IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 10, 2020, accepted March 5, 2020, date of publication March 12, 2020, date of current version April 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980319

Ad-Hoc Collaboration Space for Distributed Cross
Device Mobile Application Development

IMRAN ABBAS KHAWAJA“!, ADNAN ABID"!, (Member, IEEE),
MUHAMMAD SHOAIB FAROOQ"“', (Member, IEEE),

ADNAN SHAHZADA“'', UZMA FAROOQ"“2, AND

KAMRAN ABID"3, (Member, IEEE)

! Department of Computer Science, University of Management and Technology, Lahore 54770, Pakistan
2Department of Software Engineering, University of Management and Technology, Lahore 54770, Pakistan
3Department of Electrical Engineering, University of the Punjab, Lahore 140413, Pakistan

Corresponding author: Uzma Farooq (uzma.farooq@umt.edu.pk)

ABSTRACT In last few years, a tremendous increase has been observed in the usage of portable electronic
devices including smart phones, tablets, laptops, and wearables. These devices are produced by different
manufacturers and work on different platforms. People surrounded by these devices need to interact with
them during the meeting, presentation, class room and lots of other collaborative activities to share and
receive information across the devices. Recent research trends lead towards better utilization of these mobile
devices by connecting them together, whereas the interaction among these devices is still device centric and is
dependent on expensive fixed software and hardware infrastructure. However, ad-hoc settings, where fixed
infrastructure services do not exist, or may suspend the interaction across these devices, require special-
ized collaborative space. This research presents an architectural framework, named Ad-hoc Collaborative
Space (ACS) that provides an abstraction layer by hiding the complexities of ad-hoc environment thus
resulting into reduced application development time by providing the easy to use API’s. The experimental
evaluation based on different operating parameters shows that the proposed framework efficiently manages
service registration, service discovery, synchronization, and connectivity between different devices.

INDEX TERMS Cross-device, collaborative applications, distributed interface, WiFi Direct, ad-hoc network,

ad-hoc collaboration space.

I. INTRODUCTION

We have seen a tremendous increase in the demand of elec-
tronic devices during the last few years. Many different types
of devices such as tablets, cell phones, and smart watches are
easily available in the market with affordable prices. These
devices are manufactured by different vendors and work on
a variety of platforms [35]. There are numerous situations
where many users get connected with one or more devices to
share data and use services. The study conducted by the Face-
book on multi device usage has revealed people intense inter-
est to use electronic devices in their daily activities [1]. The
result has shown that more than 60% of the adults in the US
use at least two devices every day, and one quarter use three
devices, while more than 40% start activity on one device and

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Esposito

62800 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

complete it on another. In all above cases work done is bound
with the device, and the users are unable to transfer to or share
the activities with the other devices. In this regard, researchers
and industry have presented a number of solutions to over-
come these issues with the help of cloud based services, but
most of them are limited to file synchronization across the
user’s devices like drop box, Microsoft Office 365, Apple
iCloud, and few allow collaboration activities like google
collaborative editing. In all mentioned cases, the solutions
presented are tightly bound with the fixed infrastructure.
Weiser’s vision of ubiquitous computing that envisages
seamlessly integration of multiple devices of different sizes
and capabilities to share program and data, requires ease in
cross-device communication [2]. One such manifestation of
cross device collaborative spaces, whereby the functional-
ity and interactions are distributed across multiple devices,
and the users of these devices actively participate in the

VOLUME 8, 2020

https://orcid.org/0000-0001-6775-0154
https://orcid.org/0000-0003-2602-2876
https://orcid.org/0000-0002-4095-8868
https://orcid.org/0000-0002-1231-116X
https://orcid.org/0000-0001-8213-2469
https://orcid.org/0000-0002-6622-2883
https://orcid.org/0000-0002-0085-0748

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

collaborative activities. Similarly, Sgrensen has categorized
cross-device interaction into four categories on the basis
of device usage [4] namely: communality, collaboration,
continuity, and complementary. The first theme commu-
nality refers to situation where many users are interacting
with the device sequentially for example Koday’s facebook
photo-printing machine. The second theme collaboration
covers the scenario that involves simultaneous interaction
by many users, where interface components are distributed
among the users; for instance, division in a multi-player
game. The third theme continuity enables people to use
several devices and re-access content on different devices;
such continuous interactions can be facilitated by keep-
ing data consistent across devices. The last one is com-
plementary, where interactions with one artifact add to the
interaction with another artifact, and these jointly make
up a larger whole, for instance, Adobe Nav app allows
iPad as a two-way communication device with Photoshop.
Whereby, one can browse, select, and open Photoshop doc-
uments and activate Photoshop tools through a wireless
network.

The ubiquitous availability of electronic gadgets i.e.
smart phones and tablets leads towards the collaborative
ad-hoc portable setups spanning across multiple devices [37].
Researchers have been investigating this problem of interac-
tion between multiple devices while offering collaboration
among the users [21], [22]. This research aims to propose
a framework which is particularly focused on providing a
layer of abstraction to develop multi device interactions for
collaborative activities. To develop a cross-device collabora-
tive application that spans across multiple devices requires
monitoring the distribution changes and synchronize it on
all devices in order to ensure the collaboration space state.
Moreover, programming cross device with these tasks at
low level is technically challenging as it involves input
and output on multiple devices and demands serious effort
from the programmer for developing a cross device applica-
tions. Moreover, testing the cross-device interaction across
multiple devices is the most challenging task due to the
variety of electronic devices available in the commercial
market.

The proposed framework facilitates the development
of distributed cross-device mobile applications for ad-hoc
network. Mainly, it hides the complexities involved in
service registration, service discovery, connection manage-
ment, synchronization, and fault tolerance, by providing
abstraction layer. This abstraction enables the application
developer to simply focus on the development of collabo-
rative cross-device applications while leaving all the afore-
mentioned complexities of distribution to the framework.
Thus, the novelty of proposed approach is that it simplifies
the development of distributed cross device collaborative
applications, as the programmer does not need to imple-
ment low level details anymore; instead he invokes few stan-
dard functions exposed in the form of API by the proposed
framework.

VOLUME 8, 2020

040
A0
ARO D

goam

FIGURE 1. Collaborative e-learning applications, contents
synchronization across all connected devices.

A. MOTIVATION AND CHALLENGES
The motivation for this research can be highlighted with the
help of following example scenarios.

1) LECTURE PRESENTATION

Suppose a teacher intends to conduct a class during a field
visit outside the class room, but at same time wants to discuss
the points with the help of presentation. In that scenario,
it is painful to arrange computer/laptop connected with the
large screen to show the presentation. But what if the teacher
is able to present without any fixed infrastructure and all
the students are viewing the presentation on their personal
portable devices. It will enable the teacher to present any
time anywhere without worrying about the infrastructure
limitation.

2) JIGSAW PUZZLE

In a relatively more complicated scenario, consider some kids
are solving a Jigsaw puzzle but want to do it in a collaborative
manner. Let us suppose an application allows them to load
the puzzle on their tablets and enable them to solve it in a
collaboratively. Anyone move by one kid will immediately be
synchronized on all other kids’ tablets. This type of applica-
tion helps the students to learn from each other, and promote
the collaboration culture.

The development of such collaborative application poses
challenges that must be overcome for the reliability of these
collaborative applications. The proposed framework ad-hoc
collaboration space aims to address the following objectives
and challenges to easily implement corss-device collaborative
services in ad-hoc settings.

3) SERVICE MANAGEMENT

In ad-hoc network setting, service management refers to the
management of service registration and discovery for the
devices. It not only includes the detection of nearby devices
i.e. smart phone and tablets etc. but also includes service
discovery, and management of device connectivity requests.

4) COMMUNICATION CHANNEL
The communication channel is the layer that is solely respon-
sible for data transmission across the host/client devices using

62801

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

the sockets. The layer must be capable enough to manage
the connection threads with multiple devices by hiding the
complex communication details.

5) EFFICIENCY

Efficiency of distributed application is measured on the basis
of time taken by the device to exchange the information with
the peer devices. It is desirable to keep the data updated on
all the involved devices almost in real time.

6) MULTI-DEVICE APPLICATION TESTING

Multi-device testing involves execution of test scenarios
simultaneously on a number of devices, i.e. client/server
devices at the same time to observe the behavior of distributed
application. This challenge carries the application develop-
ers away from the development of complicated distributed
applications.

The rest of the article has been structured in the follow-
ing manner. Section II provides the theoretical background
of cross device interactions. This section also discusses the
cross device frameworks presented by the researchers for
various types of interaction styles. The details of the pro-
posed framework have been discussed in Section III, where
different components of the framework and their interactions
have been discussed in detail. Section IV signifies the value
of the proposed framework by highlighting the difference
between developing an application for ad-hoc connectivity
with and without the proposed framework. The experimental
evaluation of the proposed framework has been provided in
Section V. The conclusion and future directions have been
discussed in Section Vi.

Il. RELATED WORK

The journey of cross-device interaction started in 1996, when
Robertson developed a system to control television through
a personal digital assistant (PDA), but the scope was lim-
ited to one directional communication i.e. from PDA to the
television [3]. After that we have seen a potential growth
in multi-devices interactions. Existing commercial devices
have also started to support cross-device interactions such as
controlling the content on the phone through a smart watch
as remote control [15]. A number of research articles have
been presented by researchers in the recent years that discuss
different interaction styles [7], [11].

In this section, we have categorized the frameworks in
two categories ad-hoc network based frameworks and fixed
infrastructure based frameworks. An ad-hoc network is a
form of network technology that allows communication
on temporary/ad-hoc basis [36]. A mobile device is one,
which is equipped with the ad-hoc networking technol-
ogy (Bluetooth, WiFi). Bluetooth is a wireless technology
that uses for exchanging data over a short distance when
speed is not an issue, such as printer, headsets, telephone
etc [34]. On the other hand, Wi-Fi Direct supports device to
device transfer speed of up to 250 Mbps with ranges up to
200 meters [23]. To evaluate the strength and weakness of

62802

TABLE 1. Classification of frameworks on the basis of interaction style,
network and collaboration support.

Interaction Adhoc .
Framework Style Network Collaboration
Samsung Task
Flow Continuity v X
Apple Task % X
Continuity Continuity
Task
Conductor Distribution X X
Duet Watch/Mobllle % X
Joint Interaction
Collaborative
Polychrome Visualization X v
Web Page
Websplitter Portion X v
Distribution
Weave Moblle/We.arable v X
Interaction
. Mobile/Wearable
Wearwrite Crowd Writing X X
Panelrama Collaboration X v
ACS Collaboration v v

different frameworks, we have compared them on the basis
of interaction style, network, and collaboration support as
shown in Table 1.

Samsung flow is a framework that was launched
in 2014 and allows the Samsung device users to seamlessly
switch between devices like smartphones, tablets, and smart
watches while interacting with the apps or contents [6].
It works with Bluetooth or WI-FI and required that devices
should be physically close to each other or on the same
WIFI network so as to tolerate the switching of devices.
The major limitation of Samsung flow is that it only works
with Samsung hardware and does not allow collaboration
activities. Similarly, the iOS cross platform (Mac, iPhone,
and iPad) continuity feature allows the user to move work
flow between these devices [14].

Wearable gadgets have flourished in the market and gained
a lot of popularity in the recent years, but due to limited
input and output capabilities, it is useful to utilize them by
pairing with the other devices. To overcome this limitation,
Duet focused on the joint interaction of watch and mobile
phone owned by a single user for the completion of a par-
ticular task by recognizing the touch and motion gestures
across the devices, and by transmitting this information via
Bluetooth [33]. Example of this interaction is to receive an
email notification on the smart watch by pairing it with the
mobile phone, and opening the email on mobile phone by
tapping on the smart watch. A number of approaches have
been presented by the researchers to increase the input and
output capabilities of the smart watches by pairing them with
other devices [27]-[32], [38]. A contribution in the field of
cross-device interaction to reduce the developers’ effort to
implement a cross-device interaction for mobile and wear-
ables devices by Pei-Yu (Peggy) Chi and Yang Li presented

VOLUME 8, 2020

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

the weave a web-based framework, and is inspired by popular
JQuery (JavaScript) libraries. This framework aims to pro-
vide a set of high level abstraction based APIs for distributing
sensing events and User Interface (UI) output across mobile
and wearable devices [7].

Hamilton, P. and Wigdor designed the conductor, a cross-
device interaction system that supports single user multiple
device interaction styles by allowing the user of the system to
split their activities across multiple devices for flexibility and
usability [11]. The system’s backbone is a dedicated server
that manages the connected devices, their session informa-
tion, and states through web sockets.

Another form of cross-device collaboration is collabo-
rative web browsing, where browsers on multiple devices
are connected and enable cross-device interaction between
the devices [16]-[18], [26]. Polychrome is a web based
cross-device interaction framework that supports collabora-
tive web browsing/visualization by allowing the browsers of
different devices to connect with each other using the PeerJS
for P2P communication [9]. Similarly VISTRATES, a web-
based platform provides a collaborative environment for data
analysis and visualization [40]. The Websplitter Maekawa
targets multi-device and multi-user Web browsing by provid-
ing a framework for dividing a single web page into several
portions, and by serving each portion of the page to a different
device instead of mirroring [24], [25].

By considering the input and output limitation of smart
watches in performing the complex daily tasks, Wearwrite
a watch centric collaborative cross-device interaction system
was presented by the researchers to interact with the docu-
ments [10]. The system allows the watch user to integrate
with the other devices and manages the crowd writing process
i.e. research paper, blogs etc. from the watch. An exam-
ple of crowd writing is provided by Agapie in the con-
text of writing by using a combination of local and remote
workers to produce a news event [20]. Wearwrite team has
developed one android mobile app and one android wear
app.

Luca Frosini in 2014 presented a framework that sup-
ports cross-device user interface distribution and collabora-
tion among multiple devices [8]. The framework consists of
two blocks client library and runtime engine, whereby the
client library is responsible for sending distribution changes
and receiving updates of changes to apply on the client device
UL, while the runtime engine is responsible for managing
all the devices and their request of distribution changes.
Panelrama also supports similar kind of Ul distribution but for
web UI distribution across multiple devices [19]. It dynami-
cally allocates each portion of the Ul to a target display based
on its screen real estate and input modality. Similarly, AdaM
is a web based platform for automatic UI distribution across
multiple devices, and users in a collaborative setting interact
with one another on the basis of device capabilities, user roles,
preferences, and access rights [39].

Despite number of solutions presented in the past, there
is still a need of comprehensive framework that provides

VOLUME 8, 2020

seamless collaboration across the devices in a situation,
where fixed infrastructure services are not available.

Ill. PROPOSED FRAMEWORK: AD-HOC COLLABORATION

SPACE(ACS)
The proposed framework aims to provide a flexible mech-

anism of collaboration across multiple devices by hiding
complexities of distributed systems. The framework is built
on Android Wi-Fi (peer-to-peer or P2P) APIs and Java sock-
ets that allows application to connect to any nearby devices
without using any dedicated access point or infrastructure in
order to share data [12]. It also provides an abstraction layer
to hide the complexity of Wi-Fi (peer-to-peer or P2P) APIs
and Java sockets.

In this article, term device is used to refer to the electronic
devices that include smart phones, tablets, or smart watches
that are equipped with wireless technology, and have an
operating system that can run different application software.
The proposed framework considered Wi-Fi Direct as a com-
munication protocol for the exchange of data over short dis-
tances due to high speed and range. Devices are categorized
into two different types;the provider devices invoke the ser-
vice registration process to advertise their services to nearby
devices, while the consumer devices discover the available
services by invoking the connectivity request to join the
collaboration space. Finally, a communication channel pro-
vides two-way communication link between two programs
running on different devices to send and receive the activities
performed by the device users so as to synchronize the session
state.

The workflow of collaborative space is initiated by a ser-
vice broadcast message by the provider device which wants to
collaborate with the other devices for program and data shar-
ing. The broadcast message includes information about the
service and the connectivity parameters. After broadcasting,
the service makes itself available to all nearby WiFi direct
enabled devices, which can discover the services and can
request for the connectivity with the service hosting device.
The provider device accepts the connectivity request, and
devices start collaboration with each other without any fixed
infrastructure.

It is pertinent to mention that WiFi (peer-to-peer or P2P)
APIs allow the application to connect to nearby android
based devices. While for apple iOS based devices, multi-
peer connectivity framework supports the discovery of ser-
vices provided by nearby devices and support communication
through the message-based data. Unfortunately, peer to peer
connectivity frameworks offered by android and iOS for WiFi
Direct do not allow connectivity across the Android and i0S
based devices. Therefore, the scope of this work is limited
to the connectivity of android based devices in an ad-hoc
environment.

The ad-hoc collaboration space consists of three major
components ACS Manager, Connection Manager and Events
Observer. Figure 2 provides a high level view of the ad-hoc
collaboration space and its major components.

62803

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

Discovery

@
=
£
[
7]
& Registration

Connection/
Disconnection

\

! |

| a |

| s 5 Peer \

| @ » Discovery }

v (=]

| @ = — |

| & = WiFi Enable/

| @ H Discovery 9 Disable |

15| |3 - |
O s e Configuration
GE) % | @ | | Connectivity @ 9 }
e
> o o
17)} o] | m | |=
o i | | % o Listener ‘ I
c
HICIERAE: F |2
Bllal, g s | E i S8 Communication | | &
5 - = |9 Publisher - — Channel | e
ok ks %3 (Server/Client) | |
3|12 <0 |

| L e |

\

! |

: »

o \
| | |
= emova

g »

\

! & |
e = ____ .
FIGURE 2. High level architecture.

o - F————1

G Il

< >

g iz

Q "‘ -

18 | ol gl 18

o | e | P

| %] I ; | 8 9 1

&0 || & l 5 2z 5! 5

o o =

g | 5 E £ § DIRECT = | g x g. K-
2 gl8|l= || |a|E » 2|9 |B
] o|=|| e - v 0 13 [|el3 =
" |'& 5/ 8 | o (S]] | < 8 |z 'n_",]

: Oy | > | cConnected —__ ¥ |5 | 4 | [§ |35 | >
Device A | = 1518 £ [¢ |y 3| o || = 8|51 - Device B
al alsfs| ! 2% g =2 Sl | 3

<] € |ic -] |] 0
= e * 2| (31
S| |[E|! |5 B kY
|9 E | g | 2.1
HE RN l A
T € | 0
>
| 2 | | ~ |
| L _— N
S T !______1 |

FIGURE 3. Cross-Device interaction using the proposed ACS framework.

To develop a better understanding of the framework usabil-
ity, the cross-device interaction across devices is visualized
using the proposed ACS framework in Figure 3. It clearly
shows that the ad-hoc collaboration layer provides abstrac-
tion by hiding the complexities of distributed cross device
environment required during the service registration, service
discovery, connectivity, message exchange, and synchroniza-
tion activities.

62804

A. ACS MANAGER

ACS Manager is the main controller component of the frame-
work; all other components are controlled and monitored
by the ACS Manager. It manages the service registration
and discovery processes on the Android WiFi P2P frame-
work using the service details provided by the application.
All other components execute as per the instructions of the
ACS Manager, and continuously report to it about the state of

VOLUME 8, 2020

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

Algorithm 1 Service Registration

Algorithm 2 Service Discovery

1: s: Service Identity, p: Listening Port

2 > Feedback Status notifies about the execution status

3: Call RegisterService(s, p, FeedBackStatus)

4: if FeedBackStatus = true then

5 Output: Service Successfully Registered

6: > Create group to allocate group owner role to service
hosting device

7: Call createGroup(FeedBackStatus)

8: if FeedBackStatus = true then

9: Output: Group Created Successfully
10: else
11: Output: Group Creation Failed
12: end if
13: else
14: Output: Service Failed To Registered
15: end if

collaboration space. All collaboration activities performed by
the device are notified to all devices through the connection
manager on the instruction of ACS Manager.

1) REGISTRATION

The service registration is a process which allows the provider
devices to advertise their services for the nearby consumer
devices. For Instance, if any device wants to provide a
collaboration service to the nearby devices directly with-
out being connected to local network or hotspot, it must
register the service on WiFi P2P framework for service
discovery. For instance, in case of collaborative learning
application, the teacher can register the presentation service
on the WiFi P2P framework for service discovery so as to
make it available for the nearby student devices. Once the
service is registered, the framework automatically responds
to the peer (student) devices for service discovery requests.
The service registration API requires the unique identity of
the service and listening port number to register the service on
the local device, and provides the feedback status i.e. success
or failure to the ACS Manager. The service registration cycle
is explained in Algorithm 1.

2) DISCOVERY

Service Discovery is the detection of nearby devices and the
services offered by these devices. Any device that wants to
subscribe with a particular service, invokes the service dis-
covery process in order to locate the service and connection
details. The discovery API requires unique identity and con-
nection details of a service to initiate the connection request.
As an example, in case of collaborative learning application,
the student devices can invoke the discovery API to locate
the presentation service broadcasted by the teacher’s device
by providing the name of the service. The discovery process
looks for all available services broadcasted by the nearby
device and provides the feedback status of the discovery

VOLUME 8, 2020

1: s:Service Name, mac:MacAddress, p:Port No

2 > FeedBackStatus notifies about the execution status
3: Call DiscoverService(s, FeedBackStatus)

4: if FeedBackStatus = true then

5: Output: Service Found

6 m = macaddress > Retrieve Device MacAddress
7 p = portno > Retrieve port no
8 Call connectDevice(mac, FeedBackStatus) > For

P2P Connection
9: if FeedBackStatus = true then

10: Output: Connected to Device

11: else

12: Output: Connectivity request rejected
13: end if

14: else

15: Output: Service Discovery Failed

16: end if

API i.e. success or failure to the ACS Manager along with
the service connection details. The service discovery cycle
is explained in Algorithm 2. Furthermore, the detail of data
communication among the devices is explained in the con-
nection manager section.

B. EVENTS OBSERVER
An Event Observer is a component that responds to the
broadcasts announced by the system. Due to the ad-hoc nature
of the collaboration space, any device can join or leave the
network at any time. There is a need to detect this connec-
tion/disconnection and act accordingly so as to manage the
space in a robust manner. Moreover, on successful device
connectivity, it requests the WiFi P2P for the group infor-
mation, which automatically sends the group information to
the ACS manager. ACS Manager uses this information to
determine the group owner and client device to create the
data communication channel across the devices. In case of
collaborative learning application, the teacher remains up to
date about the number of students connected with the pre-
sentation, and their participation activities which encourages
them to remain active in their participation.

In order to listen to these broadcast events, the ACS Man-
ager must register the broadcast intents as shown in the
Table 2.

C. CONNECTION MANAGER

This is the most complex component of the system that is
solely responsible for data transmission across the host and
client devices as shown in Figure 4. The Connection Manager
uses the standard Java sockets along with multiple threads to
manage a number of clients simultaneously while maintain-
ing high performance.

1) SERVER REGISTRATION
Connection Manager uses Java sockets that provide two way
data communication across the devices. To start the client

62805

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

JSON Data Transfer befween
client and server socket

{"timestamp":"5","macaddress: AC:78:37:173C:36","brushsi
za™:"smallBrush","type™:"pen”,"color":"#FF660000","coordi

Host/Group

Owner Device A

nates™:[["0.204"
"0.243",0.426"] [
0,517"],["0.364" "0.555"],["0.398","0.592"].["0.433""0.623"],

"0.382"],["0.206","0.384"],["0.222","0.405",[
["0.259","0.442",["0.286","0.475"],["0.324",

['0.469","0.654"],["0.5","0.679"]}

| Ad hoc Collaboration Space

Connection Manager

Client Socket

Client
Device B

1abeuey goy

C Connection Manager)
=
‘ Server Socket (Listener)
| Registered Memb Reading Stream }
Device B [00:26:37:173C:41) Thread 1
Device C (AC:78:37:173C:36) Thread 2
Device D (5C:78:37:173C:21) Thread 3

Client
Device C

Server BroadCaster

Jabeuep goy

Bl
z
-
-]
n
g
o
o
9
LE
3
3
"]
il
|-’}
n
ol
‘\
-

Connection Manager

Client
Device D

ACS Manager
N

FIGURE 4. ACS connection manager.

TABLE 2. Broadcast intents.

Intents Details
- Indicates whether Wi-Fi P2P
Wiki State 140 habled/disabled.
Indicates that the available peer list
. has changed new device is found by
Peer List the android system within the
WiFi Direct range.
. Indicates the state of Wi-Fi P2P
Connection/ ..
Disconnection connectivity has changed
(Connection/Disconnection of device).
Device Indicates the device’s configuration
Configuration | details have changed.

devices registration process on the host device, it creates the
Java server socket with the port number provided by the
ACS Manager. After the acceptance of client device request,
it stores the client information in the registered clients list
along with the mac address as identification in order to
maintain the list of registered client devices. The registered
clients list is subsequently used for message broadcasting to
all registered devices.

2) CLIENT REGISTRATION
After the establishment of WiFi P2P link with the group
owner device, ACS manager invokes the connection manager

62806

Jabeuepy gov

by providing the host device IP Address, Listening port num-
ber and device’s mac address for establishing the connection
with the host/group owner device. In case of collaborative
learning application student devices continuously read the
updates coming from the teacher device and synchronize their
state with the teacher’s device.

3) MESSAGE BROADCASTING (CLIENT/SERVER)

In case of any update at the client device or host device, ACS
Manager invokes the connection manager event broadcasting
API with event/message data for broad-casting the event
across all the clients for session state synchronization. In case
of collaborative learning application the activities performed
by the devices users can be synchronized across all devices
without any delay, so as to keep the session state consistent
on all devices.

4) AVAILABLE PEERS

During the collaboration activity, devices can leave the net-
work any time. In that scenario, it is necessary to detect
any device that leaves the group and remove it from the
collaborative space so as to clean the unmanaged resources.

IV. DISCUSSION

It would be interesting to understand how the proposed ACS
framework facilitates the application developers in building
such cross device collaborative applications. To this end,
this section presents the comparison of development efforts

VOLUME 8, 2020

I. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

registerService

createGroup

startServerSocket

FIGURE 5. Server device.

required with and without ACS API’s. It also discusses how
ACS makes application development faster by providing an
abstraction layer on the complex integration details. As a
matter of fact, from the application developers’ prospective,
the overall implementation requires very small and easy
to implement code using the API’s provided by the ACS
framework.

A. APPLICATION DEVELOPMENT WITH ACS API’s

API stands for application programming interface that allows
two different applications to talk to each other in a seam-
less manner by hiding the complex integration details. This
section explains the usage of ACS API’s for the development
of cross-device mobile applications. We will also discuss the
technical challenges that the proposed API addresses and
facilitates the application developer to develop a distributed
cross-device mobile application.

1) REGISTRATION

The process starts with registration, as shown in Listing 1,
we invoke the registerService to advertise our service to the
nearby devices to connect with it using the ad-hoc WiFi Direct
based network. After the successful registration of service,
we call the createGroup API to forcibly allocate the role of
Group Owner to the service hosting device. The ACS Man-
ager also invokes the Connection Manager startServerSocket
API to start the server socket on the device for accepting
the connection request from the client/group member devices
for data communication across the devices. Figure 5 demon-
strates the execution flow of service registration process.
As shown in the Listing 1, we have supplied the service name,
port number, and call back method which inform the user
about the execution status of the API.

2) DISCOVERY

The device that wants to connect to the desired service to
perform collaboration activity will invoke the discoverSer-
vice API to fetch the list of available services on the WiFi

VOLUME 8, 2020

ACSManager.registerService ("SynchPaint", 4545,
new ACSCallback () {

@Override

public void response (boolean cmdStatus, int
failureReason) {

if (cmdStatus) {

Toast .makeText (MainActivity.this, "Service

Registered Successfully",

Toast .LENGTH_SHORT) .show () ;
ACSManager.createGroup (new ACSCallback () {
@Override
public void response (boolean cmdStatus, int

failureReason) {
if (cmdStatus) {

Toast .makeText (MainActivity.this, "Group

Created Successfully",

Toast .LENGTH_SHORT) . show () ;

1) i

} else {

Toast .makeText (MainActivity.this, "Service
Registration Failed",
Toast .LENGTH_SHORT) .show () ;

1)

Listing 1, Registration

discoveryService

broadcastMessage

)
3
]
5

s}
]
=]
@
]
0
@

=

FIGURE 6. Client device.

network and connectToService API to connect with partic-
ular service as shown in the Listing 2.1 and 2.2. After the
successful discovery of service, the ACS Manager invokes
the Connection Manager connectToServer API by providing
the service connectivity parameters for socket connection
establishment with the group owner device for data communi-
cation across the devices. It is pertinent to highlight that these
socket connection methods are hidden from the application
developer and are managed by the ACS Manager to facilitate
the application developer by writing just few lines of method
invocation while ignoring the complexities of the underlying
connections. Figure 6 demonstrates the execution flow of
service discovery process.

3) MESSAGE BROADCASTING
In case of any update at the client device or host device,
application developer will invoke the broadcastMessage API

62807

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

ACSManager.discoverAvailableServices (new
ACSCallback () {

@Override

public void response (List<String>
availableServices, boolean cmdStatus,
int failureReason) {

if (cmdStatus) {

Toast.makeText (MainActivity.this, "List of
avaialble services.",
Toast .LENGTH_SHORT) .show () ;

}

else {

Toast .makeText (MainActivity.this, "Service
discovery failed",
Toast .LENGTH_SHORT) .show () ;

1) i

Listing 2.1, Discovery

ACSManager .broadcastMessage (acsData, new
ACSCallback () {

@Override

public void response (boolean cmdStatus, int
failureReason) {

if (cmdStatus) {

Toast.makeText (MainActivity.this, "Message
sent ", Toast.LENGTH_SHORT) .show();

}

else {

Toast .makeText (MainActivity.this, "Message
sent failed.",
Toast .LENGTH_SHORT) .show () ;

1)
Listing 3, Message Broadcasting

ACSManager.connectToService ("SynchPaint",
new ACSCallback () {

@Override

public void response (boolean cmdStatus, int
failureReason) {

if (cmdStatus) {

Toast .makeText (MainActivity.this,
"Connected with the service",
Toast .LENGTH_SHORT) .show () ;

}

else {

Toast .makeText (MainActivity.this, "Service
connectivity failed",
Toast .LENGTH_SHORT) .show () ;

1)

Listing 2.2, Discovery

to broadcast an event across the connected devices as shown
in Listing 3. The application captures the touch event per-
formed on the device, converts it into JSON based string
as shown in Figure 7 and calls the broadcasting function
to synchronize the data across the all connected devices.
ACS Manager also incorporates the unique timestamp and
device mac address along with the JSON based data packet
to maintain the identity of event. Though the ad-hoc device
connectivity makes it complex to manage the events’ state
across the devices, yet ACS Manager manages the state in an
efficient manner, and allows the developer to remain focused
on the application development, instead of managing device
connections and message delivery in ad-hoc settings.

Many teachers like to engage their students in a group
activity during the class by forming small groups. They
believe that such type of activities provides a great
opportunity to the students to learn from each other and
promote the collaboration culture in the society to enhance
their team work skills.

62808

{"timestamp":"5","macaddress:AC:78:37:173C:36",
"brushsize":"smallBrush","type":"pen","color" " #FF
660000","coordinates":[["0.204","0.382"],["0.208",
"0.384"1,["0.222","0.405"],["0.243","0.426"],["0.259
" "0.442"],["0.286","0.475"],["0.324","0.517"],["0.3
64","0.555"],["0.398","0.592"],["0.433","0.623"],["0

469","0.654"],["0.5","0.679"]]}

FIGURE 7. Event data (paint application).

{"timestamp":"12","macaddress:AC:78:37:173C:36",
"TaskNo":"14","GroupName":"51214","StudentID":"
15006114001","text":"Reflects the historical rate of
learning of operation can be used for resource
leveling on the basis of efficient working."}

FIGURE 8. Event data (group case study).

The sample shown in the Figure 8 presents a small group
activity in the class room where teacher creates the students’
groups to answer the case study questions by allocating the
questions to different groups. The students are instructed to
answer the question through their mobile device by posting
the answer into the relevant/allocated section to participate
in the learning activity. Teachers are able to monitor the
overall activity performed by all the groups via mobile appli-
cation interface. Moreover, students are also able to view
the answers submitted by other groups. The use of modern
technology in the education sectors will encourage the col-
laborative learning environment.

4) RECEIVE MESSAGE

In order to receive the event data, client devices create
a handler that allows retrieving data from the threaded

VOLUME 8, 2020

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

handler=new Handler () {

@Override
public void handleMessage (Message msg) {
drawView.Execute (msg.getData () .getString("msg"));

//Application process the data
}
bi

Listing 4, Receive Message

ACSManager.disconnectWithService (new
ACSCallback () {

@Override

public void response (boolean cmdStatus, int
failureReason) {

if (cmdStatus) {

Toast .makeText (MainActivity.this,
"Disconnected with service",
Toast .LENGTH_SHORT) .show () ;

} else {

Toast .makeText (MainActivity.this,
"Disconnection Failed",

Toast .LENGTH_SHORT) .show () ;

1)

Listing 5, Disconnect Service

Message Queue. ACS Manger posts the event data directly
into the Message Queue of the client/host device. Appli-
cation developer accessed the Message Queue and utilizes
that data for display/execution or similar purposes according
to the need of the application. Listing 4 clearly highlights
that ACS facilitates the application developer by provid-
ing a high level of abstraction on complex communication
details.

5) DISCONNECT SERVICE

Client device can leave the collaboration session any time
by calling the disconnectWithService API as shown in the
Listing 5. In this particular scenario, Event Observer plays the
key role by informing the ACS Manager about the occurrence
of events to manage the collaboration space.

B. APPLICATION DEVELOPMENT WITHOUT ACS API’s

As discussed in the previous section, the proposed framework
enables the application developer to focus on application
development without worrying about the underlying ad-hoc
network formation and communication details. But with-
out ACS creating an application that spans across multiple
devices requires the following steps.

1) AD-HOC NETWORK

Select ad-hoc network technology that allows communica-
tion on temporary basis. In the absence of ACS framework,
the robustness and synchronization required for managing the
communication between different devices in ad-hoc settings
will be responsibility of the application developer.

VOLUME 8, 2020

2) SERVICE REGISTRATION/DISCOVERY

Implementation of service registration and discovery routines
that allows an application to advertise their services and find
the available services hosted by other devices will also be
responsibility of the application developer.

3) TWO WAY COMMUNICATION

There is a stringent requirement of two way communication
by the device that acts as an access point, also referred to as
group owner (GO). Again, in the absence of ACS framework
the application developer has to write code to establish a
socket connection between server and client devices to allow
two way data communication.

4) DISTRIBUTION CHANGES

In the absence of ACS framework the application developer
has to write code for maintaining the distribution changes on
server device, and ensure that these changes are updated on
all the connected client devices.

5) CONNECTION/DISCONNECTION

Due to the ad-hoc nature of the application, any device
can join or left the network at any time. Thus, there would
be a need implement a routine to detect this connection/
disconnection and act accordingly in order to manage the
application. This requires the implementation of a challeng-
ing task of synchronization of actions performed during the
absence of a device.

6) MULTI-DEVICE APPLICATION TESTING
Application developer needs multiple devices in order to test
the behaviour of application on different devices. This poses
a challenge to the developers of such distributed application.
In short, writing code for cross device application with
the aforementioned low level tasks is technically challenging
as it involves input and output on multiple devices in an
ad-hoc settings. These tough requirements distract the appli-
cation developers and they shy away from developing the
cross device applications due to high complexity level that is
difficult to develop and maintain. However, the provision of
ACS framework makes the life of a programmer very easy,
whereby one can work out all the complex details just by
calling appropriate functions exposed by the rich and robust
API provided by the ACS framework.

V. EVALUATION

It is pertinent to evaluate the ability and effectiveness of the
proposed framework. The main purpose of this evaluation is
to evaluate the effectiveness of the abstraction provided by the
framework. Different assessment methods and scenarios have
been used for the validation of the proposed ACS framework.

A. EXPERIMENTAL SETUP

In order to evaluate the effectiveness of the proposed frame-
work different types of interaction scenarios/styles i.e col-
laborative visualization, portion distribution, joint interaction

62809

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

TABLE 3. Evaluation parameters (defaults in bold text).

. . Samsung .

Service Dlscover'y Devices Grand Prime | OS Lollipop 5.0.2

& Group Formation
Samsung Nougat 7.0
Galaxy AS gat /.

Synchronization No of Devices 3-5-7

Impact of distance . 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

. Distance

(Synchronization) (meters)

State? ;ynchron}zatlon on Ex1st1n.g 200, 300, 400

late joined devices Operations

Client de\'nce' state o Qperatlf)n perf.ormed 100, 200, 300

synchronization after rejoining | in inactive period

Memory Overhead Operation performed | 200, 400, 600

Energy Consumption Operation performed | 100, 200, 300

FIGURE 9. Paint application developed using the ACS framework.

and collaboration have been critically reviewed to develop a
suitable application that covers these interaction scenarios.

By considering the above mentioned interaction styles,
we have designed and develop the paint mobile applica-
tion as shown in Figure 9 using the proposed framework
that allows the users to draw in collaborative manner using
their devices with the help of different drawing tools, colour
palettes and save the image file on the mobile phone. The size
of paint application developed using the ACS Framework is
3.93 MB, which is quite suitable for distributed mobile appli-
cation development due to the storage limitation of mobile
devices and proves that framework does not have any memory
overhead.

1) EVALUATION PARAMETERS
Experiments have been designed based on following evalua-
tion parameters as shown in Table 3.

1. Service Discovery & Group Formation: Time taken
by the device to discover the broadcasted service and form
the WiFi Direct based ad-hoc network.

2. Synchronization: Events synchronization across the
multiple devices connected with collaboration space.

62810

3. Impact of Distance: To measure the impact of distance
on the data synchronization time across the devices.

4. State Synchronization on Late Joined Devices: Time
to update the session state on the device that joins the collab-
oration space late.

5. State Synchronization after Device Rejoin: Time to
synchronize the session state on the client device that rejoins
after disconnection.

6. Memory Overhead: Estimate the device memory used
during the collaboration activities.

B. EXPERIMENTS

Different experiments were conducted by considering the
evaluation parameters mentioned above to validate the frame-
work effectiveness. The experiments details along with their
results are briefly discussed in this section. In order to avoid
any bias, we have performed number of experiments and
report the average results.

1) SERVICE DISCOVERY AND GROUP FORMATION

WiFi Direct group can comprise of devices with different
android version. To evaluate the ability of framework to
operate on diverse range of android based devices for data
exchange, we have conducted the experiment on android
based devices namely Samsung Grand Prime and Samsung
Galaxy AS5. In this regard we have evaluated the service
discovery across the devices and conducted 10 experiments
and report the average discovery time in Table 4. According
to the results, the service discovery worked well and found
the requested service within few milli second time that is
quite acceptable and satisfies the speedy ad-hoc network for-
mation requirement. The service discovery and connectivity
invitation processes are shown in the Figure 10 for better
understanding of the device connectivity process.

2) EFFICIENCY
Efficiency of distributed application is measured on the basis
of time taken by the device to exchange the information with

VOLUME 8, 2020

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

Invitation to conpect

Tap Connect wilhin 28 seconds 1
connect to Device B

Cancel Connect

FIGURE 10. Device requests to connect with the service hosting by other
device.

TABLE 4. Service discovery time across the group of devices.

Samsung Samsung
Grand Prime | Galaxy AS
Lollipop 5.0.2 | Nougat 7.0
Samsung Grand Prime
Lollipop 5.0.2 919 ms 1088 ms
Samsung Galaxy AS
Nougat 7.0 1088 ms 520 ms

the peer devices. It is an important factor in case of distributed
applications and requires that the data should be synchronized
immediately on all the devices without any delay.

In an experiment as shown in Table 5, we have dis-
tributed 3 Samsung devices among the users and asked them
to perform 50 drawing operations simultaneously on their
devices and captured the operation broadcast and receive
time. Furthermore, we have increased the number of devices
in order to test the efficiency of collaboration space. The
result shows an average time of 55 ms with 3 Devices, 57 ms
with 5 Devices and 61 ms with 7 Devices taken by an opera-
tion to synchronize on all the devices.

3) IMPACT OF DISTANCE

We have also evaluated the operation synchronization time
with different distance ranges and plotted in the form of
graph as shown in Figure 11. The results clearly show the
impact of distance on the operation synchronization time
across the devices. As with the increase in distance the time
significantly increased but still it is acceptable in case of
collaborative learning applications discussed in the previous
section.

4) STATE SYNCHRONIZATION
In an experiment as shown in Table 6, we have measured the
data synchronization time and accuracy by joining the new

VOLUME 8, 2020

TABLE 5. Time taken by an operation to synchronize across the devices
during simultaneous operations.

Manufacturer Total Total Average
Devices | Operations | Time

Samsung

Grand Prime 3 150 55 ms

(Lollipop 5.0.2)

Samsung

Grand Prime 5 250 57 ms

(Lollipop 5.0.2)

Samsung

Grand Prime 7 350 61 ms

(Lollipop 5.0.2)

Synchronization Time vs Distance

100 41657160

50 v IRiJ U

30 j/ 1145780
70 7

& F-T-
g

Fe
60 75860

50 “Zjna, 5o

& 2
40 ¥ 3836 40

Distance [meters)

30 285730

&
20 18120

b _anc an
10 ¥ 10516

0 T T T T T T T T T |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (ms)

FIGURE 11. Comparison of operation synchronization time across the
devices with different distance ranges.

TABLE 6. Time to update the session state on newly joined client, when
connected clients has already performed activities.

- Session
. WiFi Tota'l Synch Update
Direct Group Operations .
Time
Samsung Grand Prime
(Lollipop 5.0.2) 200 v 4 Seconds
3 Devices
Samsung Grand Prime
(Lollipop 5.0.2) 300 v 5 Seconds
3 Devices
Samsung Grand Prime
(Lollipop 5.0.2) 400 v 7 Seconds
3 Devices

device to an existing WiFi Direct group of devices doing the
collaboration activities. The results shows that the state is
synchronized in 4 seconds with 200 operations, 5 seconds
with 300 operations and 7 seconds with 400 operations,
respectively.

62811

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

TABLE 7. Time to synchronize the session state on the client device after
rejoin as other client devices have performed some activities during the
disconnection period.

WiFi Inac.tive Session
Direct Group Period Synch Update
Operations Time
Samsung Grand Prime
(Lollipop 5.0.2) 100 v 2 Seconds
3 Devices
Samsung Grand Prime
(Lollipop 5.0.2) 200 v 4 Seconds
3 Devices
Samsung Grand Prime
(Lollipop 5.0.2) 300 v 5 Seconds
3 Devices

TABLE 8. Memory used by the devices during the collaboration activities.

Win Operations Memory

Direct Group (Each Device)
Laipop 03 3 Do | 0| 513
(Lolipop505)3 Deviess | 400 | 95KB
(olipop 5023 Deviees | 0% | 144K

5) ROBUSTNESS/STATE SYNCHRONIZATION AFTER

DEVICE REJOIN

The system has to be resilient to small disconnections in
ad-hoc settings. Thus, a client device may leave the group any
time without any intimation and can rejoin later after some
time. There is a need to synchronize the activities performed
by the other client devices during the inactive period. In an
experiment as shown in Table 7, we have measured the time
taken by the device to synchronize the in active period activ-
ities on the client device. It is pertinent to mention that the
ACS Manager only synchronizes the new operations on the
client device by validating the timestamp.

6) MEMORY OVERHEAD

We have already mentioned in the discussion section that the
application will capture the touch event performed on the
device, convert it into JSON based string for broadcasting
and synchronization across the collaboration devices. Mobile
application will interpret the operation and execute on the
mobile for synchronization purposes. In this experiment,
we have estimated the memory consumed by the devices by
calculating the operation size as shown in Table 8.

7) ENERGY CONSUMPTION

Mobile phone primarily runs on a battery power and you may
notice that battery life become short when many activities
simultaneously run on mobile phone i.e. games, WiFi etc and
drain the battery quickly. In the last few years, we have seen

62812

TABLE 9. Energy consumption of devices during the collaboration
activities.

Battery
Consumption
(Out of 100 %)

WiFi Operations Duration
Direct Group P (Minutes)

Samsung
Grand Prime
(Lollipop 5.0.2)
3 Devices
Samsung
Grand Prime
(Lollipop 5.0.2)
3 Devices
Samsung
Grand Prime
(Lollipop 5.0.2)
3 Devices

100 15 1%

200 15 2%

300 15 3%

a significant increase in the popularity of mobile application
for businesses, education etc. But unfortunately energy con-
sumption factors are usually ignored during the application
development. We have conducted an experiment by estima-
tion the battery drainage during the collaboration session as
shown in Table 9. The activity was conducted in three differ-
ent session and each session continued till 15 minutes. The
results show that there is roughly 1% decrease for 100 oper-
ations during these 15 minutes sessions.

C. DISCUSSION

Performance is the key factor in case of mobile applica-
tion, if your application does not perform well, the end user
will uninstall the your app and look for other application
that performs much better than your application. In case of
distributed application it is more critical as multiple users
are performing activities simultaneously. There is a need to
synchronize the state across the all devices without any delay
to ensure the application reliability. The experimental results
empirically prove that the efficacy of ACS. The results show
that the group /ad-hoc network formation takes few seconds
and can be created on the fly at anytime, anywhere without the
dependency of fixed infrastructure. Moreover, it can be seen
that synchronization of operations also takes negligible time
of 60ms. However distance between the collaborating devices
increases the operations synchronization time, but it is still
acceptable in case of distributed applications. In some cases,
framework often jeopardizes some systems real-time perfor-
mance due to inclusion of extra layer with the application
but in this case as shown in the experiments, efficiency of
system did not affect and application perform well as per the
expectation of distributed environment.

Limited storage of mobile devices and power consump-
tion is also considered while working on the framework
and the experiment result shown in Table 8 reflects that
the framework does not have any memory overhead and
worked well on mobile devices. In case of paint application,
we are storing the operation semantic and broadcasting to the

VOLUME 8, 2020

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

IEEE Access

collaborating devices. However memory consumption will be
variable depends upon the data semantic defined by the appli-
cation developer for their applications. Moreover, the power
consumption experiment as shown in Table 9 also reflects that
the application energy consumption in satisfactory and does
not have any negative impact on the mobile battery.

VI. CONCLUSION AND FUTURE DIRECTION

This article presents an architectural framework that is a
step towards the materialization of the vision of ubiquitous
computing by presenting a framework named ad-hoc Col-
laboration Space (ACS). The proposed framework aims to
address a challenging task of providing seamless integration
of different types of android based devices to share data
and program in ad-hoc network settings, thus resulting into
an ad-hoc collaboration space. The ACS framework facil-
itates the development of cross-device distributed mobile
applications by hiding the complexities of mobile environ-
ment and empowers the application developer to focus on
an application development using the easy to use common
set of APIs provided by the framework. The novelty of our
approach is that, to the best of our knowledge, it is the
first framework that provides abstraction layer for the devel-
opment of a distributed cross-device application in ad-hoc
network settings. The results show that the proposed system
is efficient in terms of device discovery, connectivity, and
data and event synchronization. It has also been exposed
in the form of APIs to reduce the application development
time.

In future we intend to work on the stability of framework
to impart fault-tolerance into the system, which would be
required when the system involves group reformation in case
of group owner disconnects. We also intend to evaluate the
framework on different types of android based devices pro-
duced by different manufacturers, and for different android
versions. Furthermore, we also intend to make the proposed
framework inter-operable and heterogeneous by connect-
ing android and iOS based devices in an efficient manner.
We would also like to test the proposed framework on differ-
ent types of applications including video based applications,
or game based applications.

REFERENCES

[1] Facebook for Business. (Mar. 10, 2014). Finding Simplicity in a
Multi-Device Study commission by Facebook. [Online]. Available:
https://www.facebook.com/business/news/Finding-simplicity-in-a-multi-
device-world

[2] M. Weiser, “The computer for the 21st century,” Scientific American,
1991.

[3] S. Robertson, C. Wharton, C. Ashworth, and M. Franzke, “Dual device
user interface design: PDAs and interactive television,” in Proc. SIGCHI
Conf. Hum. Factors Comput. Syst. Common Ground (CHI), Vancouver,
BC, Canada, 1996, pp. 79-86.

[4] H.Sgrensen, D. Raptis, J. Kjeldskov, and M. B. Skov, “The 4C Framework:
Principles of interaction in digital ecosystem,” in Proc. ACM Int. Joint
Conf. Pervasive Ubiquitous Comput., 2014, pp. 87-97.

[5] A. Sanctorum and B. Signer, “Beat Signer: Towards user-defined cross-
device interaction,” in Proc. ICWE -Int. Workshops, Cham, Switzerland,
Oct. 2016, pp. 179-187.

VOLUME 8, 2020

[6]
[7]

[8]

[9]

(10]

(11]

[12]

(13]
(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

Samsung. Samsung Flow. Accessed: Feb. 5, 2017. [Online]. Available:
http://www.samsung.com/uk/support/samsungflow

P.-Y. Chiand Y. Li, “Weave: Scripting cross-device wearable interaction,”
in Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst. (CHI), Seoul,
South Korea, 2015, pp. 3923-3932.

L. Frosini and F. Paterno, ““User interface distribution in multi-device and
multi-user environments with dynamically migrating engines,” in Proc.
ACM SIGCHI Symp. Eng. Interact. Comput. Syst. (EICS), Rome, Italy,
2014, pp. 55-64.

S. K. Badam and N. Elmqvist ““Polychrome: A cross-device framework for
collaborative Web visualization,” in Proc. ACM ITS, 2014, pp. 109-118.
M. Nebeling, A. To, A. Guo, A. de Freitas, J. Teevan, S. P. Dow, and
J. P. Bigham, “WearWrite: Crowd-assisted writing from smartwatches,”
in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI), San Jose, CA,
USA, May 2016, pp. 3834-3846.

P. Hamilton and D. J. Wigdor, “Conductor: Enabling and understanding
cross-device interaction,” in Proc. CHI, New York, NY, USA: ACM, 2014,
pp. 2773-2782.

Create P2P Connections With Wi-Fi Direct | Android Develop-
ers. Accessed: Mar. 10, 2020. [Online]. Available: https://developer.
android.com/training/connect-devices-wirelessly/wifi-direct

P2P Technical Group, Wi-Fi Peer-to-Peer (P2P) Technical Specification,
Wi-Fi Alliance, Austin, TX, USA, Apr. 14, 2017.

Apple Inc. Apple-1I0S 8-Continuity. Accessed: Feb. 6, 2017. [Online].
Available: https://www.apple.com/ios/whatsnew/continuity/

Google Inc. Android Wear: The Developer’S Perspective. Accessed:
Sep. 23, 2017. [Online]. Available: https://www.google.com/events/
io/iol4videos/

J. Domingue, M. Dzbor, and E. Motta, “Collaborative semantic Web
browsing with Magpie,” in Proc. Eur. Semantic Web Symp., Semantic Web,
Res. Appl., C.J. Bussler, J. Davies, D. Fensel, and R. Studer, Eds. Berlin,
Germany: Springer, 2004, 388—401.

A. W. Esenther, “Instant co-browsing: Lightweight real-time collaborative
Web browsing,” in Proc. World Wide Web Conf., 2002, pp. 107-114.

B. Johanson, S. R. Ponnekanti, C. Sengupta, and A. Fox, ‘“Multibrowsing:
Moving Web content across multiple displays,” in Proc. 3rd Int. Conf.
Ubiquitous Comput. (UbiComp), London, U.K., 2001, pp. 346-353.

J. Yang and D. Wigdor, “Panelrama: Enabling easy specification of cross-
device Web applications,” in Proc. SIGCHI Conf. Hum. Factors Comput.
Syst., Toronto, ON, Canada, Apr./May 2014, pp. 2783-2792.

E. Agapie, J. Teevan, and A. Monroy-Hernandez, “Crowdsourcing in
the field: A case study using local crowds for event reporting,” in Proc.
HCOMP, 2015, pp. 1-10.

S. Kreitmayer, Y. Rogers, R. Laney, and S. Peake, “UniPad: Orches-
trating collaborative activities through shared tablets and an inte-
grated wall display,” in Proc. UbiComp. New York, NY, USA:
ACM, 2013, pp. 801-810. [Online]. Available: https://www.overleaf.com/
project/5c44a99fa21e4668b5549120

T. Pering, K. Lyons, R. Want, M. Murphy-Hoye, M. Baloga, P. Noll,
J. Branc, and N. De Benoist, “What do you bring to the table?: Inves-
tigations of a collaborative workspace,” in Proc. 12th ACM Int. Conf.
Ubiquitous Comput. (Ubicomp), 2010, pp. 183-192.

Wi-Fi Direct | Wi-Fi Alliance. Accessed: Mar. 10, 2020. [Online]. Avail-
able: https://www.wi-fi.org/discover-wi-fi/wi-fi-direct

R. Han, V. Perret, and M. Naghshineh, “WebSplitter: A unified XML
framework for multi-device collaborative Web browsing,” in Proc. ACM
Conf. Comput. Supported Cooperat. Work (CSCW), 2000, pp. 221-230.
T. Maekawa, T. Hara, and S. Nishio, “A collaborative Web browsing
system for multiple mobile users,” in Proc. 4th Annu. IEEE Int. Conf.
Pervasive Comput. Commun. (PERCOM), Mar. 2006, pp. 22-35.

H. Wiltse and J. Nichols, “PlayByPlay: Collaborative Web browsing for
desktop and mobile devices,” in Proc. 27th Int. Conf. Hum. Factors Com-
put. Syst. (CHI), 2009, pp. 1781-1790.

D. Ashbrook, K. Lyons, and T. Starner, “An investigation into round touch-
screen wristwatch interaction,” in Proc. 10th Int. Conf. Hum. Comput.
Interact. Mobile Devices Services (MobileHCI), 2008, pp. 311-314.

J. Kim, J. He, K. Lyons, and T. Starner, “The gesture watch: A wireless
contact-free gesture based wrist interface,” in Proc. 11th IEEE Int. Symp.
Wearable Comput., Oct. 2007, pp. 15-22.

G. Laput, R. Xiao, X. A. Chen, S. E. Hudson, and C. Harrison, “Skin
Buttons: Cheap, small, low-powered and clickable fixed-icon laser pro-
jectors,” in Proc. 27th Annu. ACM Symp. User Interface Softw. Technol.
(UIST). New York, NY, USA: ACM, 2014, pp. 389-394.

62813

IEEE Access

1. A. Khawaja et al.: Ad-Hoc Collaboration Space for Distributed Cross Device Mobile Application Development

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. T. Perrault, E. Lecolinet, J. Eagan, and Y. Guiard, ‘“Watchit: Simple
gestures and eyes-free interaction for wristwatches and bracelets,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). New York, NY, USA:
ACM, 2013, pp. 1451-1460.

M. T. Raghunath and C. Narayanaswami, ‘‘User interfaces for applications
on a wrist watch,” Pers. Ubiquitous Comput., vol. 6, no. 1, pp. 17-30,
Feb. 2002.

J. M. Zacks, B. Tversky, and G. Iyer, “Perceiving, remembering, and
communicating structure in events,” J. Exp. Psychol., Gen., vol. 130, no. 1,
p. 29, 2001.

X. A. Chen, T. Grossman, D. Wigdor, and G. Fitzmaurice, “‘Duet: Explor-
ing joint interactions on a smart phone and a smart watch,” in Proc. ACM
CHI, 2014, pp. 159-168.

Bluetooth Technology Website. Accessed: Mar. 10, 2020. [Online]. Avail-
able: https://www.bluetooth.com

L. D. Geronimo, M. Husmann, and C. M. Norrie, “Surveying personal
device ecosystems with cross-device applications in mind,” in Proc. 5th
ACM Int. Symp. Pervasive Displays (PerDis). New York, NY, USA: ACM,
2016, pp. 220-227.

S.Zhu, S. Xu, S. Setia, and S. Jajodia, “LHAP: A lightweight hop-by-hop
authentication protocol for ad-hoc networks,” in Proc. IEEE Int. Workshop
Mobile Wireless Netw. (MWN), May 2003, pp. 749-755.

F. Brudy, C. Holz, R. Rédle, C. J. Wu, S. Houben, C. Klokmose, and
N. Marquardt, “Cross-device taxonomy: Survey, opportunities and chal-
lenges of interactions spanning across multiple devices,” in Proc. CHI
Conf. Hum. Factors Comput. Syst., Glasgow, U.K., May 2019, pp. 4-9.
Y. Xu, L. Wang, Y. Xu, S. Qiu, M. Xu, and X. Meng, “Cross-device task
interaction framework between the smart watch and the smart phone,”
in Personal and Ubiquitous Computing. Springer, 2019, pp. 1-11, doi:
10.1007/s00779-019-01280-7.

S. Park, C. Gebhardt, R. Ridle, A. M. Feit, H. Vrzakova, N. R. Dayama,
H.-S. Yeo, C. N. Klokmose, A. Quigley, A. Oulasvirta, and O. Hilliges,
“AdaM: Adapting multi-user interfaces for collaborative environments
in real-time,” in Proc. CHI Conf. Hum. Factors Comput. Syst. (CHI).
New York, NY, USA: ACM, 2018, Art. no. 184. [Online]. Available:
https://doi.org/10.1145/3173574.3173758

S. K. Badam, A. Mathisen, R. Radle, C. N. Klokmose, and N. Elmqvist,
“Vistrates: A component model for ubiquitous analytics,” IEEE Trans.
Vis. Comput. Graphics, vol. 25, no. 1, pp. 586-596, Jan. 2019, doi: 10.
1109/TVCG.2018.2865144.

IMRAN ABBAS KHAWAIJA was born in Lahore,
Pakistan. He received the master’s degree in com-
puter science and the M.S. degree in software
engineering from the University of Management
and Technology, Pakistan. He possesses vast expe-
rience in software development. He is currently
working as the Project Manager with the Virtual
University of Pakistan.

ADNAN ABID (Member, IEEE) was born in
Gujranwala, Pakistan, in 1979. He received the
B.S. degree from the National University of Com-
puter and Emerging Science, Pakistan, in 2001,
the M.S. degree in information technology from
the National University of Science and Technol-
ogy, Pakistan, in 2007, and the Ph.D. degree in
computer science from the Politecnico di Milano,
Italy, in 2012. He has spent one year in EPFL,
Switzerland, to complete his M.S. thesis. His

research interests include computer science education, information retrieval,
and data management. He is currently working as an Associate Profes-
sor with the Department of Computer Science, University of Manage-
ment and Technology, Pakistan. He has almost 40 publications in different
international journals and conferences. He has served as a reviewer in
many international conferences and journals. He is an Associate Editor of
IEEE Accgss.

62814

MUHAMMAD SHOAIB FAROOQ (Member,
TIEEE) was born in Lahore, Pakistan. He received
the M.Sc. degree from Quaid-e-Azam University,
Pakistan, in 1995, the M.S. degree in computer
science from Government College University,
in 2007, and the Ph.D. degree from Abdul Wali
Khan University, Pakistan, in 2015. He possesses
more than 20 years of teaching experience in the
field of computer science. He is currently working
as an Associate Professor with the Department of

Computer Science, University of Management and Technology, Pakistan.
His research interests include theory of programming languages, and com-

puter science education.

ADNAN SHAHZADA was born in Pakistan.
He received the B.S. degree in computer sci-
ence from the National University of Computer
and Emerging Sciences, Pakistan, the M.S. degree
in artificial intelligence from the University of
Dalarna, Sweden, and the Ph.D. degree from the
Politecnico di Milano, Italy. He possesses a diver-
sified experience from the industry and academia.

UZMA FAROOQ was born in Lahore, Pakistan,
in 1983. She received the B.S. degree in computer
science from the University of the Punjab, in 2005,
and the M.S. degree in computer science from the
National University Computer and Emerging Sci-
ences, Pakistan, in 2007. She is currently working
as an Assistant Professor with the Department of
Computer Science, University of Management and
Technology, Pakistan. She is teaching basic and
advanced computer programming courses in the

undergraduate programs in computer science and software engineering.

£a

lished nearly 40 articles in international journals and conferences.

KAMRAN ABID (Member, IEEE) was born in
Gujranwala, Pakistan, in 1977. He received the
M.Sc. degree in computer science from Hamdard
University, Pakistan, in 2000, the M.S. degree in
total quality management from the University of
the Punjab, and the Ph.D. degree in electrical engi-
neering from the University of Glasgow, in 2011.
He is currently working as an Assistant Professor
with the Department of Electrical Engineering,
University of the Punjab, Pakistan. He has pub-

VOLUME 8, 2020

http://dx.doi.org/10.1007/s00779-019-01280-7
http://dx.doi.org/10.1109/TVCG.2018.2865144
http://dx.doi.org/10.1109/TVCG.2018.2865144

