is as follows:

xk+1 = Aδk xk + Bδkuk , δk ∈ {1, 2},

where

A1=

 0.94 0.1 0.06
−0.3 0.95 −0.3
−0.25 −0.06 0.63

 ,B1 =
−0.30.2

0.1

 ,
A2=

 0.93 0.08 0.07
−0.14 0.66 −0.2
−0.16 −0.4 0.66

 ,B2 =
−1.40.3

0.2

 .
The transition probability matrix between the two subsystems

is 2 =
[
0.8 0.2
0.3 0.7

]
. Assume S/C time-delay τk ∈ M =

{0, 1} and C/A time-delay γk ∈ N = {0, 1}. The transition
probability matrix of τk and γk is as follows, respectively:

4 =

[
0.7 0.3
0.3 0.7

]
, 5 =

[
0.6 0.4
0.2 0.8

]
.

According to Theorem 2, the mode-dependent controller
gain matrix is obtained as follows:

K01 =
[
0.2422 −0.1052 −0.0149

]
,

K11 =
[
0.2586 −0.1055 −0.0253

]
,

K02 =
[
0.0958 0.0166 −0.0157

]
,

K12 =
[
0.0959 0.0155 −0.0307

]
.

By the traditional Lyapunov-Krasovskii method, the mode-
independent controller gain matrix can be obtained: K =[
0.1191 −0.0025 −0.0265

]
. The system mode δk ,

the time-delay τk and the time-delay γk is shown in Figure 3,
Figure 4 and Figure 5, respectively. Assuming the initial
state of the system xT0 =

[
1 −0.5 0.5

]
, Figure 6, Figure 7

and Figure 8 illustrate the state response of the closed-loop

FIGURE 3. The system mode δk .

FIGURE 4. The S/C time-delay τk .

FIGURE 5. The C/A time-delay γk .

system (5) using the mode-dependent controller proposed in
this paper and the mode-independent controller.

From Figure 6, Figure 7 and Figure 8, it can be seen that
the proposed two-mode-dependent controller outperforms the
mode-independent one.

Assuming that all the elements in 2 and 4 are completely
unknown, the mode-dependent controller gain matrix can
also be obtained by Theorem 3 as follows:

K01=
[
0.2962 −0.1245 −0.0147

]
,

K11=
[
0.2962 −0.1245 −0.0147

]
,

K02=
[
0.1106 −0.0215 −0.0176

]
,

K12=
[
0.1106 −0.0215 −0.0176

]
.
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FIGURE 6. The closed-Loop system status x1.

FIGURE 7. The closed-Loop system status x2.

FIGURE 8. The closed-Loop system status x3.

V. CONCLUSION
The two-mode-dependent state feedback controller design
method for a kind of networked Markov system with random
time-delay is researched in this paper. The S/C time-delay and
the C/A time-delay are both considered, the sufficient con-
ditions on the stochastic stability of the closed-loop system
and the solution of the controller gain matrix are given. The
numerical simulation shows that the controller designed in
this paper is superior to the mode-independent controller.
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