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ABSTRACT Thyroid nodules have a high prevalence and a small percentage is malignant. Many
non-invasive methods have been developed with the help of the Internet of Things to improve the detection
rate of malignant nodules. These methods can be roughly categorized into two classes: radiomics based and
deep learning based approaches. In general, convolutional neural networks based deep learningmethods have
achieved promising performance in many medical image analysis and classification applications; however,
no existing comparison has been done between radiomics based and deep learning based approaches.
Therefore, in this paper, we aim to compare the performance of radiomics and deep learning based
methods for the classification of thyroid nodules from ultrasound images. On one hand, we developed a
radiomics based method, which consists of extracting high throughput 302-dimensional statistical features
from pre-processed images. Then dimension reduction was performed using mutual information and linear
discriminant analysis respectively to achieve the final classification. On the other hand, a deep learning
based method was also developed and tested by pre-training a VGG16 model with fine-tuning. Ultrasound
images including 3120 images (1841 benign nodules and 1393 malignant nodules) from 1040 cases were
retrospectively collected. The dataset was divided into 80% training and 20% testing data. The highest
accuracies yielded on the testing data for radiomics and deep learning based methods were 66.81% and
74.69%, respectively. A comparison result demonstrated that the deep learning based method can achieve a
better performance than using radiomics.

INDEX TERMS Ultrasound images, thyroid nodule, thyroid cancer, nodule classification, convolutional
neural network, radiomics.

I. INTRODUCTION
Thyroid nodules are a common thyroid disease. Accord-
ing to previous studies, the incidence of thyroid nodules is
increasing [1], [2]. Thyroid nodules can be roughly divided
into benign and malignant, and about 10% of patients who
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present thyroid nodules were diagnosed as malignant [3].
Ultrasonography has been recommended by the American
Thyroid Association (ATA) [4] and is a preferred [5] method
for early detection and diagnosis of thyroid nodules due to its
economy, effectivity and no radiation. However, the resem-
blance of the manifested pattern which exists in ultrasound
images of both benign and malignant thyroid nodules may
cause difficulties for radiologists in the process of interpreting
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and evaluating thyroid disease. Therefore, the need for an
objective and effective method that can reduce the misdiag-
nosis rate is becoming more and more critical in the matter
of analysis and estimation of ultrasound images for thyroid
nodules.

Various machine learning based methods to automatically
detect and assess thyroid nodules in ultrasound images were
proposed [6]–[8]. These methods can be broadly classified
into two categories: radiomics and deep learning based meth-
ods. The radiomics based method [9] was proposed to extract
the quantitatively high throughput features of images like
Gray-Level Co-occurrenceMatrix (GLCM) [10], Histograms
of Oriented Gradients [11] and Gray level run-length matrix
[12] from medical images. Then after feature selection and
dimension reduction, the extracted features were finally fed
into a classifier to achieve the classification. Wang et al. [13]
used a radiomics based method to build a nomogram from
multiparametric MRI to predict glioma grade in brain tumor
patients. Nugroho et al. [14] applied radiomics to classify
cystic or solid thyroid in ultrasound images with an accuracy
of 89.74%, a sensitivity of 88.89%, a specificity of 91.67%,
the positive predictive value of 96.00% and negative predic-
tive value of 78.57%.

Recently, due to the development of deep learning,
especially convolutional neural network (CNN) [15],
the performance of the Computer-aided Diagnosis system in
diagnosing diseases from medical images is comparable or
better than the performance of radiologists [16], [17]. For
the training of deep learning based models, the amount of
datasets plays an extremely important role. If a large number
of datasets with different instances (million level) are fed
into the model, its performance can be impressive. In addi-
tion, with the rapid development of the Internet of Thing,
large-scale streaming data are collected and distributed [18].
Many deep learning models can be efficiently distributed
and trained using large-scale datasets [19]–[21] in variety
of fields like nature language processing, face recognition
and machine translation. The VGG16 architecture of con-
volutional neural networks trained by the well-known Ima-
geNet is one of them. In the domain of clinical medicine,
deep learning models also have obtained good performance.
For example, Rajpurkar et al. [16] demonstrated that the
performance of detecting heart arrhythmias has exceeded
board-certified cardiologists using the deep learning based
method with sufficient datasets. Liu et al. [22] integrated
domain knowledge in training deep learningmodels for breast
cancer ultrasonography in order to classify benign tumors
from malignant lumps and achieved an accuracy of 83.3%
with a sensitivity of 96.7%. Yang and Zhao [8] developed
a semi-supervised deep learning model, which combined
generative adversarial networks and semi-supervised support
vector machine to classify thyroid nodules and obtained
satisfied results.

In general, the results of both radiomics and deep learning
based methods are promising. However, there are still limita-
tions of these methods. The radiomics based methods need to

extract statistical features, which may be affected by factors
such as image resolution, low signal to noise ratio (SNR)
and other artefacts in ultrasound images. In contrast, deep
learning based methods may be unstable due to insufficient
datasets [8]. Yang and Zhao [8] developed a semi-supervised
model to overcome insufficient datasets. There is a question
also that deep learning models are susceptible to data sources.
This study aims to investigate which method is more effective
in detecting and assessing thyroid nodules using our ultra-
sound images. The pre-trained convolutional neural network
(VGG16) learned from ImageNet [15] is developed as our
deep learning model. The process of radiomics method in
this study involves extracting commonly used high through-
put features, applying mutual information (MI) and linear
discrimination analysis (LDA) to realize the goals of feature
selection and dimension reduction. Finally, support vector
machine (SVM) is applied to classify the thyroid nodules into
benign and malignant.

II. MATERIALS AND METHODS
This section is organized into four sections, i.e., materi-
als, image preprocessing, our deep learning and radiomics
based methods, respectively. The first section mainly intro-
duces how ultrasound images were collected and acquired.
In the second section, the step of image preprocessing is
presented. The third section describes what types of deep
learning model was developed, including the variation of
the VGG16 model. Finally, the last section elucidates the
workflow of our radiomics based method in details, including
computing and dealing with statistical features and classify-
ing thyroid nodules using SVM.

A. MATERIALS
In this work, 3120 thyroid nodules from 1040 patients, with
different ages, were retrospectively collected in the collabo-
rated hospital. The benign and malignant nodules accounted
for 59% and 45% of the total, respectively (i.e., 1841 benign
and 1393 malignant nodules). In addition, transverse and
longitudinal thyroid nodules images were scanned for each
patient (as seen in Fig.1). According to the guidance of radiol-
ogists, because the background of the longitudinal ultrasound
images with thyroid nodules is larger than that of the trans-
verse ones, we only chose longitudinal ultrasound images for
our further investigation. In addition, in order to avoid bias,
all thyroid nodules were performed with the same ultrasonic
system.

B. IMAGE PREPROCESSING
The collected raw ultrasound images contained a lot of
irrelevant information, e.g., patient’s ID and name, acquisi-
tion parameters, and screen background. Because these were
useless information and/or even could confuse the network
training, an automated or a manual procedure was needed
to remove them. We proposed the following semi-automated
process to deal with these irrelevant information. Since the
boundary of the thyroid nodules in the ultrasound image was
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FIGURE 1. Examples of the ultrasound images with thyroid nodule.
(a) The longitudinal thyroid nodules. (b) The transverse thyroid nodules.

approximately delineated by experienced radiologists using a
square shape with colored or white-or-black pixels, we first
located that shape and executed erosion and expansion oper-
ations to get the corresponding masks. Finally, the mask mul-
tiplied with the corresponding raw image that could produce
a cropped square image. If the automated procedure failed,
we performed the manual cropping instead. Although this
step might lose some useful information, we ensured that
each cropped image contained a complete lesion area that
was crucial for prediction. One cropped example is illustrated
in Fig 2.

C. DEEP LEARNING BASED CLASSIFICATION METHOD
The deep learning models, specifically CNNs, are widely
used and have performed extremely well in various computer
vision tasks. The CNNs can extract features automatically by
computer, and realize regression and classification tasks by
multi-layer perceptron. In this paper, the CNNsmodel learned
from ImageNet [15] was transferred to our ultrasound dataset
as a pre-trained deep learning model to complete a specific
classification task. Among of CNNs, the VGG16 model
(see Fig. 3a),, which was previously trained on 1.2 million
high-resolution images with 1000 different classes, was used
in this paper. It can extract specific features and complete
classification for our thyroid ultrasound images. The ini-
tial VGG16 model included 13 convolution layers, 5 max-
pooling layers, and 3 fully-connected layers. The output of
two fully-connected layers was 4096-dimensional features,
and the other one aimed to classify images. Additionally,

FIGURE 2. Example of a cropped image for the ultrasound thyroid nodule
localization. (a) delineated by radiologist (white rectangle). (b) cropped
by automatic method.

considering that our ultrasound datasets with thyroid nodules
were relatively small, which would increase the complexity
of training the deep learning model; therefore, reducing the
number of layers of the VGG16 model was a good strategy to
avoid this problem. Finally, our model included 5 convolution
layers, 5 max-pooling layers, 2 fully-connected layers. The
output of one fully-connected layer was 4096-dimensional,
and the last one was the classified layer, i.e. benign andmalig-
nant. Fig. 3b shows the variation of the initial VGG16 model
that we developed for our deep learning based method. The
input ultrasound images were resized to 224*224*3. And the
size of convolutional kernels was 3*3. But penultimate one
was 1*1 *4096 and the last layer had a convolution depth
of 2. Therefore, the complexity of the initial VGG16 model
was reduced. Additionally, the fine-tuning method was used
in our work. That is to say, the parameters of VGG16 model
trained by ImageNet dataset were considered as the initial
parameters for our developed deep learning model. For the
training of our developed deep learning model, we applied
dropout to prevent overfitting, and the cross-entropy loss was
used to optimize the learning rate and dropout probability.

D. RADIOMICS BASED CLASSIFICATION METHOD
The radiomics based methods consist a process that convert-
ing digital medical images into mineable high-dimensional
data. Therefore, the key of radiomics based methods is to
extract high-dimensional feature data in order to meet the
clinical needs. In this paper, 302 features were extracted from
region of interest (ROI) for each ultrasound image with thy-
roid nodules. ROIwas delineated by radiologists (see Fig. 2a).
The extracted features included gray-scale histograms, inten-
sity difference, GLCM, Gabor and wavelet based statistical
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FIGURE 3. The deep learning model, where fc denotes a fully connected layer, conv denotes a
convolution layer, softmax denotes a classified layer, pool denotes the max-pooling layer. In the
figure, the color of pale green refers to the conv, golden refers to the relu, purple refers to the pool
and violet refers to the softmax.

FIGURE 4. Framework of our proposed radiomics based method.

feature. After feature extraction, MI [23], [24], LDA [25],
[26] and SVM [27]–[29] were applied to achieve the goal of
feature selection, dimension reduction and classification task,
respectively. Fig 4 displays the workflow of the radiomics
based method developed in our study.

1) FEATURE EXTRACTION
Before feature extraction, the median filter, which has a
proved filtering effect on salt-pepper noise and edge preserv-
ing characteristics, was applied to the ultrasound images with

thyroid nodules. In total, 302 features (including 28 gray-
scale histograms features, 12 intensity difference features,
96 GLCMs, 12 wavelet features and 36 gabor features) were
extracted from the ultrasound images. The first-order sta-
tistical features, including mean, standard deviation, skew-
ness, kurtosis, energy, and entropy, are the most widely used
ones for gray-scale histograms, which can describe the pixel
intensity distribution in digital images [27]. The mean is a
measure of median intensity of gray levels of the image. The
purpose of variance (Var) and standard deviation (Sd) is to
express the degree of dispersion of data points in datasets.
The skewness (Skew) measures data symmetry. The kur-
tosis (Kurt) measures the flatness of data distribution. The
energy indicates how the gray levels are distributed. The
entropy specifies the uncertainty / randomness in the image
value, which measures the average amount of information
needed to encode the image value. They are mathematically
defined as follows:

Mean1 =
1
M

L−1∑
i=0

i · h(i)

Var =
1
M

L−1∑
i=0

(i−Mean)2 · h(i)

Sd = (Var)2

Skew =
1

M ·σ−3

L−1∑
i=0

(i− µ)3 · h(i)

Kurt =
1

M ·σ−4

L−1∑
i=0

(i− µ)4 · h(i)
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energy1 =
1
M2

L−1∑
i=0

[h(i)]2

entropy1 = −
1
M

L−1∑
i=0

h(i) · log2[
h(i)
M

] (1)

Among the 7 mathematical formulas, let M be the image
resolution, L be the number of gray levels, i be the current
gray level, and h(i) be the number of image pixels having
the gray intensity value corresponding to the ‘‘i’’ level. The
features of gray-scale histogram were directly computed by
the 7 mathematical formulas.

The gray difference between a pixel in an image and a pixel
with only a small distance is called intensity difference. P4(i)
is the probability corresponding to the gray difference value i,
and i is the normalized difference value.When theP4(i) value
is closer to the coordinate origin, the image texture is thicker.
In contrast, if its distribution is more uniform, the texture is
relatively thin. In general application, the intensity difference
statistical method uses mean, contrast (Con), second-order
moment of angle (ASM) to represent an image texture fea-
tures.

Mean2 =
1
M

∑
i

i · P4(i). (2)

Con =
∑
i

i2 · P4(i). (3)

ASM =
∑
i

[P4(i)]2 (4)

Gray level co-occurrence matrix (GLCM) was originally
proposed by Robert and Shanmugam [10]. It is a compre-
hensive texture analysis method based on the assumption
that the spatial distribution among pixels contains texture
information of an image. It not only reflects the distribution of
image brightness, but also reflects the location characteristics
between pixels with the same two points or close to bright-
ness. Additionally, it is a second-order statistical feature.
There are 24 types of statistic features based on GLCM,
including energy, entropy, evenness (Even), correlation (Cor).
If f(i, j) is a two-dimensional digital image and S represents
the pixel pairs with special spatial relation in the target region
R, then the gray level co-occurrence matrix P satisfying cer-
tain spatial relation can be obtained P(i,j):

Energy2 =
∑
i

∑
j

P(i, j)2. (5)

Entropy2 = −
∑
i

∑
j

p(i, j)logP(i, j). (6)

Even =
∑
i

∑
j

1
1+ (i− j)2

· P(i, j). (7)

Cor =

∑ ∑
(i− x̄)(j− ȳ) · p(i, j)

σx · σy
(8)

In addition, there are two important parameters of
the GLCM: distance (d) and angle (a). The different

combinations of d and a will produce abundant image fea-
tures. The angle was set to 0◦, 45◦, 90◦ and 135◦ in this
study. Furthermore, to preserve the complexity of the spatial
relationship, the distance was set to 1.

The wavelet transform is a local transform of time and
frequency, which has the characteristics of multi-resolution
analysis and can represent the local characteristics of signals
in both time and frequency domains. The wavelet transform
can concentrate the energy of original image to a small num-
ber of wavelet coefficients in the direction of three local cor-
relations, a high degree of detail components that provides a
powerful condition for feature extraction. Additionally, using
different scales of the wavelet band-pass filter, an image can
be decomposed to a series of frequency bands. The low-pass
filter and high-pass filters were used in this study, and the
image was decomposed into low-frequency sub-bands and
high-frequency sub-bands. In doing so, four sub-bands could
be produced, LL, LH, HL, HH, and the mean and standard
deviation could be used as the features of a sub-band image.
Finally, the extracted 12 features of the wavelet were LL
mean, LE mean, EL mean, SL mean, LS mean, EE mean,
LL standard deviation, LE standard deviation, EL standard
deviation, SL standard deviation, EE standard deviation, and
LS standard deviation.

The Gabor transform can decompose an image into a series
of channels, make full use of the accurate descriptive infor-
mation of each decomposition level, and form an effective
feature vector. Textural feature extraction can be achieved by
filtering the image with a set of Gabor filters with selected
size and direction parameters. In our study, the size was set
to 3*3, 2*3 and 2*4, and the direction was set to 0◦, 45◦,
60◦ and 90◦. The extracted features were mean, contrast and
entropy.

It is worth mentioning that before extracting gray his-
togram, gray difference statistics and GLCM based features,
themethod of Laplacian of Gaussian was used. The Laplacian
of Gaussian can be approximated by the Gaussian difference,
which is obtained by the convolution of two Gaussian filters
with different variables. In addition, the Laplace operator
is sensitive to discrete points and noise when it is used to
implement edge detection through image operation. In doing
so, firstly, the imagewas denoised byGaussian filter, and then
the edge was detected by the Laplace operator, which could
improve the robustness of noise and discrete points. In this
study, the coefficient of filter was set to 0.4, the size was set
to 3, 7 and 10.

2) FEATURE SELECTION, REDUCTION AND CLASSIFICATION
Uncorrelated features and even interdependence among fea-
tures could lead to a prolonged feature analysis and classi-
fication model training. Moreover, too many features could
easily cause ‘‘high-dimension disaster’’ or overfitting prob-
lem and the model would become very complex. The
method of feature selection can eliminate irrelevant or redun-
dant features [30]. MI and LDA were used to select and
reduce extracted features, respectively. In computer vision
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or medicine research studies, many classifiers, including
k-nearest neighbor classifier, naive Bayes classifier, and SVM
classifier, have been widely used. Among them, the SVM
is one of the most robust and effective classifiers. Its com-
putational complexity depends on the number of support
vectors rather than the dimension of the sample space, which
avoids the problem of ‘‘high-dimension disaster’’ in a sense.
In addition, it is determined by a few support vectors and
insensitive to outliers, which makes the model have better
robustness and generalization ability. Therefore, SVM with
the RBF kernel function was used as our classifier in this
study.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EVALUATION INDEXES
To evaluate the performance of the classification using both
radiomics and deep learning based methods, the indexes,
including the accuracy (ACC), the sensitivity (SEN),
the specificity (SPC), the receiver operating characteristic
curve (ROC) and the area under curve (AUC), were com-
puted. SEN and SPC express the possibility of predicting
the malignant and benign thyroid nodules, respectively. The
vertical axis of the ROC is the true positive rate (TPR), and
the horizontal axis stands for the false positive rate (FPR).
AUC is a performance index of the classifiers.

ACC =
TP+ TN

TP+ TN + FP+ FN
(9)

SEN =
TP

TP+ FN
(10)

SPC =
TN

TN + FP
(11)

B. QUANTITATIVE RESULTS
In our experiments, the dataset was divided into 80% for
training and 20% for an independent testing. The classifica-
tion performance and the ROC curves for radiomics and deep
learning based methods are presented in Table 1 and Fig 5,
respecyively. The classification accuracy, sensitivity, and
specificity of applying radiomics based method are 66.81%,
51.19% and 75.77%, respectively, while these evaluation
indexes for the deep learning basedmethod trained to the test-
ing samples are 74.69%, 63.10% and 80.20%, respectively.
For all these indexes, the trained deep learning model demon-
strates higher value compared to radiomics basedmethod. Fig
5 shows the performance comparison of the two methods,
where the AUCs for diagnosing ultrasound thyroid malig-
nancy are 0.6371 for radiomics based method and 0.7127 for
convolutional neural network (VGG16model) based method.
There is significant difference in AUC between the two
used methods. Therefore, compared to the radiomics baesd
method, the deep learning can provide us the better perfor-
mance using our ultrasound datasets.

IV. DISCUSSIONS
From the above comparison experiments, the deep learn-
ing based method outperformed the radiomics based.

TABLE 1. The classification performance of radiomics and deep learning
based methods.

FIGURE 5. Receiver operating characteristic curves for comparison of the
classification performance (radiomics vs. deep learning based methods).

The classification of ultrasound images with thyroid nod-
ules by using deep learning could be a better strategy to
assess the thyroid nodules, with higher classification accu-
racy. There are still some limitations that exist in our study.
Although the deep learning based method could be better
than the radiomics based method, the accuracy of our deep
learning method only achieved 74.69% in our study. There
could be some reasons for achieving these results. Firstly,
for radiomics based method, we did not use other radiomics
features such as Fourier transformation, gray-level size zone
matrix and neighborhood gray-tone difference matrix, which
can express statistical information to some extent. Neverthe-
less, in future studies, we plan to addmore features to increase
the throughput of features and further improve the classifica-
tion performance of radiomics. Secondly, in our deep learning
basedmethod, we only used a commonCNNmodel (VGG16)
as our pre-trained model and trained it in our relatively small
dataset. Previous studies on the impact of dataset size in
transfer learning using CNNs demonstrated that a suitable
size of dataset could improve the performance of the deep
learning models [31]. Moreover, it might be a problem that
a pre-trained CNN model was applied rather than building
a new deep learning architecture for our specific task [32].
Therefore, we can augment our datasets to have enough
number of training samples and modify the deep learning
architecture [33] to adapt our ultrasound data directly. The
fusion of deep learning based method and radiomics based
method is also a focus. Guanghui Han et al. used the fusion
method to automatic recognize cavity imaging signs in lung
computed tomography (CT)images and improved the perfor-
mance [34]. Last but not least, there have a strategy which
uses multimodal images to improve the performance of dis-
ease [35]–[38], the application of color doppler flow images
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and real-time elastography images were common [36]–[38].
These enlighten us that combining another imaging modality
with B-mode may make the deep learning method have a
better performance and become more robust.

V. CONCLUSION
In this paper, we compared the classification performance of
radiomics and deep learning based methods using ultrasound
images with thyroid nodules. The comparison results show
that the deep learning based model outperformed radiomics
based method. In future work, we plan to supplement the
throughput of features and further fine-tune the pre-trained
deep learning model to improve the classification perfor-
mance. Additionally, using multicentre medical data to verify
the effectiveness of deep learning models in thyroid nodules
detection is achallenging and focus.
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