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ABSTRACT Fault early warning of equipment in nuclear power plant can effectively reduce unplanned
forced shutdown and avoid significant safety accidents. This paper presents a Bayesian Long Short-Term
Memory (LSTM) neural network method for fault early warning method of nuclear power turbine. The Long
Short-Term Memory neural network prediction model is developed to address data uncertainty while taking
into account complicated situation of the equipment operation. Quantitative reliability validation method is
established based on Bayesian inference. A wavelet packet multi-scale time-frequency analysis is employed
for data denoising. A Probabilistic Principal Component Analysis (PPCA) method combined with key factor
analysis is proposed for dimension reduction and dealing with the data uncertainty. The principal component
inverse search method is developed to identify the critical factors mainly contributing to the turbine fault.
Numerical results indicate that the proposed novel model is validated with Bayesian confidence of 92% by
using the real-world steam turbine data and the model can provide accurate warning in the early creep stage
of the fault.

INDEX TERMS Bayesian inference, long short-term memory, discrete wavelet packet transform, nuclear
power turbine, probabilistic principal component analysis.

I. INTRODUCTION
Early warning and Remaining Useful Life (RUL) prediction
of large turbo machines such as pumps and steam turbines
in a nuclear plant is often carried out at the early stage
of equipment failure through real-time condition monitor-
ing, thus reducing unplanned forced shutdown and accidents
[1], [2]. Ma and Jiang [1] introduced the Fault Detection and
Diagnosis (FDD)method to enhance the safety, reliability and
availability of a nuclear power plant. The method is applied
to monitor six areas of the plant, i.e. instrument calibration,
instrument channel dynamic performance, equipment, reac-
tor core, loose part and transient identification.

In recent years, big data technology and artificial intel-
ligence algorithms have been widely used to improve the
reliability and safety of a nuclear power through real-time
monitoring, damage diagnosis and prognosis, automatic
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condition assessment and RUL prediction. These techniques
include advanced signal processing and multivariate data
analysis. This subject has become one of the cutting-edge hot
spots in the energy field which attract numerous researchers.
Condition monitoring and fault prediction of nuclear power
equipment require addressing the data uncertainty from mul-
tiple sources and the complexity of modeling, which makes it
very challenging. Gong et al. [2] presented a fault diagnosis
method for the main coolant system of a nuclear power
plant based on Dempster/Shafer (D-S) evidence theory.
Peng et al. [3] presented a fault diagnosis method for nuclear
power equipment by combining correlation analysis and deep
belief network and compared the fault diagnostic results
of the proposed method with the back-propagation neural
network and support vector machine. Dong [4] proposed a
Boolean network with its linear representation for describ-
ing the fault propagation among sensors. Theoretic analysis
is conducted to select the diagnosis-oriented sensors for a
nuclear steam supply system. Wu et al. [5] introduced a FDD
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technology framework based on a Bayesian network (BN)
for large-scale complex systems in nuclear power plants,
Numerical results have demonstrated its advantages in terms
of easy visualization, parameter uncertainty representation
and ability of incomplete data handling.

The key to the success of fault early warning includes two
factors: accurate prediction model and effective warning log-
ics. The prediction model needs to be established and trained
from a set of historical data without any known anomaly to
reflect the behavior of the system under normal operation
conditions. The model is validated and then used to predict
the system response under unknown conditions. A decision
logic is developed to judge the system operation status based
on the model prediction and actual measurement of the sys-
tem response. An alarm is triggered when the indicator repre-
senting the system state exceeds a predefined threshold. In the
field of nuclear power, there are a few methods for fault early
warning. Welz et al. [6] developed the early warning function
in onlinemonitoring system for nuclear power plants by using
the Auto-Association Kernel Regression (AAKR) technique
and present three cases that represent the functions and roles
of the system. Min et al. [7] investigates the influence of
integrating maintenance information of nuclear plant equip-
ment on prognostic model prediction accuracy, and the devel-
oped maintenance-dependent models can greatly improve the
accuracy.

Recently, various data-driven non-parametric system iden-
tification methods have been widely used in the fault predic-
tion of rotating machinery such as bearings and gears. These
methods include time series analysis, regression analysis,
grey system theory or artificial neural network. For example,
Li et al. [8] used an improved multi-scale symbolic dynamic
entropy method (MMSDE) to quantify the regularity of time
series, which improves the prediction accuracy and effec-
tively diagnoses the fault of planetary gearbox. Zhen et al. [9]
proposed a multi-objective sparse implicit regression (MSIR)
method, which can simultaneously establish the internal
correlation and complex nonlinear input-output relationship
between targets in one framework, and can flexibly handle
this highly complex relationship. Alexander et al. [10] devel-
oped a method to judge the accuracy of a regression model
and by analyzing the shortcomings of the standard method
for conventional test fitting, and applied R-2 in model fitting
statistics. Ying et al. [11] employed a gray relation algorithm
for fault pattern recognition of a rolling bearing using the
extracted feature vectors. Jiang and his coauthors [12]–[14]
developed a variety of non-parametric methods for system
identification, damage detection and condition monitoring.

In recent years, the Artificial Neural Network (ANN)
method has been developed rapidly, which is able to solve
practical problems with complex uncertainty and time-
varying. The ANN prediction method can capture the non-
linearity in the time series. For example, Jiang et al. [15]
proposed a damage prediction model of turbomachinery
based on dynamic fuzzy Stochastic Neural Network (SNN)
for non-parametric system identification, which can capture

the nonlinear and random characteristics of the system and
carry out fault early warning for the collected informa-
tion. The reliability of the model is verified by Bayesian
hypothesis test. Martínez-Martínez et al. [16] established
an expert system based on artificial neural network, which
uses single point vibration signals of the machine to predict
the state of multiple rotating parts of agricultural machinery.
Ayodeji et al. [17] proposed a testing scheme to establish a
nuclear power plant operator support system by using Princi-
pal Component Analysis (PCA) and ANN, and evaluated the
prediction ability of Elman neural network and radial basis
function neural network. On the bench pressurized water
reactor simulator, the process is validated by using the data
collected from different failure scenarios. Cabrera et al. [18]
proposed a method of feature extraction and fault severity
estimation. The deep convolution neural network is trained
by the stack convolution self-encoder. Under the conditions
of constant or varying speed of rotating machinery, the data
sets with different fault severity are used to demonstrate the
robustness and accuracy of this method. Dou and Zhou [19]
compared and analyzed four direct classificationmethods like
probabilistic neural network for intelligent fault diagnosis of
rotating machine. Amare et al. [20] combined Auto Asso-
ciative Neural Network (AANN), nested Machine Learning
Classifier (MLC) and Multi-Layer Perceptron (MLP), and
proposed a hybrid intelligent technology to diagnose three
simultaneous failures in a double axis of the industrial gas
turbine engine.

In past decade deep learning methods have been broadly
applied for fault diagnosis and health management of
mechanical equipment, such as Recurrent Neural Network
(RNN) [21], [22] and Long-Short Term Memory (LSTM)
neural network methods. LSTM approach is an evolutionary
version of RNN, which effectively addresses the issue of
long-term dependence of effective information in time series.
In comparison to other models, the LSTM method is more
sensitive to the trivial features in the historical data, easier to
capture the details, suitable for big data processing, and more
accurate in time series prediction. Lee et al. [23] proposed a
Function based Hierarchical Framework (FHF) based LSTM
method for autonomous operation of a nuclear power plant
safety system. A small nuclear simulator was used to train
and validate the LSTM network. According to the charac-
teristics of reciprocating vibration signals, Tian et al. [24]
proposed a hybrid predictionmodeling strategy by combining
the autocorrelation local characteristic-scale decomposition
and the improved LSTM neural network. Zhang et al. [25]
proposed a LSTM approach for bearing performance degra-
dation evaluation. Numerical results show that the proposed
LSTM method can effectively predict the remaining service
life of the bearing. Yang et al. [26] presented a new method
of fault detection and isolation of electromagnetic bearings.
A LSTM neural network was used to build a sensor data
model, which can effectively process time series data. A slid-
ing window is employed to improve the performance of the
LSTMmodel applied to fault isolation. Li et al. [27] proposed
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a LSTM method for fault diagnosis and isolation of wind
turbine, where stochastic forest algorithm is applied to make
decision, and validated by numerical comparison with a wind
turbine benchmark Simulink model.

In order to improve the data quality and facilitate the
subsequent data analysis and mining as well as modeling,
data preprocessing is conducted by identifying and imput-
ing the bad data. Recently, Lee et al. [28] proposed a
comprehensive state-of-the-art review on diagnostics and
health management design for rotary machinery systems,
emphasizing the key role of signal processing technology in
the damage diagnosis and prediction of rotary machinery.
Montalvo and García-berrocal [29] applied the Discrete
Wavelet Transform (DWT) method to monitor and diagnose
resistance temperature detector related to the safety of a
nuclear power plant. The method was demonstrated to effec-
tively reduce the dispersion of estimated response time, and
eliminate the non-stationary features such as trend and peak
in the signal. Upadhyaya et al. [30] enhanced the sensor
measurement by using the wavelet transform to filter the
low and high frequency components of nuclear power plant
sensor data.Wavelet transform is used for signal conditioning
to minimize signal bandwidth distortion, which provides an
effective method for data preprocessing. Baraldi et al. [31]
proposed a hybrid method to diagnose faults from similar
transients by combining Haar wavelet transform, fuzzy simi-
larity, spectral clustering and the Fuzzy C-Means algorithm,
and illustrated its effectiveness by applying it to the transient
process resulted from different faults of nuclear power reactor
regulators.

Recently principal component analysis-based dimen-
sion reduction technique has been widely applied to
speed up model convergence and improve prediction accu-
racy in fault detection and isolation of turbomachinery.
Yong-Kuo et al. [32] combined PCA, directed graphG (SDG)
and Elman Neural Network (ENN) methods for fault detec-
tion, fault isolation and severity estimation of nuclear power
plants. Park et al. [33] developed a PCA-based transient
monitoring system for the secondary system of nuclear power
plant, where the operation data was reduced to smaller dimen-
sion. Li et al. [34] proposed two PCAmodels based on statis-
tics and iteration for sensor fault detection of nuclear power
plant. The combined model made the fault monitoring more
effective and efficient. Wu et al. [5] proposed a PCA-based
FDD framework for nuclear power plant pressurized water
reactor. The fuzzy theory along with PCA was used as data
fusion approach to integrate the data of multiple sensors into
one node.

When the abovementioned methods are applied for fault
early warning and diagnosis of large-scale nuclear power
machinery, they need to be improved to address the following
issues: 1) incomplete data, 2) impact of multivariate correla-
tion, 3) nonlinear and stochastic behavior of nuclear power
rotating machinery, and 4) quantitative evaluation of pre-
diction model. This study attempts to propose an intelligent
probability method to establish an accurate predictive model

for fault identification of nuclear power machinery to deal
with the above four issues.

This paper ingeniously combined advanced signal pro-
cessing, pattern recognition, intelligent algorithm and prob-
abilistic decision-making methods, and proposed a Bayesian
LSTMalgorithm for intelligent fault early-warning of nuclear
power machinery. The wavelet packet threshold denoising
and PPCA are used to preprocess the raw data collected from
the nuclear plant. The principal component inverse search
method is developed to quickly find out the abnormal signal.
The LSTM model is proposed to predict the system response
of the nuclear plant. A Bayesian framework is developed
to quantitatively validate the predictive model. The early
warning logic is developed to identify fault creep stage and
monitoring system fault by making full use of the prior infor-
mation of the historical data.

II. DATA PROCESSING AND DATA INTEGRATION
TRANSFORMATION
A. WAVELET PACKET DENOISING
Wavelet packet analysis is employed to remove the noise
from the raw data collected from the turbomachine system.
Compared with discrete wavelet transform, which only trans-
forms the low-pass filtering results, wavelet packet trans-
form is more precise, which decomposes both low-pass and
high-frequency parts, as shown in Fig. 1. After a noisy signal
is decomposed into multiple layers, its energy is mainly
concentrated in the partial wavelet packet decomposition
coefficients. Whereas the noise energy is distributed in the
coefficients of the whole wavelet domain, and the amplitude
of the wavelet packet transformation coefficients of the signal
itself is larger than that of the noise [35]. Thus, the wavelet
packet transform coefficients can be split out by setting an
appropriate threshold to filter out the noise part in the decom-
posed coefficients. Accordingly, wavelet reconstruction is
carried out to obtain the cleaned signal.

FIGURE 1. Schematic diagram of three-level wavelet decomposition.

The threshold plays a key role on the denoising effect of
wavelet packet transform method. The traditional wavelet
denoise method utilizes general, sure or GCV threshold.
None takes into consideration the prior information of
the original signal wavelet coefficient. This study employs
Bayesian inference to determine the threshold, which takes
the advantage of prior information.
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In Discrete Wavelet Packet Transform (DWPT), a sig-
nal f (t) with n discrete data points can be represented as

f (t) =
+∞∑
j=−∞

fj (t) by wavelet decomposition, where fj (t)

is the coefficient series at j level, and j is the position index
representing the scale and also the level to be further decom-
posed. Therefore, the wavelet coefficients fj (t) can be further
decomposed into multiresolution wavelet components:

fj (t) =
2k−1∑
m=0

f nj−k (t)

=

2k−1∑
m=0

∑
l∈Z

d j−k,nl wn
(
2j−k t − l

)
, n=2k+m (1)

where k represents the number of successive decomposition
levels, 0 ≤ k ≤ j. Generally, the number of levels is 3-5.
The coefficient

{
d j−k,nl

}
is called the orthogonal wavelet

packet decomposition coefficient with the resolution ratio of
j-k, l is the corresponding coefficient length, and wn (t) is the
wavelet function [36]. The wavelet functions commonly used
for denoising are dbN (Daubechies) wavelet, symN (Symlet)
wavelet and coifN (Coiflet) wavelet. The next level decom-
position coefficient

{
d j,2nl

}
and

{
d j,2n+1l

}
of
{
d j+1,nl

}
can be

obtained by the following iterative formula:
d j,2nl =

∑
k∈Z

hk−2ld
j+1,n
k

d j,2n+1l =

∑
k∈Z

gk−2ld
j+1,n
k

(2)

The initial value of Eq. (2) is the discrete data itself. After
the wavelet coefficients are cleaned by thresholding at each
decomposition level, a cleansed signal can be reconstructed
by:

d j+1,nl =

∑
k∈Z

[
hl−2kd

j,2n
k + gl−2kd

j,2n+1
k

]
(3)

The Bayesian shrinking threshold estimation method [37]
is utilized to determine the threshold value. The calculation
formula is T (j, n) = σ 2/σx , where σ 2 is the variance of
contaminated signals, and σx is the variance of the original
signal. By using the soft threshold function, the wavelet
coefficients can be filtered:

d j,nl =

 sgn(d j,nl )(
∣∣∣d j,nl ∣∣∣− T (j, n)), ∣∣∣d j,nl ∣∣∣ ≥ T (j, n)

0,
∣∣∣d j,nl ∣∣∣ ≤ T (j, n) (4)

B. BAYES PROBABILISTIC PRINCIPAL COMPONENT
ANALYSIS
For a pump or steam turbine in a nuclear plant under the
condition monitoring, there are hundreds of parameters to
be monitored such as rotating speed, vibration, temperature,
eccentricity, and axis displacement. In this study Bayesian
PPCA [38] is employed for dimension reduction and uncer-
tainty processing of the data prior to model prediction.

Different from traditional PCA the PPCA keeps part of the
discarded information through Gaussian noise thus retaining
more useful information from the original signal in the prin-
cipal components.

In PPCA the data sample Xd×n with d variables and n
points is expressed as X =Wz+ µ+ ε, where W is weight
vector with the dimension of d × q, (q ≤ d); z is the q × n
reduced principal components of X in which z ∼ N

(
0, Iq

)
is the random Gaussian vector; µ is the sample mean, and ε
is the noise, which is assumed to obey the Gaussian distribu-
tion with variance σ 2

. By using Bayes formula, the posterior
probability P (z|X) ∼ N

(
M−1WT (X− µ) , σ 2M−1

)
of z

can be obtained, where M =
(
σ 2Iq +WTW

)−1
[38]. Thus,

the expectedM−1WT (X− µ) of the posterior probability of
z is treated as of the reduced principals for X. The unknown
parameters W and σ 2 are estimated by the maximum likeli-
hood function as follows:

Ŵ = Uq

(
3q − σ

2Iq
)1/2

R (5)

σ̂ 2
=

1
d − q

d∑
j=q+1

λj (6)

where λj is obtained by decomposing the covariance matrix
of sample X according to the eigenvalue, that is, Cvj = λjvj,
where vj is the eigenvector with Uq =

(
v1, v2, . . . , vq

)
,3q =

diag
(
λ1, . . . , λq

)
. Then the dimension reduced variable z can

be expressed as:

z =M−1Ŵ (X− µ) (7)

Notes that when q = d , W−1X = z+W−1µ+W−1ε.
The principal component inverse search is carried out for
preliminary fault diagnosis by using W−1. For example,
W−1 can be expressed as:

W−1 =


w11 w12 · · · w1d
w21 w22 · · · w2d
...

...
...

...

wd1 wd2 · · · wdd

 (8)

where w12 is the contribution rate of the second dimension
signal in the data sample Xd×n to the first principal compo-
nent. Thus, the contribution of all signals to the first principal
component can be obtained. When the principal component
is abnormal, the signals with high contribution rate are iden-
tified to fail. Therefore, the PPCA is used in this study to
identify the anomaly in the signals effectively.

III. LSTM PREDICTION MODEL
A. INPUT AND OUTPUT LAYER DETERMINATION
The principal component obtained from the Bayesian PPCA
method is likely to be chaotic time series. The prediction of
chaotic time series has become an important research topic
in the field of signal processing. Takens [39] proposed a
delay phase space reconstruction and embedding theorem
for nonlinear time series. In the reconstructed phase space,
ANN which has strong nonlinear mapping ability is usually
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applied to approximate the mapping relationship between the
present and the future states to predict the chaotic time series.
In this study, the input and output of the neural network are
determined by the reconstructed embedding dimensionm and
the delay time τ .
Kim et al. [40] proposed the correlation integral Cross-

Correlation (C-C) method to estimate the delay time τ and
embedding dimension m simultaneously, and considered that
they are related to the delay window τw, expressed as τw =
(m− 1) τ . The original signal {x1, x2, x3, · · ·} can be con-
structed as a matrix of disjoint time series:

X =


x(1) x(1+ τ ) x(1+ 2τ ) · · · x(1+ (m− 1)τ )
x(2) x(2+ τ ) x(2+ 2τ ) · · · x(2+ (m− 1)τ )
...

...
...

...
...

x(τ ) x(τ + τ ) x(τ + 2τ ) · · · x(τ + (m− 1)τ )


(9)

Each row in the time series matrix is a time series vector.
The element of each row in the matrix is used as the input
node of the neural network, and the next τ time of the last
element in the row is used as the output node, thus yielding
the input and output layers. Furthermore, with the embedding
dimension and delay time, Lyapunov exponent may be used
to judge whether the signal is a chaotic time series. If Lya-
punov exponent is regular, the phase space reconstruction
is needed, otherwise τ = 1, and m can be determined by
enumeration method during the neural network training.

B. ESTABLISHING LSTM MODEL
Different from the traditional RNN, LSTM is able to solve
the issues of gradient disappearance and gradient explosion
in the training process, yielding more accurate prediction of
a long-term time series. A LSTMmodel is built to predict the
response value of the system under investigation. A single
LSTM unit is shown in Fig. 2, where xt is the response value
at time t , ht−1 is the transferred output of the last state, and
ct−1 is the historical information output of the last state. The
LSTM method splits xt and ht−1 into a vector composition

FIGURE 2. LSTM unit structure.

output, then multiplies four different weight matrices and
adds bias. Three of them are converted into values from
0 to 1 by sigmod function to obtain ft , it and ot which
corresponds to forgetting gate, input gate and output gate,
respectively. The other is converted into values from - 1 to 1
by tanh function to get lt . The output ht−1, ct−1, yt of the
current state are obtained by the Eq. (10) [41]:

ct = it � lt ⊕ ct−1 � ft
ht = ot � tanh(ct )
yt = σ (whyht )

(10)

where, � represents the multiplication of corresponding ele-
ments of matrix and⊕ represents the addition of correspond-
ing elements, so two matrices are required to be of the same
type.

To predict the time series, multiple units are connected and
the output is given in the last unit. The number of units is
determined by the embedding dimension m. The LSTM pre-
diction model corresponding to Eq. (9) is shown in Figure 3.
The initial input h0 and c0 of the first unit of each group are
random values, and the last unit of each group outputs the
prediction value x̂, which corresponds to the next τ time point
of the input time point of the last unit in the group.

The back-propagation algorithm is employed to update
the weights. For the LSTM prediction model, four groups
of weight matrices need to learn, which are the weight
matrix Wf of forgetting gate, the weight matrix Wi of input
gate, the weight matrix Wo of output gate, and the weight
matrixWl of calculating unit state and their respective offsets
term.At time t , the output value of LSTM is ht . The error term
δt−τ of time t − τ can be expressed as Eq. (11) by the error
of time t , and E is the cross-entropy loss function expressed
as E = −[xlnx̂ + (1 − x) ln(1 − x̂)]. For the derivation of
∂ht /∂ht−τ , i.e., the parameter training, please refer to [42].

δt−τ =
∂E
∂ht−τ

= δt
∂ht
∂ht−τ

(11)

C. MODEL VALIDATION
The data set is divided into three parts: training, validation
and testing set. The training data set is used to build the
model. The validation set is used to evaluate the accuracy of
the model prediction. Most commonly used model validation
metrics includeMean Square Error (MSE) and decision coef-
ficient R2. MSE explains the degree of deviation between the
model prediction and the actual data. The decision coefficient
R2 indicates the superiority of the model compared with the
direct mean value. The R2 value falls in between 0-1, with
one indicating an ideal model. However, these two metrics
couldn’t take into account the uncertainties in the actual
measurement and model prediction. A Bayesian hypothesis
test method [43]–[45] is developed to address the issues of
the abovementioned two metrics. The Bayesian approach
accounts for the data uncertainties, quantifies confidence on
themodel reliability as well as considers the prior information
of the training set.
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FIGURE 3. LSTM prediction model after phase space reconstruction of time series.

It is assumed that the model prediction is represented by
ypred =

{
ŷ1, ŷ2, · · · , ŷn

}
, and the corresponding actual data

is yexp = {y1, y2, · · · , yn}, where n is the number of data.
Let ei = yi − ŷi represent the residual of the i-th actual
signal and the i-th output signal, we have the n residuals
ε = {e1, e2, . . . , en}. Generally, the residual variable ei is
assumed to follow the normal distribution N

(
µ, σ 2

1

)
, and

thus the mean value ε̄ of residuals would follow the nor-
mal distribution N

(
µ, σ 2

1 /n
)
. The original hypothesisH0 and

alternative hypothesis H1 is established:

H0 : µ = 0,H1 : µ 6= 0

Assuming that the prior probability density of µ is
N
(
0, σ 2

0

)
, the training set is usually used as the prior informa-

tion for the selection of σ 2
0 . In other words, the mean value of

the prediction error of the training set is calculated by sections
with a certain size of window, and the variance of the mean
value is taken as σ 2

0 . By combining with the regularity of
normal distribution, the edge density function of ēi to g(µ)
is [14]:

m(x̄) =
∫
∞

−∞

p(ε̄|µ)g(µ)dµ

=
1√

2π (σ 2
0 +σ

2
1 /n)

exp
{
−
ε̄2

2
/
(
σ 2
0 +σ

2
1 /n

)}
(12)

The Bayesian factor can be expressed as:

Bπ (ε) =
p(ε̄|µ)
m(ε̄)

=

√
1+

nσ 2
0

σ 2
1

exp

{
nε̄2

2

(
−

1

σ 2
1

+
1

nσ 2
0 +σ

2
1

)}
(13)

By using Eq. (13), a posterior probability can be obtained:

λ = π (µ|ε̄) =
[
1+

1− π0
π0

1
Bπ (ε)

]−1
(14)

where λ is the confidence on the reliability of the prediction
model. When Bπ (ε) → 0, λ → 0, which indicates the
zero confidence of supporting the model, that is, the model
is invalid. Conversely, when Bπ (ε) → ∞, λ → ∞, which
indicates the full confidence of supporting the model, that is,
the model is reliable.

D. FAULT EARLY WARNING
After the model is validated to provide accurate prediction,
the real-time prediction results are next used to evaluate
the health status of the system under monitoring. As shown
in Fig. 4, when the component in a machinery or monitoring
system has fault at a certain time, the collected signals will
demonstrate anomaly trend or feature, which can be detected
by themonitoring system. The anomaly is usually represented
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FIGURE 4. Error between fault signal, Hypothetical health signal and
prediction signal.

by a large error ε in the signals under the hypothetical healthy
state. Before the failure time, the predictivemodel established
from the historical health data is used to produce the healthy
response of the system. There will be a larger gap ε′ between
the model prediction and actual data during the monitoring to
indicate the anomaly in the system, as shown in the figure 4.
An early warning alarm can be triggered by identifying this
kind of large deviation in the monitoring and predefining a
threshold.

In this study a threshold value ζ is predefined as the maxi-
mum absolute value emax of the error between the model pre-
diction and the actual data of the validation set. The validation
data set is the historical time series collected under the healthy
condition of the turbomachine unit. If the model prediction
deviation exceeds the maximum error of the validation for a
certain period during real-time condition monitoring, the unit
can be judged to have potential fault in some components
which need to be inspected.

IV. ILLUSTRATIVE EXAMPLE
A. DESCRIPTION OF DATA SET
In this study, one-month operation data collected in the hour
interval from a high and intermediate pressure (HIP) cylinder
of a steam turbine in a real-world nuclear power plant is
employed to illustrate the effectiveness and feasibility of
the proposed methodology. Steam turbine is a large and
high-fidelity high-speed rotating machine. In this example,
the proposed methodology is demonstrated to provide early
warning for the turbine during the creep period of steam
turbine failure.

There are 29 critical factors of a steam turbine investi-
gated in this example, including vibration, differential expan-
sion (difference of expansion between cylinder and rotor),
rotor shaft displacement, temperature and rotation speed,
as defined in Table 1, and 720 data points for each factor.
These factors are used to represent the overall health status
of the steam turbine. The monitoring positions are shown
in Fig. 5. The nominal maximum power of the steam turbine
is 1118 MW, the rated rotation speed is 1500 rpm, the steam
pressure prior to the high-pressure stop valve is 6.4 MPa,

TABLE 1. Description of sampling signal.

FIGURE 5. Schematic diagram of monitoring points.

TABLE 2. Sample data of HIP cylinder.

and the steam temperature is 280 ◦C. Table 2 shows the
sampling data and the factor description of the HIP cylinder.
The sample period is from 0 a.m. on April 1, 2019 to 23 p.m.
on April 30, 2019. In this example, the data before April 18 is
used for model training, the data from April 19 to April 24 is
used for model validation, and the data after April 24 is used
for model testing.

B. DATA ANALYSIS
Data imputation is first conducted to improve the data quality.
Fig. 6 shows the comparison of the raw data and processed
data which demonstrates the defect of the speed signal for the
rotor shaft. The training and validation data sets are imputed
by the regression interpolation method, with the purpose of
building an accurate predictive model. The two data points
before and after the missing value are employed to impute
the missing one via the interpolation and the bad data in the
testing set will be used as the diagnostic object.

The wavelet threshold denoising method is applied for
vibration signals with different noise degrees. The three-level
discrete wavelet packet analysis with db8 function is
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FIGURE 6. Comparison of raw and processed data for rotor shaft speed
signal.

conducted for the time series signal to obtain 8wavelet coeffi-
cients. The Bayesian threshold method is then applied to each
wavelet coefficient for denoising. The cleansed vibration sig-
nal is reconstructed from the denoised wavelet coefficients.
Fig. 7 compares the raw and denoised data in both the time
(Fig. 7a) and frequency (Fig. 7b) domains. It can be observed
that the Bayesian wavelet denoising algorithm provides an
effective approach to filter the noise while retaining useful
information in the signal.

FIGURE 7. Noise reduction effect of vibration signals (a) time domain
(b) frequency domain.

C. DIMENSION REDUCTION
The Bayesian PPCA analysis method is employed to reduce
the data dimension. Fig. 8 shows the results of PCA analysis
on 29 dimensional signals. It is observed that the first princi-

FIGURE 8. PCA contribution rate of 29 dimensional signals.

pal component only accounts for 28% of the information in
the data set. The first 12 principal components are required to
retain 80% of the information. Therefore, the traditional PCA
is not effective in dimension reduction for this example.

To improve the model prediction accuracy with more data
information, principal components are combined with actual
signals in the modeling. The differential expansion and axial
displacement are directly used in the model. PCA is applied
for vibration, temperature and rotation speed variables. The
dimension reduction effect is shown in Table 3, where wi
represents the contribution rate of each signal to the first
principal component after PCA analysis. The values in shad-
owed cells represent the factors that make more contribution
to the main components. These factors would play a key
role on the condition assessment of the system in the fault
diagnosis, which will be subsequently investigated by using
the principal component inverse search method.

TABLE 3. PCA weights and contribution rates of parameters.

The phase space reconstruction of principal components
is employed to determine the input layer of the prediction
model. Fig. 9 shows the response value of the discrimination
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FIGURE 9. Phase space reconstruction of vibration signal principal
component by C-C algorithm.

formula for the principal component using the C-C algorithm
at different delay times. From the figure, the delay time τ = 4
or τ = 3, τw = 7 are obtained, resulting in the embedding
dimensionm = 4 orm = 3, and 4 input units of the prediction
model.

In Fig. 9, the Correlation Integral (CI) tends to be stable
with the time delay. The Lyapunov index, λ = 0.034>0, cal-
culated by using CI, determines that the principal component
time series is chaotic. The process is applied for phase space
reconstruction of other signals and principal components. The
results are shown in Table 4. It is found that except for the
differential expansion other time series produce the positive
Lyapunov index, indicating that the phase space reconstruc-
tion is needed for those time series.

TABLE 4. Lyapunov index of various signals.

D. DATA RECONSTRUCTION
Fig. 10 explains the construction process of the predic-
tion model. For the vibration principal component, take the
embedding dimension m as the number of input units and the
delay time τd as the distance between the input points.

Various combinations of delay time and embedding dimen-
sion are used to establish the model and the model accuracy is
justified through R2 (goodness of fit). The range of R2 value
is 0 ∼ 1 with one indicating the best model. Table 5 shows
the goodness of fit value and mean square error of each delay
time in different embedding dimensions. It is observed that
the results of different combinations are close. The R2 values
for all models are larger than 0.95, and the mean square

FIGURE 10. Construction process of prediction model.

TABLE 5. Prediction model accuracy under different combinations of
embedded dimension and delay time.

error is also around 0.01, which indicate that the model can
accurately predict the future signal value, thus generating a
reference value to evaluate the turbine health by comparing
with the actual monitoring value.

The combination of the embedding dimension 4 and delay
time 3 is chosen to construct the prediction model for turbine
condition monitoring. In the model validation, the R2value is
0.976 and the mean square error is 0.00893. In the model test-
ing, the R2 value is 0.950 and the mean square error is 0.0104.
The comparison of predicted and measured time series is
shown in Fig. 11 in terms of model training, validation and
testing. The prior probability of model accuracy is assumed
to be 50%, i.e., π0 = 0.5. The proposed Bayesian reliability
assessment method is applied to solve the λ value of the
prediction data in the model validation. As shown in Fig. 12,
with the accumulation of time and the increase of the sample
size, the confidence level tends to stabilize 92%, indicating
that the prediction model is acceptable. The similar results
are obtained in analysis of the other four types of signal
in Table 1.
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FIGURE 11. Prediction of vibration principal component signal.

FIGURE 12. Bayesian confidence of prediction model.

In addition, the prediction accuracy of LSTM and RNN
model is compared and Fig. 13 shows the comparison results
for the speed in validation data series. It is observed that
the error of RNN model is obviously larger than that of the
LSTM model with the maximum value of 0.4 for the former
while only 0.2 for the latter. The LSTM model shows better
prediction effect.

FIGURE 13. Prediction results of LSTM and RNN models.

E. FAULT EARLY WARNING
In this example, the error size is used as an indicator to
evaluate the condition of the turbine under investigation.
Fig. 14 shows the error values between the model prediction
and the actual data of various signals in validation and testing
data sets. The maximum absolute value of the validation data

FIGURE 14. Error curves of each signal validation set and testing set.

set error emax is used as the standard deviation to define the
warning threshold in the testing data set, as shown as the red
line in Fig. 14. From Fig. 14, the error of the temperature prin-
cipal component signals from April 24 to April 26 between
measurement and model prediction obviously exceeds the
warning line for a long time, indicating that the turbine has
an operation anomaly or equipment fault during this period.
In addition, Fig. 14 presents that the rotation speed and
displacement also have a short error overflow threshold in a
certain period of time, and then return to normal.

The fluctuation of the error value shown in Figure 14 gener-
ally results from three possible sources: 1) variation of normal
operation, 2) data uncertainties and 3) the possible fault in
components. The data collected from the healthy status of the
system usually shows the fluctuation resulted from the first
two sources. Therefore, the prediction model trained by the
healthy data produces the output with the similar error fluc-
tuation as expected. The corresponding threshold determined
by the healthy data has taken into account the fluctuation
due to the first two sources. The fault will be identified if
the error exceeds the predefined threshold. In future research,
more robust metric based on Bayesian hypothesis testing will
be developed to judge the system status by considering the
variation and data uncertainties.

According to the weight information of PCA, the fac-
tors with larger influence on principal component can be
checked first. For instance, in fault diagnosis on the abnormal
situation of the principal component of the rotation speed
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FIGURE 15. Actual value of sub signal of rotation speed in testing set.

from April 26 to April 27, the second and third rotation
speed signals with great influence on principal component
are judged first by the principal component inverse search
method. These two signals correspond to the bearing rotation
speed. Fig. 15 illustrates the curves of the two kinds of signals
corresponding to the actual monitoring values of the testing
data set. The second bearing speed has obvious sampling
abnormality from 24th to 26th, but its detection value is still
within the normal threshold range of the monitoring system
andwill not give an alarm. However, the proposed early warn-
ing method successfully identifies the signal defect, which
can inform the crew to analyze the signal in details and carry
out deeper fault diagnosis.

V. MODEL RELIABILITY VALIDATION
To further validate the reliability of the model, the vibration
signal is extracted to analyze the crack generation and prop-
agation on the secondary impeller of pneumatic pump in the
turbine. The blue curve in Fig. 16 shows the signal change
in about four months. Six alarms from the monitoring system
indicate that the vibration signal exceeded the system thresh-
old 6 times. In addition, the signal value fromMay 6 toMay 7
has a small abnormality caused by the sensor, but it does not

TABLE 6. Early warning statistics of Bayesian Lstm model.

exceed the threshold, and themonitoring system does not give
an alarm.

The signal is processed in the order of wavelet packet
denoising, phase space reconstruction and LSTM model pre-
diction. The Bayesian LSTM model is established by using
health data before February 10 as training set and health data
from February 10 toMarch 1 as validation set. The prediction
error of the model is shown in the orange curve of Fig. 16,
and the threshold range is determined by the maximum and
minimum value of the validation set error. As shown in the
figure, the model correctly predicted all 6 system alarms,
with a missed diagnosis rate of 0%. On May 6, the prediction
model produced an alarm for the abnormality not detected
by the monitoring system. Sorting out these seven faults,
the alarm time of monitoring system and prediction model
are listed in table 6. The LSTM model predicts all faults and
given an alarm 31 hours in advance on average. In addition,
during the normal period, the prediction model produced four
alarms on March 22, April 9, April 18 and April 26, respec-
tively. Despite a small amplitude and short duration, these
four alarms indicate that the signal change law is abnormal
compared with the training set, which is also validated by the
continuous and serious crack fault observed later. The above
analysis illustrates that the model can predict the alarms of
the monitoring system and sensor failures in advance.

FIGURE 16. The prediction result of Bayesian LSTM model on crack failure.
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VI. CONCLUSION
This paper presents a Bayesian LSTM model for fault early
warning of steam turbine in nuclear power plant. The main
conclusions are drawn as follows:

(1) The proposed early warning model focuses on solving
the problems that are difficult to find during the creep period
of the steam turbine unit failure. Through using 29 critical
factors in steam turbine like vibration, temperature, displace-
ment and speed, the Bayesian LSTM predictive model has
been validated with 92% confidence and demonstrated to
accurately identify defects.

(2) In the PPCA dimension reduction, the signals are
regrouped according to the type in order to improve the
effectiveness of the method in terms of contribution rate from
28% to 60% for the first principal component. In addition,
the principal component inverse search method is studied.
The weights of each signal to the principal component are
investigated by the PPCA weight inverse matrix so that the
PPCAprovides ameans to fault diagnosis after early warning.

(3) The error of the validation data set is used as the prior
information to define the warning threshold. When the abnor-
mity is detected, by using the principal component inverse
search method to detect the signal with high contribution
rate, specific abnormal signals can be identified. In the case
study, it is successfully found that the abnormity of the prin-
ciple component of rotation speed is caused by the abnormal
sampling of the bearing signal. In the crack fault prediction,
the proposed model successfully predicted all alarms sent by
the equipment monitoring system.

In future research we will further investigate the proposed
methodology by using the simulated data.
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