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ABSTRACT The shearer positioning method with an inertial navigation system (INS) is feasible in a
longwall mining face. However, INS error greatly increases with time, which reduces the shearer positioning
accuracy. This study aims to improve the shearer positioning accuracy using the shearer motion constraints.
Firstly, according to the longwall mining method, two constraints on the shearer velocity and position were
obtained. Then, velocity constraint information and position constraint information were modeled to obtain
the observation equations in the filter. In order to improve the shearer positioning accuracy, an information
filter was utilized to integrate the velocity constraint information and position constraint information. Finally,
an experiment was performed to validate the effectiveness of the proposed algorithm. The result showed that
the shearer positioning accuracy improved by 56% in the east and 54% in the north.

INDEX TERMS Shearer positioning, inertial navigation system, information filter.

I. INTRODUCTION
Longwall mining is the predominant method applied in the
undergroundmine at present. Three types of equipment work-
ing in a longwall mining face are a shearer, an armored
face conveyor (AFC), and a roof support system, as shown
in Fig. 1. The shearer moves back and forth along a rail
associated with the AFC, while the roof support system
supports the coal seam roof. Traditionally, these three types
of equipment are operated manually. This not only reduces
the mining productivity, but also exposes the worker to the
hazardous environment. Improving mining productivity and
protecting worker safety are goals constantly pursued by the
coal industries [1], [2]. The automatic mining technology
has shown significant potential to achieve these goals by
providing the shearer positioning, face alignment, horizontal
control, remote control, and so on [3]–[5]. Among these
technologies, shearer positioning is the basis of the others.
Because there is no Global Position System (GPS) signal in
the underground environment, shearer positioning technol-
ogy based on the inertial navigation system (INS) is a feasible
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method [6]–[8]. The INS achieves high short-time accuracy
and good autonomy. However, the major disadvantage is the
accumulated error over time [9], [10]. In the underground
coal mine, the positioning technology based on INS faces
the problem of rapid error growth. To solve this problem,
researchers proposed several methods to aid INS for the
underground mining equipment.

Fan et al. [11] developed the wireless sensor network
(WSN) to aid the shearer INS. Four anchor nodes were
installed on the roof support system and the mobile node
was installed on the shearer body. The result showed that
the position error was less than 0.2 m within 1200 s.
However, the disadvantage was that the position coordi-
nates of anchor nodes could not be accurately determined
because the roof support system moved forward intermit-
tently. Xie et al. [12] used tilt sensors installed on the shearer
body and AFC to aid INS for the shearer and AFC position-
ing. The experiment demonstrated that the position error was
less than 0.38 times the middle trough length and the posi-
tioning accuracy improved 21%. However, this method only
obtained the one-dimensional position of the shearer, which
couldn’t meet the need of three-dimensional positioning.
Dunn et al. [13], [14] used a Doppler radar to aid INS. The
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FIGURE 1. The diagram of the shearer, AFC, and roof support system [18].

Doppler radar measured the relative speed between the con-
tinuous miner and the ground, which was applied to correct
the INS speed error. However, the measurement accuracy and
stability were greatly affected by the surrounding environ-
ment.

The authors of this paper developed a shearer positioning
system based on an INS and an axial encoder (Fig. 2(b)),
which used the dead reckoning algorithm to obtain the shearer
moving trajectory [15]. According to the previous research
[16], [17], the integrated navigation of the INS and the axial
encoder had the better positioning accuracy compared with
the INS. The INS, providing the attitude angles (heading,
pitch, and roll), was embedded in the shearer body, and the
axial encoder, providing the velocity value, was connected
to the haulage unit of the shearer, as shown in Fig. 2(a).
Because of the INS accumulated error, it was necessary to
have other ways to aid the shearer INS. Therefore, this study
used the shearer motion constraints to aid the INS to improve
the positioning accuracy.

The remainder of this paper is organized as follows.
First, the article analyzed the longwall mining method and
obtained the motion constraints including the velocity con-
straint and the position constraint. The velocity observation
information and position observation information were mod-
eled to obtain the observation equations. Then, an infor-
mation filter algorithm integrating the velocity observation
information and position observation information was used to
improve the shearer positioning accuracy. Finally, an exper-
iment was conducted to validate the effectiveness of the
information filter algorithm.

II. LONGWALL MINING METHOD
Longwall mining is widely applied and is an efficient min-
ing method for extracting a high percentage of coal from
the underground mine. A coal seam is usually divided
into several longwall panels by excavating roadways as the
boundaries shown in Fig. 3(a). A longwall panel is gen-
erally 300 m wide, 5000 m long, and 1.2-8.0 m thick.
The shearer, AFC, and roof support system are installed
across the back of the panel, creating a longwall face
(Fig. 3(b)) [19], [20].

The shearer reciprocates along a rail associated with the
AFC, cutting a 0.8 m-wide slice of coal from the coal seam.

FIGURE 2. The diagram of (a) the installation position of the INS and the
axial encoder and (b) the shearer positioning system.

The rail limits the shearer motion along the lateral and vertical
directions (X-axis and Z-axis in the shearer coordinate system
shown in Fig. 4). The shearer velocity in the X-axis and
Z-axis, perpendicular to the Y-axis, should be zero. This
can be used as a velocity constraint to improve the shearer
positioning accuracy.

As shown in Fig. 4, when the shearer cuts the coal
seam, a part of the AFC, behind the shearer, is progres-
sively pushed towards the coal seam by large hydraulic push
arms attached to the roof support system for the next cut-
ting cycle. A cutting cycle refers to the process in which
the shearer moves the whole length of the longwall face.
In Fig. 4, the shearer is moving during the second cutting
cycle. The displacement sensor fixed inside the push arm
measures the advancing displacement of each section of the
AFC. The shearer positioning system shown in Fig. 2(b)
measures the AFC position when the shearer runs along the
AFC [21], [22]. According to the AFC measured position
and the advancing displacements, the AFC position during
the next cutting cycle can be predicted, which will be used
as a position constraint to improve the shearer positioning
accuracy.

According to the above analysis, the motion constraints on
the shearer velocity and position were obtained. The velocity
constraint and the position constraint can be understood as
two observations. Based on the multi-observations informa-
tion fusionmethod, an information filter was used to integrate
the velocity observation and the position observation in
this study.
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FIGURE 3. Typical plan view of (a) a coal mine and (b) a longwall face [23].

III. STATE EQUATION
The state equation of the filter is derived from the INS error
equation, which is often used in the integrated navigation
system [25], [26]. The error equation is derived from the
calculation principle of navigation parameters, and it reflects
the essential property of the INS error to some extent. The
equations of position error, velocity error, and attitude angle
error [9], [27], [28] are given as follows,
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where L, λ, and h are the latitude, longitude, and altitude,
whose errors are defined as δL, δλ, and δh, respectively;
VE , VN , and VU are the velocity values in the east-north-
up (ENU) coordinate system, δVE , δVN , and δVU are its
errors, respectively; δ8E , δ8N , and δ8U are the platform
orientation errors in the east, north, and up, respectively; Rn
and Re are the curvature radii along the meridian and parallel,
respectively; ωie is the angular velocity of the rotation of the
earth; fE , fN , and fU are the specific forces in the east, north,
and up, respectively; ηE , ηN , and ηU are the accelerometer
biases in the ENU coordinate system; εE , εN , and εU are the
gyroscope drifts in the ENU coordinate system.

In this study, the state vector is given by,

X = [δL δλ δh δVE δVN δVU δφE δφN δφU ]T (4)

The equations of the position error, velocity error and
attitude angle error can be rewritten as a matrix form as
follows,

•

X = AX + Bu (5)

where A is obtained according to Eq. (1), (2), and (3); B is
the distribution matrix of processing the white noise; u is the
white noise vector. Therefore, the state equation is obtained
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FIGURE 4. The diagram of the AFC profile when the shearer moves [24].

as follows,

X(k |k − 1) = F(k |k − 1)X(k − 1)+W (k − 1) (6)

where F is the state transition matrix, which satisfies
F=exp(ATs); TS is the computation period; W is the state
noise.

IV. OBSERVATION EQUATIONS
A. VELOCITY OBSERVATION EQUATION
According to the velocity constraint described in Section II,
the shearer velocity in both the X-axis and Z-axis (shown
in Fig. 4) should be zero. However, the velocity (Vox and
Voz) measured by the INS in these two axes is not equal to
zero in practice, which is defined as the velocity error (δVox
and δVoz). The velocity error is transformed into the velocity
observation vector by Eq. (7). δVOEδVON

δVOU

 = Cn
b

 δVox0
δVoz

 (7)

where Cn
b is the direction cosine matrix (DCM) as (8), as

shown at the bottom of the next page, which consists of
heading angle (θ), pitch angle (ϕ), and roll angle (γ ).
Therefore, the velocity observation vector is,

ZV = [δVOE δVON δVOU ]T (9)

The velocity observation equation in the filter is given by,

ZV (k) = HV (k)X(k)+ VV (k) (10)

where HV is the transition matrix of velocity observation as
(11); VV is the velocity observation noise.

HV =

 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 (11)

B. POSITION OBSERVATION EQUATION
According to the position constraint described in Section II,
the AFC position during the next cutting cycle is predicted
based on the current AFC position and the advancing dis-
placement. When the shearer moves during the next cutting
cycle, the measured AFC position is obtained. The difference
between the predicted AFC position and the measured AFC

position during the next cutting cycle is called the position
error (δPOE , δPON , and δPOU ). The position error is trans-
formed into the position observation vector by (12). δLPδλP

δhP

 =
 (δPOE )

/
Re

(δPON )
/
(Rn cosL)

δPOU

 (12)

Therefore, the position observation vector is given by,

ZP = [δLP δλP δhP]T (13)

The observation equation in the filter is,

ZP(k) = HP(k)X(k)+ VP(k) (14)

where Hp is the transition matrix of position observation as
(15); VP is the position observation noise.

HP =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (15)

V. INFORMATION FILTER ALGORITHM FOR SHEARER
POSITIONING
A. INFORMATION FILTER ALGORITHM
The information filter is an effective method to estimate
the system state in multiple observations system [29], [30].
Compared with the Kalman filter, the information filter has
a strong robustness. The structure of the information filter is
simple. The information filter has advantage in computing,
which makes it suitable for real time system [31], [32].
The key components of the information filter are the infor-

mation matrix (Y) and the information state vector (y). The
information matrix Y is defined as the inverse of the covari-
ance matrix as,

Y (k |k ) = P−1(k |k ) (16)

where P(k|k) is the covariance matrix.
The information state vector y, including the information

content, is defined as the product of the information matrix
and the state vector as follows,

y(k |k ) = Y (k |k )X(k |k ) (17)
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FIGURE 5. The flowchart of the information filter.

The information filter algorithm can be divided into
two processes: the prediction process and the update pro-
cess. The prediction process includes two steps, which are
given by,

y(k |k − 1) = L(k |k − 1)y(k − 1 |k − 1) (18)

Y (k |k − 1) = [F(k)Y−1(k − 1 |k − 1)FT (k)+ Q(k)]−1

(19)

where L(k|k-1) = Y(k-1|k-1)F(k)Y−1(k-1|k-1); F(k) is the
state transition matrix; Q(k) is the covariance matrix of the
state noise. The update process also includes two steps, which
are given by,

y(k |k ) = y(k |k − 1)+ i(k) (20)

Y (k |k ) = Y (k |k − 1)+ I(k) (21)

where i(k)=H(k)TR(k)−1Z(k); I(k)=H(k)TR(k)H(k); i(k)
is the information observation vector; I(k) is the information
observation matrix;H(k) is the observation transition matrix;
R(k) is the covariance matrix of the observation noise; Z(k) is
the observation vector. If there are N (N > 1) observations,
the update process changes to,

y(k |k ) = y(k |k − 1)+
N∑
j=1

ij(k) (22)

Y (k |k ) = Y (k |k − 1)+
N∑
j=1

I j(k) (23)

where j is the number of observations. Fig. 5 shows the
flowchart of the information filter.

B. INFORMATION FILTER ALGORITHM FOR SHEARER
POSITIONING
In this study, the information filter is used to integrate the
velocity observation and position observation to improve the
shearer positioning accuracy.

It is assumed that the initialization state has no error, that is,
X(0)=[0 0 0 0 0 0 0 0 0]T . When the INS is stationary, multi-
ple groups of the INS data are collected, defined asX’i (i = 1,
2, . . . ). The initialization value ofP isP(0)=E[(X’i-X(0))(X’i-
X(0))T ], where E(·) is the mathematical expectation. On the
premise of knowingX(0) and P(0), the initialization values of
Y and y can be obtained according to Eqs. (16) and (17).

The state vector (X), state transition matrix (F), and state
noise covariance matrix (Q) in the information filter are given
as (24).

X = [δL δλ δh δVE δVN δVU δφE δφN δφU ]T

Q = E[W (i)W (j)T ] (i = j) F = exp(ATs) (24)

There are two observations in this study: the velocity obser-
vation and the position observation. The observation vector
(ZV ), observation transition matrix (HV ), and observation
noise covariance matrix (RV ) of the velocity observation are
given by Eq. (25). The observation vector (ZP), observa-
tion transition matrix (HP), and observation noise covariance
matrix (RP) of the position observation are given by Eq. (26).

ZV =

 δVOEδVON
δVOU

HV =

 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0


RV = E[VV (i)VV (j)T ](i = j) (25)

ZP =

 δLPδλP
δhP

HP =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


RP = E[VP(i)VP(j)T ](i = j) (26)

According to the vectors and matrixes in (24), (25), and
(26), the estimated error is obtained based on the information
filter algorithm. The flowchart of the information filter algo-
rithm for shearer positioning is shown in Fig. 6. The estimated
error is used to correct the INS error. Then, the dead reckoning
algorithm is applied to calculate the shearer position as (27).

Pni = Pni−1 + C
n∗
b [0 v 0]T dt (27)

where Pni and Pni−1 are the shearer position at time i and
i − 1 in the ENU coordinate system, respectively; Cn∗

b is the
new DCM which consists of corrected attitude angles; v is
the velocity value measured by the axial encoder; dt is the
sampling time between i and i− 1.

Cn
b =

 cos γ cosϕ + sin γ sin θ sinϕ cos θ sinϕ sin γ cosϕ − cos γ sin θ sinϕ
− cos γ sinϕ + sin γ sin θ cosϕ cos θ cosϕ − sin γ sinϕ − cos γ sin θ cosϕ

− sin γ cos θ sin θ cos γ cos θ

 (8)
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FIGURE 6. The flowchart of the information filter algorithm for shearer positioning.

FIGURE 7. The diagram of the experiment site and the experiment device.

TABLE 1. The sensor specifications of INS accelerometer and gyroscope.

VI. EXPERIMENTS
To verify the effectiveness of the information filter algo-
rithm for shearer positioning, an experiment with a mobile
carrier was conducted as shown in Fig. 7. The INS from
ADVANCED NAVIGATION COMPANY was installed in
the center of the mobile carrier, and Table 1 shows the
sensor specifications of INS accelerometer and gyroscope.
The axial encoder was connected to the wheel of the mobile
carrier. The resolution of axial encoder was 1/65536. The
Global Positioning System – Real Time Kinematic (GPS-
RTK) technology was used to evaluate the positioning accu-
racy, whose dynamic accuracy in the plane was less than

2 cm. The GPS-RTK mobile station was installed on the
mobile carrier, and the GPS-RTK base station was fixed on an
arbitrary point in the experiment site. The trajectorymeasured
by the GPS-RTK mobile station was considered as the true
trajectory of the mobile carrier. The mobile carrier moved
four cutting cycles with about 1.5 h at a velocity of 0.1-0.2m/s
in the experiment, and the mobile carrier moved along an
approximately straight line during each cutting cycle. It needs
special explanation that because the experiment could not
really simulate the process of the hydraulic ram pushing the
AFC, the advancing displacement was given by the GPS-
RTK trajectories between the adjacent cutting cycles. Since
the position observation was not available in the first cutting
cycle, the data of this cutting cycle was not processed by the
information filter algorithm. In addition, because the experi-
ment site is approximately horizontal, the position constraint
only existed in the horizontal plane. Therefore, the position-
ing accuracies in the north and east were discussed in the next.

Prior to four cutting cycles experiment, a calibration exper-
iment was first carried out due to the INS installation error.
The mobile carrier moved a short distance at a velocity of
0.4-0.5 m/s. By comparing the measured trajectory and the
GPS-RTK trajectory, installation misalignment angle of INS
was obtained using two-point method [33]. A comparison
of the positioning error with and without calibration in the
east and north was shown in Fig. 8. As long as the INS was
installed on the mobile carrier, the installation misalignment
angle of INS was a definite value, which explained the linear
variation of the positioning error without calibration. The
maximal error in the east and north decreased from 1.1813 m
and 1.6169 m to 0.0932 m and 0.0707 m after the calibration
experiment.

Fig. 9 and Fig. 10 show the comparison between the GPS-
RTK trajectory and measured trajectory without and with
information filter, respectively. Figs. 11, 12, and 13 show
the comparison of the heading, pitch, and roll with and
without filter, respectively. Fig. 14 shows the variation of
the positioning error with and without filter in the east and
north. The positioning error without filter in the east and
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FIGURE 8. Comparison of the positioning error with and without
calibration in the (a) east and (b) north.

FIGURE 9. Comparison between the GPS-RTK trajectory and the
measured trajectory without filter in the east-north plane.

north increased with time during the first cutting cycle. In the
second, third, and fourth cutting cycles, the variation ten-
dency of the positioning errors without filter were analogous,
which first decreased to zero and then increased to maximum.
The maximum positioning error without filter occurred at
the end of each cutting cycle and the maximum positioning
error increased with the number of cutting cycles. As listed
in Table 2, the variation values of the positioning error with-
out filter in the east for four cutting cycles were 0.8465 m,
2.1375 m, 3.0874 m and 4.5009 m, and the variation values of
the positioning error without filter in the north were 0.6184m,
1.5411 m, 2.1937 m and 3.1256 m. The error variation values
in the east and north increased over the number of cutting

FIGURE 10. Comparison between the GPS-RTK trajectory and the
measured trajectory with filter in the east-north plane.

FIGURE 11. Comparison of the heading angle with and without filter.

FIGURE 12. Comparison of the pitch angle with and without filter.

cycles, which was caused by the drift of the attitude angles
without filter shown in Figs. 11, 12, and 13.

Compared with the attitude angles without information
filter, there were no obvious drift for the attitude angles after
the information filter, which explained why the measured
trajectory with information filter was closer to the GPS-RTK
trajectory (Fig. 10) compared with that without information
filter (Fig. 9) and the positioning error with filter grew slowly
compared with that without information filter (Fig. 14). The
positioning error variation values of the measured trajectory
with information filter in the east for four cutting cycles
were 0.8465 m, 1.9637 m, 1.9497 m and 1.9780 m, and
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FIGURE 13. Comparison of the roll angle with and without filter.

FIGURE 14. Variation of the positioning error with and without filter in
the (a) east and (b) north.

the positioning error variation values of the measured tra-
jectory with information filter in the north were 0.6184 m,
1.4223 m, 1.4182 m and 1.4238 m. In the fourth cutting
cycle, the shearer positioning accuracy with information filter
improved by 56% in the east and 54% in the north. It was
noted that the data of the first cutting cycle was not processed
by the information filter algorithm. Except for the first cutting
cycle, the variation values of the positioning error of other
three cutting cycles no longer increased. Due to the filter
instability during the early stage, the positioning error vari-
ation value of the second cutting cycle increased compared
with the first cutting cycle. During the third and fourth cutting
cycles, variation values of the positioning error no longer

TABLE 2. The positioning error variations (m) in each cutting cycle.

increased, which validated the information filter algorithm
restrained the growth of the positioning error. If the high
precision positioning can be achieved during the first cutting
cycle, the proposed information filter algorithm in this study
can be used to maintain high precision positioning during
the following cutting cycles. Therefore, how to improve the
positioning accuracy during the first cutting cycle is our next
research content.

As introduced in Section II, the shearer motion constraints
were obtained by analyzing the longwall mining method.
In this paper, the experiment parameters including the carrier
movement velocity and trajectory were set according to the
underground working conditions, and the positioning accu-
racy with filter improved more than 50%. Compared with the
experiment in this paper, the shearer vibration in underground
mine is relative larger, which could introduce additional noise
in the filter. Therefore, we are now analyzing the shearer
vibration spectrum characteristic, which can help us deter-
mine the optimal noise variance. In addition, because the coal
mine has explosion-proof requirement for equipment, we are
designing the explosion-proof circuit and enclosure of the
positioning system, and the underground experiment will be
performed soon.

VII. CONCLUSION AND PERSPECTIVE
This study used the motion constraints to aid the INS to
improve the shearer positioning accuracy. In this study, two
constraints of shearer motion on velocity and position were
obtained by analyzing the longwall mining method. Accord-
ing to the shearer motion constraints, the velocity observa-
tion information and position observation information were
modeled, which were used in the observation equations of
filter. The information filter algorithm integrating the velocity
observation information and position observation informa-
tion was utilized to improve the shearer positioning accuracy.
The experiment result showed that the shearer positioning
accuracy after the information filter improved by 56% in the
east and 54% in the north. Next, for the problem of low
accuracy during the first cutting cycle, the minimum-variance
smoothing will be applied to the INS and axial encoder mea-
surements to optimize the positioning trajectory. In addition,
we are doing the preparatory work for the underground exper-
iment, including analyzing the shearer vibration spectrum,
and designing the explosion-proof circuit and enclosure.
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