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ABSTRACT In this paper, new conditions of the stability, stabilization and L2-gain performance of periodic
piecewise systems are proposed. Both the continuous and discontinuous Lyapunov functions with dwell-time
related time-varying Lyapunov matrix polynomial are adopted, and methods guaranteeing the positive and
negative definiteness of a matrix polynomial are introduced. Exponential stability conditions are derived
based on continuous and discontinuous Lyapunov functions, respectively. A stabilizing controller with
time-varying controller gain is designed with continuous Lyapunov function and the weighted L2-gain
performance based on the discontinuous Lyapunovmatrix polynomial is studied aswell. Numerical examples
are used to verify the effectiveness of the proposed methods.

INDEX TERMS Periodic piecewise systems, time-varying Lyapunov matrix, matrix polynomial, analysis
synthesis.

I. INTRODUCTION
The periodic system gives a framework for modeling systems
with periodic features in engineering, ecological, and eco-
nomic fields, such as rotor-blade systems [1], satellite attitude
control systems [2], communication systems [3]. It has been
widely investigated over the past decades [4]. Periodic piece-
wise system is a special kind of periodic system because it
consists of several subsystems in one period and the switching
signal between subsystems is fixed and periodic. Periodic
piecewise systems can be found in mechanical and electric
engineering [5]. Especially in power systems, kinds of power
converters are typical periodic piecewise systems [6]. Apart
from its broad applications in engineering, periodic piecewise
system is used as the approximate system of continuous-time
periodic system [7]. Since control problems of continuous-
time periodic systems are more challenging than the discrete-
time periodic systems [8], analysis and synthesis results of
periodic piecewise systems can help study continuous-time
periodic systems.
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Because of its value in application and continuous-time
periodic systems study, the periodic piecewise system attracts
much attention in recent years [9]–[15]. The stability, L2-gain
and generalized H2 performance indices are investigated
in [9], [10], respectively. The finite-time stability condition
of the periodic piecewise system is proposed in [11]. An H∞
controller is designed to control the system output under
disturbance in that work. For periodic piecewise systems with
time-delay, an H∞ control problem is discussed in [12]. The
disturbance attenuation performance of mechanical systems
with periodic piecewise coefficients is investigated in [13],
where a saturated controller is designed to attenuate the sys-
tem vibration. Sufficient condition is established in [16] to
study the global exponential stability of neural networks with
periodic coefficients and piecewise constant arguments.

For a periodic piecewise system, its subsystems sequence
and the dwell time of each subsystem are fixed. In other
words, it has a known and inalterable switching law. Tech-
niques used in switched systems [17]–[21] can be applied
in the analysis and synthesis of periodic piecewise systems.
In order to obtain possible less conservative results, efforts
are put on improving the Lyapunov function and Lyapunov
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matrix formats. A continuous Lyapunov function with time-
varying Lyapunov matrix is adopted in [9]–[11], [13]. On the
contrary, multiple Lyapunov functions with time-varying
Lyapunov matrices are applied in [12], [14]. No matter the
continuous or the multiple Lyapunov functions, the time-
varying Lyapunov matrices established in the results men-
tioned above are formulated in the linear interpolation form
of time. To further improve the Lyapunov matrix, the matrix
polynomial formulation is proposed in [15], where more
free variables are introduced in the constructed Lyapunov
function. In that work, the constraints on exponential order
of each subsystems are relaxed as well.

The square matricial representation (SMR) and the sum
of square (SOS) techniques [24], [25] are well-known tech-
niques in dealing with the matrix polynomial. Nonconserva-
tive results are obtained for switched systemswith guaranteed
dwell time and arbitrary switching [26], [27]. These methods
are also adopted for periodic piecewise systems in [15] to han-
dle the time-varying Lyapunov matrix polynomial. Motivated
by the aboveworks, new conditions of the stability, stabilizing
and L2-gain performance are proposed in this paper based on
thematrix polynomial approach. Different from [15], a dwell-
time related time-varying Lyapunov matrix polynomial is
adopted in this work, and a new method is introduced to
handle the matrix polynomial issue. Compared with previous
works, contributions of this work can be concluded as: 1. Both
continuous Lyapunov function and discontinuous Lyapunov
function with dwell-time related Lyapunov matrix polyno-
mial are used. The discontinuous Lyapunov function could
introduce more decision variables in the stability and per-
formance analysis. The continuous Lyapunov function could
result in a directly solvable periodic time-varying controller.
2. The weighted L2-gain performance analysis is carried out
based on the discontinuous Lyapunov function with time-
varying Lyapunov matrix polynomial, which has not been
reported in previous works. The paper is organized as follow.
The problem is formulated and preliminaries are given in
Section 2. In Section 3, stability, stabilization and L2-gain
performance analysis are provided. Numerical examples used
to demonstrate the advantage of the proposed methods is
given in Section 4. A brief conclusion is given in Section 5.
Notation: Rn denotes the n-dimensional Euclidean space.
‖ · ‖ stands for the Euclidean vector norm, the superscript ′

refers to matrix transposition, N+ denotes the set of positive
integers. D+(·) denotes the upper right Dini derivative and
P > 0 means that P is a real symmetric and positive definite
matrix. To facilitate the description, a non-negative integer `
is adopted to stand for the nominal number of fundamental
periods, that is, ` = 0, 1, . . ..

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a continuous-time T -periodic piecewise linear
system given by

ẋ(t) = A(t)x(t)+ B(t)u(t)+ Bw(t)w(t),

z(t) = C(t)x(t)+ D(t)w(t) (1)

where x(t) ∈ Rr , u(t) ∈ Rd , w(t) ∈ Rs are the state
vector, control input and disturbance vector, respectively. For
t ≥ 0, one has A(t) = A(t + T ), B(t) = B(t + T ),Bw(t) =
Bw(t + T ),C(t) = C(t + T ), D(t) = D(t + T ). Suppose the
interval [0,T ) is partitioned into S subintervals, each interval
can be given as [ti−1, ti), i = 1, 2, . . . , S, where t0 = 0, tS =
T The dwell time for the ith subsystem is Ti = ti − ti−1
with

∑S
i=1 Ti = T . Under the ith subinterval (subsystems),

(A(t),B(t),Bw(t),C(t),D(t)) is time-invariant and given by
(Ai,Bi,Bwi,Ci,Di). Then, system (1) is equivalently repre-
sented by, for t ∈ [`Tp + ti−1, `Tp + ti), i = 1, 2, . . . , S,

ẋ(t) = Aix(t)+ Biu(t)+ Bwiw(t),
z(t) = Cix(t)+ Diw(t).

In this work, the exponential stability, stabilization and
L2-gain performance are studied for system (1) with Lya-
punovmatrix polynomial. Definitions of exponential stability
of system (1) and matrix polynomial are given below for later
development.
Definition 1 (Exponential Stability [9]): Periodic piece-

wise system (1) with u(t) = 0,w(t) = 0 is said to be λ∗-
exponentially stable if the solution of the system from x(0)
satisfies ‖x(t)‖ ≤ κe−λ

∗t
‖x(0)‖, ∀t ≥ 0, for some constants

κ ≥ 1, λ∗ > 0.
Definition 2 (Matrix Polynomial [24]): The function P :

Rq
→ Rl×l is a matrix polynomial if Pi,j, i, j = 1, 2, . . . , l,

is polynomial.
For system (1), consider a Lyapunov function given as

V (x, t) = x ′P(t)x where P(t) > 0 is periodic with period T .
For t ∈ [`T + ti−1, `T + ti), i = 1, 2, . . . , S, V (x, t) can be
rewritten as

V (x, t) = Vi(x, t) = x ′Pi(t)x (2)

where P(t) = Pi(t).
Based on the Lyapunov function (2), both the continuous

and discontinuous Lyapunov functions are formulated in this
work. For the continuous Lyapunov function case, Pi(t) is
supposed to be continuous both during the ith subsystem and
at the switching instants. It implies that at each switching
instant, one has lim

t→`T+ti
P(t) = P(`T + ti). For the discontin-

uous Lyapunov function case, the switching of the subsystem
from i− 1 to i causes a bounded mode-dependent increment.
In other words, Pi(t) is continuous in the ith subsystem, but
discontinuous at each switching instant.

The following Lemma 1 is the general exponential stability
result of periodic piecewise systems based on a continuous
Lyapunov function.
Lemma 1: Consider periodic piecewise system (1) with

u(t) = 0,w(t) = 0. Given λ∗ > 0, if there exist λi,
i = 1, 2, . . . , S, two class K∞ functions κ1, κ2 and contin-
uous functions V (x, t) defined on t ∈ [0,∞) such that

κ1(‖x‖) ≤ V (x, t) ≤ κ2(‖x‖),
D+V (x, t)+ λiV (x, t) < 0,

2λ∗T −
∑S

i=1
λiTi ≤ 0,

then system (1) is λ∗-exponentially stable.
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Its proof could be easily concluded from [9] and [15].
Lemma 2 gives the general exponential stability condition

with discontinuous Lyapunov function.
Lemma 2: Consider periodic piecewise system (1) with

u(t) = 0,w(t) = 0. Given λ∗ > 0, if there exist λi,
µi > 1, i = 1, 2, . . . , S, two class K∞ functions κ1, κ2 and
continuous functions Vi(x, t) defined on t ∈ [`Tp+ti−1, `Tp+
ti), i = 1, 2, . . . , S satisfying

κ1(‖x‖) ≤ Vi(x, t) ≤ κ2(‖x‖),
D+Vi(x, t)+ λiVi(x, t) < 0,

Vi(x, `T + ti−1) ≤ µiVi−1(x, `T + ti−1),
V1(x, `(T + 1)) ≤ µ1VS (x, `(T + 1)),

S∑
i=1

lnµi + 2λ∗T ≤
S∑
i=1

λiTi,

then system (1) is λ∗-exponentially stable.
Its proof could be easily concluded from [14] and [15].

Based on the discontinuous Lyapunov function, the definition
of weighted L2-gain performance can be given as follow.
Definition 3 (Weighted L2-gain Performance): Given

scalars λ̂ > 0, σ > 0 and γ̂ > 0, periodic piecewise
system (1) with u(t) = 0 is said to be exponentially stable
with a weighted L2-gain γ̂ , if it is exponentially stable with
w(t) = 0, and under initial condition x(0) = x0, it holds for
any nonzero disturbance w(t) ∈ L2[0,+∞) that∫
∞

0
e−λ̂τ z′(τ )z(τ )dτ < σV (x0, 0)+ γ̂ 2

∫
∞

0
w′(τ )w(τ )dτ.

[14].

III. MAIN RESULTS
In this section, the periodic Lyapunov function with contin-
uous and discontinuous time-varying Lyapunov matrix poly-
nomials are constructed, respectively. Conditions concerning
the negative and positive definiteness of a matrix polynomial
are introduced. Based on these conditions, new results on
the exponential stability of periodic piecewise system are
proposed and a stabilizing controller is designed. In addition,
weighted L2-gain performance index of periodic piecewise
system based on discontinuous Lyapunov matrix polynomial
is also provided.

Construct a periodic Lyapunov matrix polynomial
P(t) = P(t + `T ) such that, for t ∈ [`T + ti−1, `T + ti),
i = 1, 2, . . . , S,

P(t) = Pi(t) =
n∑
j=0

(t − `T − ti−1)j

T ji
Pi,j

= Pi,0 +
(t − `T − ti−1)

Ti
Pi,1 + · · ·

+
(t − `T − ti−1)n

T ni
Pi,n (3)

where Pi,j, i = 1, 2, . . . , S, j = 1, 2, . . . , n, are constant
matrices and the degree of matrix polynomial P(t) is given
as n. One may observe that the Lyapunov matrix polynomial
adopted in (3) is dwell-time related.

In the discontinuous Lyapunov function case, the Lya-
punov matrix polynomial can be given as (3). That is, for the
ith subsystems, one has an independentPi(t), which is contin-
uous in the interval [`T + ti−1, `T + ti). As to the continuous
Lyapunov function case, the continuity is required at each
switching instant as well. One has P2,0 =

∑n
j=0 P1,j,P3,0 =

P1,0 +
∑2

i=1
∑n

j=1 Pi,j, · · · ,P1,0 = P1,0 +
∑S

i=1
∑n

j=1 Pi,j.
It indicates that

∑S
i=1

∑n
j=1 Pi,j = 0. Then, for the continu-

ous Lyapunov function case, P(t) can be rewritten as

P(t) =



∑n

j=0

(t − `T − ti−1)j

T ji
Pi,j, i = 1

P1,0 +
∑i−1

f=1

n∑
j=1

Pf ,j

+

∑n

j=1

(t − `T − ti−1)j

T ji
Pi,j, i = 2, . . . , S − 1,

P1,0 +
∑i−1

f=1

∑n

j=1
(1−

(t − `T − tS−1)n

T nS
)Pf ,j

+

∑n−1

j=1

(t−`T−ti−1)j

T ji
(1−

(t−`T−tS−1)n−j

T n−jS

)

×PS,j, i = S
(4)

Remark 1: It should be noticed that different degrees of
matrix polynomial could be allocated for different subsys-
tems. In that case, n will be rewritten as ni, which can be
chosen as any positive integers. In this work, a uniform degree
denoted as n is allocated for all subsystems to facilitate the
derivation.

Before providing the theorems, the following Lemma con-
cerning the negative definiteness of a matrix polynomial is
introduced first.
Lemma 3 [28]: Consider a bounded matrix polynomial

f (τ1, τ2, . . . , τn) given as

f (τ1, τ2, . . . , τn)=ϒ0+τ1ϒ1+τ1τ2ϒ2+· · ·+

(
n∏

k=1

τk

)
ϒn,

(5)

where n ∈ N+, ϒj, j = 0, 1, . . . , n are real symmetric
matrices, τk , k = 1, 2, . . . n are variables and τk ∈ [0, 1].
If

d∑
k=0

ϒk < 0, d = 0, 1, . . . , n,

then the matrix polynomial f (τ1, τ2, . . . , τn) < 0.
Similarly, one can obtain Lemma 4 concerning the positive

definiteness of a matrix polynomial. The proof can be easily
extended from the proof of Lemma 3.
Lemma 4: Consider a bounded matrix polynomial

f (τ1, τ2, . . . , τn) given as in (5), where n ∈ N+, ϒj, j =
0, 1, . . . , n are real symmetric matrix, τk , k = 1, 2, . . . n are
variables and τk ∈ [0, 1]. If

d∑
k=0

ϒk > 0, d = 0, 1, . . . , n, (6)

then the matrix polynomial f (τ1, τ2, . . . , τn) > 0.
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Then, by exploiting a Lyapunov function (2) with
continuous Lyapunov matrix polynomial (4), a stability con-
dition for periodic piecewise system (1) can be obtained in
Theorem 1.
Theorem 1: Consider periodic piecewise system (1) with

u(t) = 0,w(t) = 0. Given λ∗ > 0, if there exist λi and
matrices Pi,j, i = 1, . . . , S, j = 0, . . . , n satisfying

P1,0 > 0, (7)

P1,0+
g∑

f=1

k∑
j=1

Pf ,j>0, g=1, 2, . . . , S−1, k=1, . . . , n,

(8)

P1,0 +
S−1∑
f=1

n∑
j=1

Pf ,j +
k∑
j=1

PS,j > 0, k = 1, . . . , n− 1

(9)
k∑
j=0

4i,j < 0, i = 1, 2, . . . , S, k = 0, . . . , n, (10)

2λ∗T −
S∑
i=1

λiTi ≤ 0, (11)

where

41,j = A′1P1,j + P1,jA1 + λ1P1,j +
j+ 1
T1

P1,j+1,

j = 0, 1, . . . , n− 1,
41,n = A′1P1,n + P1,nA1 + λ1P1,n,

4i,0 = A′i(P1,0 +
i−1∑
f=1

n∑
g=1

Pf ,g)+ (P1,0

+

i−1∑
f=1

n∑
g=1

Pf ,g)Ai + λi(P1,0 +
i−1∑
f=1

n∑
g=1

Pf ,g)

+
1
Ti
Pi,1, i = 2, . . . , S,

4i,j = A′iPi,j + Pi,jAi + λiPi,j +
j+ 1
Ti

Pi,j+1,

i = 2, . . . , S − 1, j = 1, 2, . . . , n− 1,
4i,n = A′iPi,n + Pi,nAi, +λiPi,n, i = 2, . . . , S − 1,

4S,j = A′SPS,j + PS,jAS + λSPS,j +
j+ 1
TS

PS,j+1,

j = 1, 2, . . . , n− 2,
4S,n−1 = A′SPS,n−1 + PS,n−1AS + λSPS,n−1

−
n
TS

(
S−1∑
f=1

n∑
g=1

Pf ,g +
n−1∑
g=1

PS,g),

4S,n = −A′S (
S−1∑
f=1

n∑
g=1

Pf ,g +
n−1∑
g=1

PS,g)− (
S−1∑
f=1

n∑
g=1

Pf ,g

+

n−1∑
g=1

PS,g)AS − λS (
S−1∑
f=1

n∑
g=1

Pf ,g +
n−1∑
g=1

PS,g),

(12)

then system (1) is λ∗-exponentially stable.

Proof: Construct a Lyapunov function as in (2) with a
continuous time-varying Lyapunov matrix polynomial given
as in (4) for t ∈ [`T + ti−1, `T + ti), i = 1, 2, . . . , S.
From (7)–(9), one can obtain that in the ith subsystem, one

has
∑k

j=0 Pi,j > 0, k = 0, 1, . . . , n. Since t−`T−ti−1
Ti

∈ [0, 1],
according to Lemma 4, one has Pi(t) > 0. Because of
the continuity of P(t), one obtains P(t) > 0. It indicates
that one could find constants c1 > 0, c2 > 0 such that
c1‖x‖2 ≤ V (x, t) ≤ c2‖x‖2.
Moreover, with (10), one can obtain

D+Vi(x, t)+ λiVi(x, t)
= ẋ ′Pi(t)x + x ′Pi(t)ẋ + x ′D+Pi(t)x + λix ′Pi(t)x

= x ′

A′i n∑
j=0

(
(t − `T − ti−1)j

T ji
Pi,j)

+(
n∑
j=0

(t − `T − ti−1)j

T ji
Pi,j)Ai

+

n∑
j=1

(
j(t − `T − ti−1)j−1

T ji
Pi,j)

+λi

n∑
j=0

(t − `T − ti−1)j

T ji
Pi,j

 x

= x ′
(
A′iPi,0 + Pi,0Ai +

1
Ti
Pi,1 + λiPi

+
t − `T − ti−1

Ti
(A′iPi,1 + Pi,1Ai +

2
Ti
Pi,2 + λiPi,1)

+ · · · +
(t − `T − ti−1)(n−1)

T (n−1)
i

(A′iPi,n−1 + Pi,n−1Ai

+
n
Ti
Pi,n + λiPi,n−1)+

(t − `T − ti−1)n

T ni
(A′iPi,n

+Pi,nAi + λiPi,n)
)
x. (13)

Since Pi,0 = P1,0 +
∑i−1

f=1
∑n

j=1 Pf ,j, i = 2, . . . , S and
PS,n = −

∑S−1
f=1

∑n
j=1 Pf ,j−

∑n−1
j=1 PS,j, (13) can be rewritten

as

D+Vi(t)(t)+ λiVi(t)

= x ′(4i,0 +
(t − `T − ti−1)

Ti
4i,1 + · · ·

+
(t − `T − ti−1)j

T ji
4i,j + · · ·

+
(t − `T − ti−1)n

T ni
4i,n)x (14)

where 4i,j is given as in (12).
Since t−`T−ti−1

Ti
∈ [0, 1], then according to Lemma 3, one

has D+Vi(x, t) + λiVi(x, t) < 0. Then combining with (11)
and according to Lemma 1, one can conclude that system (1)
is λ∗-exponentially stable. �
Apart from the continuous Lyapunov function, discontin-

uous Lyapunov function with piecewise Lyapunov matrix
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polynomial is employed as well to develop the following
Theorem 2.
Theorem 2: Consider periodic piecewise system (1) with

u(t) = 0,w(t) = 0. Given λ∗ > 0, if there exist λi, µi > 1
and matrices Pi,j, i = 1, . . . , S, j = 0, 1, . . . , n satisfying

k∑
j=0

Pi,j > 0, i = 1, 2, . . . , S, k = 0, 1, . . . , n, (15)

k∑
j=0

ϒi,j < 0, i = 1, 2, . . . , S, k = 0, 1, . . . , n, (16)

Pi+1,0 ≤ µi+1
n∑
j=0

Pi,j, i = 1, 2, . . . , S − 1, (17)

P1,0 ≤ µ1

n∑
j=0

PS,j, (18)

S∑
i=1

lnµi + 2λ∗T ≤
S∑
i=1

λiTi (19)

where

ϒi,j = A′iPi,j + Pi,jAi + λiPi,j +
j+ 1
Ti

Pi,j+1,

j = 0, . . . , n− 1,

ϒi,n = A′iPi,n + Pi,nAi + λiPi,n, (20)

then system (1) is λ∗-exponentially stable.
Proof: For t ∈ [`T + ti−1, `T + ti), i = 1, 2, . . . , S,

construct a discontinuous Lyapunov function as in (2) with
Lyapunov matrix given as in (3). With (15) and according to
Lemma 4, one has Pi(t) > 0. Then one could find constants
c1 > 0, c2 > 0, such that c1‖x‖2 ≤ Vi(x, t) ≤ c2‖x‖2.

Following similar arguments in the proof of Theorem 1,
one would also have (13). With choosing τi =

(t−`T−ti−1)
Ti

,
one obtains
D+Vi(x, t)+ λiVi(x, t)

= x ′(ϒi,0 + · · · + τ
j
iϒi,j + · · · + τ

n
i ϒi,n)x.

Since τi ∈ [0, 1], with (16) and according to Lemma 3, one
has D+Vi(x, t)+ λiVi(x, t) < 0.
Moreover, with (17) and (18), one has Vi(x, `T + ti−1) ≤

µiVi−1(x, `T + ti−1), i = 1, 2, . . . , S, and
V1(x, `(T + 1)) ≤ µ1VS (x, `(T + 1)). Combining with (19)
and according to Lemma 2, one can conclude that system (1)
is λ∗-exponentially stable. �
Remark 2: One may find the results based on the Lya-

punov matrix polynomial are also reported in [15]. Different
from [15], a dwell-time related Lyapunov matrix polyno-
mial is used in this work, and the techniques introduced in
Lemma 3 is adopted to deal with the matrix polynomial issue.
Moreover, the condition based on discontinuous Lyapunov
function with Lyapunov matrix polynomial is also provided.
Remark 3: It can be seen that compared with Theorem 1,

more variables have been introduced in Theorem 2.
The constraint that the Lyapunov function should be contin-
uous at each switching instant has been relaxed.

Remark 4: One may observe that 4i,j is much more com-
plicated than ϒi,j. It comes from the fact that 4i,j can
be treated as a special case of ϒi,j with Pi,0 = P1,0 +∑i−1

f=1
∑n

j=1 Pf ,j, i = 2, . . . , S,
∑S

i=1
∑n

j=1 Pi,j = 0.
In the following, a controller with time-varying controller

gain based on continuous Lyapunov function is designed to
stabilize the unstable periodic piecewise systems. Consider
a periodic state-feedback control as, for t ∈ [`T + ti−1,
`T + ti), i = 1, 2, . . . , S, u(t) = Ki(t)x(t), where Ki(t)
is continuous and Ki(t + `T ) = Ki(t). Then the closed-loop
representation of system (1) can be given as

ẋ(t) = Aci(t)x(t)+ Bwiw(t),

z(t) = Cix(t)+ Diw(t) (21)

whereAci(t) = Ai+BiKi(t). It can be seen that the closed-loop
system with time-varying controller gain becomes a periodic
piecewise time-varying system. The following Lemma 5 con-
cerns the stability of periodic piecewise time-varying system
based on a continuous Lyapunov function (2).
Lemma 5 [15]: Consider periodic piecewise time-varying

system (21) with w(t) = 0, let λ∗ > 0 be a given
constant. If there exist λi, i = 1, 2, . . . , S, and a real
symmetric T−periodic, continuous and Dini-differentiable
matrix function Z (t) defined on t ∈ [0,∞) such that, for
i = 1, 2, . . . , S, t ∈ [`T+ti−1, `T+ti), Z (t) = Zi(t) satisfies

A′ci(t)Zi(t)+ Zi(t)Aci(t)+D+Zi(t)+ λiZi(t) < 0, (22)

2λ∗T −
S∑
i=1

λiTi ≤ 0, (23)

then system (21) is λ∗-exponentially stable.
Based on the above Lemma, a stabilizing controller can be

given as in Theorem 3.
Theorem 3: Consider periodic piecewise system (1) with

w(t) = 0, let λ∗ > 0 be a given constant. If there exist λi and
matrices Wi,j, Qi,j, i = 1, 2, . . . , S, j = 1, 2, . . . , n satisfying

k∑
j=0

Wi,j > 0, i = 1, 2, . . . , S, k = 0, 1, . . . , n, (24)

k∑
j

1i,j < 0, i = 1, 2, . . . , S, k = 0, 1, . . . , n, (25)

2λ∗T −
S∑
i=1

λiTi ≤ 0 (26)

where

Wi,0 =

n∑
j=0

Wi−1,j, i = 2, . . . , S, (27)

WS,n = −

S−1∑
f=1

n∑
j=1

Wf ,j −

n−1∑
j=1

WS,j, (28)

1i,j = AiWi,j +Wi,jA′i + BiQi,j + Q
′
i,jB
′
i

−
j+ 1
Ti

Wi,j+1 + λiWi,j,

i = 1, 2, . . . , S, j = 0, . . . , n− 1, (29)
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1i,n = AiWi,n +Wi,nA′i + BiQi,j + Q
′
i,jB
′
i

+ λiWi,n, (30)

then the closed-loop system is λ∗-exponentially stable,
the periodic state-feedback gain can be given as, for
t ∈ [`T + ti−1, `T + ti), i = 1, 2, . . . , S,

K (t) = Ki(t) = Qi(t)W
−1
i (t) (31)

with time-varying matrix function Qi(t) and continuous time-
varying matrix function Wi(t) given as

Qi(t) =
n∑
j=0

(t − `T − ti−1)j

T ji
Qi,j, (32)

Wi(t) =
n∑
j=0

(t − `T − ti−1)j

T ji
Wi,j. (33)

Proof: For t ∈ [`T + ti−1, `T + ti), i = 1, 2, . . . , S,
with (27), (28) and (33), one obtainsW (t) is continuous. Then
with (24) and according to Lemma 4, one has W (t) > 0.
Construct a Lyapunov function V (x, t) = x ′W−1(t)x =
x ′Z (t)x, then one has Z (t) > 0, and it is continuous for
x(t) 6= 0.

Following the similar argument in the proof of Theorem 1,
choosing τi =

(t−`T−ti−1)
Ti

one has

Wi(t)A′i + AiWi(t)+ BiQi(t)+ Q′i(t)B
′
i

−D+Wi(t)+ λiWi(t)

= 1i,0 + τi1i,1 + · · · + τ
n
i 1i,n.

Since τi ∈ [0, 1], according to Lemma 3, then one has

Wi(t)A′i + AiWi(t)+ BiQi(t)+ Q′i(t)B
′
i

−D+Wi(t)+ λiWi(t) < 0. (34)

Left-multiply and right-multiply Zi(t) = W−1i (t) of (34), one
has

A′ci(t)W
−1
i (t)+W−1i (t)Aci(t)

−W−1i (t)D+Wi(t)W
−1
i (t)+ λiW

−1
i (t) < 0. (35)

Since D+W−1(t) = −W−1(t)D+W (t)W−1(t), (35) can be
rewritten as

A′ci(t)Zi(t)+ Zi(t)Aci(t)+D+Zi(t)+ λiZi(t) < 0. (36)

Then, combining with (26) and according to Lemma 5,
the λ∗-exponential stability of the closed-loop system is
established. �
Notice that substituting (27) and (28) into (24), (25), one

could obtain the condition without the explicit expression of
Wi,0, i = 2, . . . , S and WS,n.
Remark 5: One may observe that the stabilizing controller

with time-varying controller gain is established based on
the continuous Lyapunov function. It should be noticed this
method cannot be directly applied to the controller design
based on the discontinuous Lyapunov function. Controller
based on the discontinuous Lyapunov function can be for-
mulated as a periodic piecewise controller with different

constant gains for different subsystems, such as the one pro-
posed in [14]. A corresponding iterative algorithm should be
designed as well to obtain the controller gain.

In the following, a weighted L2-gain performance of peri-
odic piecewise system (1) is studied based on Lyapunov func-
tion (2) with discontinuous Lyapunov matrix polynomial (3).
Theorem 4: Consider periodic piecewise system (1) with

u(t) = 0, given γ̂ > 0, λ∗ > 0. If there exist λi,
µi > 1, i = 1, 2, . . . , S, and matrices Pi,j, i = 1, 2, . . . , S,
j = 0, 1, . . . , n, satisfying

k∑
j=0

Pi,j > 0, i = 1, 2, . . . , S, k = 0, 1, . . . , n, (37)

k∑
j=0

[
1i,j 3′i,j C′i,j
3i,j Ri,j D′i,j
Ci,j Di,j Ii,j

]
< 0,

i = 1, 2, . . . , S, k = 0, 1, . . . , n (38)

Pi+1,0 ≤ µi+1
n∑
j=0

Pi,j, i = 1, 2, . . . , S − 1, (39)

P1,0 ≤ µi
n∑
j=0

PS,j, (40)

S∑
i=1

λiTi ≥
S∑
i=1

lnµi + 2λ∗T (41)

where

1i,j = A′iPi,j + Pi,jAi + λiPi,j +
j+ 1
Ti

Pi,j+1,

j = 0, 1, . . . , n− 1,
1i,n = A′iPi,n + Pi,nAi + λiPi,n,
3′i,j = Pi,jBwi, j = 0, 1, . . . , n,

C′i,0 = C ′i , Ri,0 = −γ
2I ,D′i,0 = D′i, Ii,0 = −I ,

Ci,j = 0, Ri,j = 0, Di,j = 0,
Ii,j = 0, j = 1, 2, . . . , n,

then system (1) is λ∗-exponentially stable with a disturbance
attenuation level γ̂ in the sense of Definition 3.

Proof: For t ∈ [`T + ti−1, `T + ti), i = 1, 2, . . . , S,
construct a Lyapunov function as in (2) with Lyapunovmatrix
given in (3). With (37) and according to Lemma 4, one has
Vi(x, t) > 0. Define F = z′z − γ 2w′w with a given scale
γ > 0, one has

D+Vi(x, t)+ λiVi(x, t)+ F
= (x ′A′i + w

′B′wi)Pi(t)x + x
′Pi(t)(Aix + Bwiw)

+ x ′D+Pi(t)x
= x ′(A′iPi(t)+ Pi(t)Ai + λiPi(t)+D+Pi(t)
+C ′iCi)x + w

′(B′wiPi(t)+ D
′
iCi)x

+ x ′(Pi(t)Bwi + C ′iDi)w

+w′(−γ 2I + D′iDi)w

=

[
x
w

]′ ([
%(t) Pi(t)Bwi
B′wiPi −γ 2I

]
+

[
Ci
Di

]′ [
Ci Di

]) [x
w

]
(42)
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where

%(t) = A′iPi(t)+ Pi(t)Ai +D+Pi(t)+ λiPi(t).

Construct a matrix polynomial � given as

� =

%(t) Pi(t)Bwi C ′i
∗ −γ 2I D′i
∗ ∗ −I


=�i,0+

t − `T − ti−1
Ti

�i,1+. . .+
(t − `T − ti−1)n

T ni
�i,n

(43)

where

�i,0 =

1i,0 3′i,0 C′i,0
3i,0 Ri,0 D′i,0
Ci,0 Di,0 Ii,0

 ,
�i,1 =

1i,1 3′i,1 C′i,1
3i,1 Ri,1 D′i,1
Ci,1 Di,1 Ii,1

 ,
�i,n =

1i,n 3′i,n C′i,n
3i,n Ri,n D′i,n
Ci,n Di,n Ii,n

 .
Since 0 ≤ t−`T−ti−1

Ti
≤ 1, with (38) and according to

Lemma 3, one has � < 0. Then applying Schur complement
equivalence to (43), one has[

%(t) Pi(t)Bwi
B′wiPi −γ 2I

]
+

[
Ci
Di

]′ [
Ci Di

]
< 0. (44)

It implies D+Vi(x, t) < −λiVi(x, t) − F if x 6= 0 or w 6= 0.
Integrate it for t ∈ [`T + ti−1, `T + ti), following the same
steps in [14], with Vi(t) ≥ 0, one has∑̀

k=1

S∑
j=1

∫ (k−1)T+tj

(k−1)T+tj−1
exp(91(j, k))z′(τ )z(τ )dτ

+

i−1∑
j=1

∫ `T+tj

`T+tj−1
exp(92(j))z′(τ )z(τ )dτ

+

∫ t

`T+ti−1
exp(93)z′(τ )z(τ )dτ

≤ e40V (0)+ γ 2

∑̀
k=1

S∑
j=1

∫ (k−1)T+tj

(k−1)T+tj−1
exp(41(j, k))

×w′(τ )w(τ )dτ +
i−1∑
j=1

∫ `T+tj

`T+tj−1
exp(42(j))w′(τ )w(τ )dτ

+

∫ t

`T+ti−1
exp(43)w′(τ )w(τ )dτ

}
, (45)

where

91(j, k) = −(k − 1)
S∑
q=1

lnµq −
j∑

q=2

lnµq − λj((k − 1)T

+ tj − τ )−
S∑

q=j+1

λqTq − (`− k)
S∑
q=1

λqTq

−

i−1∑
q=1

λqTq − λi(t − (`T + ti−1)),

92(j) = −`
S∑
q=1

lnµq −
j∑

q=1

lnµq − λj(`T + tj − τ )

−

i−1∑
q=j+1

λqTq − λi(t − (`T + ti−1)),

93 = −`

S∑
q=1

lnµq −
i∑

q=2

lnµq − λi(t − τ ),

40 = −`

S∑
q=1

λqTq −
i−1∑
q=1

λqTq − λi(t − (`T + ti−1)),

41(j, k) = −λj((k − 1)T + tj − τ )

−

S∑
q=j+1

λqTq − (`− k)
S∑
q=1

λqTq

−

i−1∑
q=1

λqTq − λi(t − (`T + ti−1)),

42(j) = −λj(`T + tj − τ )−
i−1∑

q=j+1

λqTq − λi(t − (`T

+ ti−1)),

43 = −λi(t − τ ). (46)

Since

91(j, k) ≥ −k
S∑
q=1

lnµq − λmax((k − 1)T + tj − τ )

− λmax(T − tj)− (`− k)λmaxT

− λmaxtq−1 − λmax(t − (`T + tq−1))

≥ −k
S∑
q=1

λqTq + 2λ∗kT − λmax(t − τ )

≥ −λmaxt − λmax(kT − τ )

≥ −λmaxt − λmaxT , (47)

92(j) ≥ −(`+ 1)
S∑
q=1

lnµq − λmax(`T + tj − τ )

− λmax(ti−1 − tj)− λmax(t − `T − ti−1)

≥ −(`T + 1)
S∑
q=1

+2(`+ 1)λ∗T − λmax(t − τ )

≥ −(`+ 1)λmaxT − λmax + λmaxτ

≥ −λmaxt − λmaxT , (48)

93 ≥ −`

S∑
q=1

λqTq + 2`Tλ∗ − λmax(t − τ )

≥ −λmaxt − λmaxT , (49)
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and

40 ≤ −`2λ∗T − λmintm−1
− λmin(t − (`T + tm−1))

= −2λ∗t + (2λ∗ − λmin)(t − `T )

< −2λ∗t +max(2λ∗ − λmin, 0)T , (50)

41(j, k) ≤ −λmin(kT − τ )− (`− k)2λ∗T

− λmin(t − `T )

= (−λmin + 2λ∗)(t − `T )+ 2λ∗(τ − t)

+ (−λmin + 2λ∗)(kT − τ )

≤ −2λ∗(t − τ )+max(2λ∗

− λmin, 0)2T , (51)

42(j) ≤ −2λ∗(t − τ )+ 2λ∗(t − τ )− λmin(t − τ )

≤ −2λ∗(t − τ )+max(2λ∗

− λmin, 0)2T , (52)

43 = −2λ∗(t − τ )+ 2λ∗(t − τ )− λi(t − τ )

≤ −2λ∗(t − τ )+ 2λ∗(t − τ )− λmin(t − τ )

≤ −2λ∗(t − τ )+max(2λ∗

− λmin, 0)2T . (53)

Combining (47)–(53), one has∫ t

0
e−λmax(t+T )z′(τ )z(τ )dτ

≤ eT max(2λ∗−λmin,0)−2λ∗tV (x0, 0)

+ γ 2
∫ t

0
e2T max(2λ∗−λmin,0)−2λ∗(t−τ )w′(τ )w(τ )dτ.

Integrating t from 0 to∞, we obtain∫
∞

0
e−λmaxτ z′(τ )z(τ )dτ

≤
λmax

2λ∗
e2T max(λ∗−λmin,0)V (x0, 0)

+
λmax

2λ∗
e2T max(2λ∗−λmin,0)γ 2

∫
∞

0
w′(τ )w(τ )dτ.

Finally, by denoting λ̂ = λmax, σ =
λmax
2λ∗ e

T max(2λ∗−λmin,0),

and γ̂ = γ eT (max(2λ∗−λmin,0))
√
λmax
2λ∗ , one can conclude that

the system is exponentially stable with a weighted L2-gain γ̂
in the sense of Definition 3. �
Remark 6: One may notice that the above performance

index is described in a weighted form. A similar description
can be found in switched systems as well [29], [30]. The
weighted index results from the adopted discontinuous Lya-
punov function and the multiple Lyapunov functions [31].

IV. SIMULATION
In this section, numerical examples are used to demonstrate
the effectiveness of the proposed approaches. The stabilizing
controller design and L2-gain performance index are studied
in Example I and Example II, respectively.
Example I: Consider a periodic piecewise system with

T = 2 s and T1 = 0.4 s, T2 = 0.2 s, T3 = 1 s, the subsystems

FIGURE 1. Trajectory of system state without control.

FIGURE 2. Time history of W (t).

FIGURE 3. Time history of Q1(t), Q2(t), Q3(t).

with w(t) = 0 are given as

A1 =
[
3 −1
0 1

]
, A2 =

[
1 3
−1 1

]
, A3 =

[
−1 1
2 3

]
,

B1 =
[
1
0

]
, B2 =

[
2
1

]
, B3 =

[
1
−2

]
.

One may observe that all subsystems are non-Hurwitz stable.
Under initial condition x0 = [2, 1]′, the trajectory of system
state is shown in Figure 1. It can be seen that the periodic
piecewise system is unstable.

Choosing λ1 = 0.2, λ2 = −0.1, λ3 = 0.5, according to
Theorem 3, a stabilizing controller with time-varying con-
troller gain is designed with degree 2. The obtained W (t)
and Q1(t),Q2(t),Q3(t) are shown in Fig. 2 and Fig. 3, where
W (t) is continuous and Q1(t),Q2(t),Q3(t) switches at each
switching instant, the legend provides the specific item loca-
tion in the matrix and vector. Then, the obtained controller
gain is shown in Fig. 4. One may observe that the controller
gain is piecewise time-varying because of the discontinuous
Qi(t). A continuous controller gain could be obtained with
putting a continuity constraint on Qi(t). The trajectory of
system state under the designed controller proposed by this
work is shown in Fig.5. It can be seen that the unstable
periodic piecewise system is stabilized with the designed
controller.
Example II: Consider a periodic piecewise system with

T = 2 and T1 = 0.7,T2 = 0.8,T3 = 0.5, the subsystems are
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FIGURE 4. Time history of the controller gain.

FIGURE 5. Trajectory of system state under control.

FIGURE 6. Disturbance and system response.

given as

A1=
[
−1 0
−5 −3

]
, Bw1=

[
−1
−1

]
, C1= [1, 2],D1=5,

A2=
[
−1 0
−2 −3

]
, Bw2=

[
0
−1.25

]
, C2= [1, 0],D2=5,

A3=
[
1 −1
1 −3

]
, Bw3=

[
1
−0.83

]
, ‘C3= [1,−2], D3=5.

It can be seen that the third subsystem is non-Hurwitz stable.
Let λ1 = 0.3, λ2 = 0.25, λ3 = 0.2, µ1 = µ2 = µ3 = 1.01,
x(0) = [0, 0]′. Notice that, it does not require to allocate
a negative λi for non-Hurwitz subsystem. For more details,
one could refer to authors’ previous work [15]. According to
Theorem 4, one can obtain γ = 5.6033. Consider a dis-
turbance w(t) = 10e−0.1t , the disturbance and system out-
put are shown in Fig. 6. And one has ‖z‖2 = 935.39,
‖w‖2 = 223.7179. It can be seen that the system output is
within the given constraint.

V. CONCLUSION
In this paper, new conditions of the analysis and synthesis of
periodic piecewise system are proposed based on continuous
and discontinuous Lyapunov functions, respectively. Based
on the dwell-time related Lyapunov matrix polynomial, new
methods concerning the positive and negative definiteness of

matrix polynomial are used to develop the condition. The
exponential stability are studies based on both the contin-
uous and discontinuous Lyapunov functions at first. Then,
a stabilizing controller with time-varying controller gain is
designed based on continuous Lyapunov function and the
weighted L2-gain performance analysis is also carried out
with discontinuous Lyapunov function. Finally, the merits of
the proposed methods are demonstrated with the numerical
examples. The future work may consider the system with
nonlinear property and using the neural networks [32], [33].
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