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ABSTRACT Technological innovation in modern systems has significantly improved their performance.
However, fault characteristics such as epistemic uncertainty and dynamic failure modes often occur when
these systems break down, which greatly raises some new challenges in fault diagnosis. A new fault diagnosis
strategy for complex systems is presented based on multi-source heterogeneous information considering
epistemic uncertainty in this paper. Specifically, in view of the epistemic uncertainty, the failure distribution
parameters of basic events are described with interval numbers and test cost of these events are evaluated
using domain experts and intuitionistic fuzzy linguistic set; Aiming at the problem of dynamic failure modes,
a dynamic fault tree (DFT) is used to establish the dynamic failure model and is converted into a dynamic
evidential network to calculate some reliability parameters; Furthermore, a diagnostic decision table is
constructed based on multi-attribute heterogeneous information such as test cost and some reliability results;
Finally, a novel fault diagnosis strategy is designed based on distance-based VIKOR algorithm, which can
provide some decision support for fault diagnosis and locate the fault as quickly as possible.

INDEX TERMS Intuitionistic fuzzy linguistic set, reliability assessment, diagnosis strategy, D-S evidence
theory, VIKOR algorithm.

I. INTRODUCTION
Technological improvement and innovation in modern sys-
tems significantly improve the performance and functional-
ity of these systems. However, fault characteristics such as
epistemic uncertainty and dynamic failure modes often occur
when these systems break down. Besides, application of
redundancy technology has also led to a continuously increas-
ing in the complexity of these systems, which raises new
challenges to fault diagnosis in these modern systems. Aim-
ing at the unique fault characteristics of these systems, it is
of great significance to establish a multi-dimensional fault
diagnosis model and develop a diagnosis decision-making
algorithm based on multi-source heterogeneous information
in order to locate faults quickly and recover these systems
as soon as possible. Fault location, which is essentially a
multi-attribute decision-making optimization process, mainly
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determines the diagnostic sequence of each component in the
system according to certain criteria [1]. For fault diagnostic
strategy, current researches have provided a variety of meth-
ods to construct and analyze system fault models, mainly
including correlation models, fault trees, Petri nets, signed
directed graph models, neural networks and Bayesian net-
works. Tsai and Hsu [2] propose a correlation model to model
and analyze the functional model-based system testability.
The correlation between functional factors and test points
of the system is also analyzed, and the fault-test correlation
matrix is established. A diagnostic decision tree is generated,
which provides a diagnostic method for testability of the sys-
tem. A fuzzy fault diagnosis method based on directed graph
model has been proposed in [3]. The main advantage is that
it can diagnose multiple faults and does not need to acquire
the prior failure probability of components accurately. How-
ever, this method also needs to construct a fault-test matrix,
which is not applicable to the redundant systems, because
the relationship between the test and the faulty unit is not a
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one-to-one in the redundant systems, but many-to-one. This
makes the test effectiveness different at different test points
where the information flow is available in the redundant
systems. DFT [4] is developed on the basis of a static fault
tree. It can capture the dynamic fault behaviors of complex
systems in fault diagnosis by adding relevant dynamic logic
gates. Reference [5] presents a fault diagnosis method based
on the dynamic fault tree, which uses Markov chain to solve
DFT and integrates sensor information to optimize the system
diagnosis process. However, the solution for DFT based on
Markov chain method will lead to state space explosion.
For this reason, Merle et al. [6] proposes a priority DFT
method, which solves the DFT with priority dynamic gate
by directly determining the priority, without using Markov
chain. In reference [7], DFT is used to model the dynamic
fault characteristics, and some importance of components
can be calculated and used as a basis for fault diagnosis.
Reference [8] introduces a discrete-time Bayesian network to
calculate some reliability parameters and update these reli-
ability parameters by fusing sensor information to optimize
the diagnosis process in a certain extent. This method can
effectively avoid the state space explosion problem. However,
the use of discrete-time Bayesian networks to solve DFTs is
essentially an approximation method and there is a problem
that the calculation accuracy and the computational complex-
ity are contradictory. Therefore, in reference [9], an algebraic
framework method is proposed to solve the structure function
of the DFT, and the structure function can be simplified to
a canonical form. Qualitative and quantitative analysis of a
DFT can be performed directly by determining the minimum
cut set/sequence of the DFT. However, this method needs to
determine the minimum cut set /sequence manually from the
structure function, which reduces its efficiency to a certain
extent. Kabir and Papadopoulos [10] propose a stochastic
Petri net based method to solve DFT, which can model and
analyze the dynamic behaviors and functional dependency
between components in the system. However, this method
cannot analyze the large complex systems. Reference [11]
used a combination of the evidential Markov chain and evi-
dence network to construct a new dynamic evidence net-
work to evaluate system reliability and conditional reliability.
However, this method is relatively complicated and requires
a large amount of calculations. Reference [12] discussed a
detailed transformation from a logic tree of a fault tree to
a dynamic evidence network model and an aero-engine oil
system was used to verify the effectiveness of the proposed
evidence network model.

Aiming at the problem of epistemic uncertainty, domain
expert’s evaluation can be an alternative. However, some-
times it is subjective and often leads to uncertainty. So,
how to deal with uncertainty is a hot topic in fault diagno-
sis [13]. Sun et al. [14] present a possibility theory to deal
with the uncertain information in fault diagnosis problems.
Dempster-Shafer evidence theory (D-S evidence theory) has
great advantages to handle uncertain information. D-S evi-
dence theory was proposed by Dempster and later developed

by Shafer [15]. In [16], D-S evidence theory is used to
solve the problem of uncertain information that cannot be
recognized in data fusion. Reference [17] proposes a fuzzy
linguistic set to deal with quantitative information that can be
better understood and establishes an attribute model to make
decisions on evaluation information. Zhang et al. [18] extend
the fuzzy linguistic set to the intuitionistic fuzzy domain
to deal with the uncertainty information brought by expert
evaluation in the multi-attribute decision making problem.
Torra [19] introduces a hesitant fuzzy set and uses multiple
membership degrees to represent uncertain data, which can
deal with epistemic uncertainty very well. In reference [20],
a fuzzy DFT analysis method based on Monte Carlo model is
proposed, and triangular fuzzy numbers are used to represent
the failure rate to deal with the epistemic uncertainty problem.
Reference [21] introduces the Pandora temporal fault tree,
which can model the dynamic fault behaviors and transform
the expert’s fuzzy linguistic information into quantitative
information for evaluation, which not only evaluates the relia-
bility of complex systems, but also eliminates the problem of
uncertainties. This method, however, requires a lot of manual
operations, which is time-consuming and expensive. Aiming
at the problems in the above references, [22] proposes a
HiP-HOPS analysis model based on Petri net and Bayesian
network, and automatically calculates the reliability results
and applies it to the actual complex dynamic system, which
proves its effectiveness. However, this method assumes that
the basic events in the fault tree obey the exponential distribu-
tion and the distribution parameters are crisp values, and thus
cannot deal with the epistemic uncertainty. For this reason,
in reference [23], linguistic fuzzy set is used to describe the
distribution parameters by resorting to domain experts, and a
DFT is mapped into a stochastic Petri net to calculate some
reliability parameters, which are used to provide decision
support for improving system performance.

As for diagnostic algorithms, many researchers have pro-
posed many effective methods. Reference [24] incorporates
the sensor information into diagnosis process and considers
DIF of components and the minimum cut set to diagnose
the system. However, it is impossible to make decisions on
the case where DIF of the minimal cut set is large and
DIF of the component is small. Furthermore, the uncer-
tainty of the test cost is ignored. Reference [25] presents a
decision-making method based on DS-VIKOR, which con-
siders the decision-making problem of multiple experts eval-
uating some attributes, and obtains the final ranking scheme.
However, the mass function assignment under each attribute
is usually obtained by domain experts based on experience
evaluation, which easily leads to subjectivity and affects the
efficiency of fault diagnosis. Besides, the algorithm consid-
ers only the single data type of crisp value. Reference [26]
presents a dynamic fault diagnosis method based on DFT
and Bayesian network. Firstly, a DFT is used to construct
a system fault model, and then the fuzzy sets and domain
experts are used to obtain the fuzzy failure rate of compo-
nents. After that, reliability parameters are calculated and

50922 VOLUME 8, 2020



S. Huang et al.: Fault Diagnosis Strategy for Complex Systems Based on Multi-Source Heterogeneous Information

FIGURE 1. A fault diagnosis strategy for complex systems based on multi-source heterogeneous
information considering epistemic uncertainty.

updated by sensors data. Finally, an efficient diagnostic deci-
sion tree can be generated to guide maintenance personnel
to locate faults quickly using a TOPSIS algorithm. Nev-
ertheless, the multi-attribute decision-making algorithm is
still based on crisp value. Based on the above research [27]
proposes a multi-attribute fault diagnosis method based on
a dynamic evidence network. This method uses the system
reliability results to construct the interval numbers multi-
attribute diagnosis decision table, and the optimal diagnosis
strategy is obtained based on a VIKOR algorithm. To some
extent, this approach can improve the diagnostic efficiency,
but the diagnostic decision tables belong to the same type
of data (that is, the interval number) and cannot process
heterogeneous information. To this end, a dynamic diag-
nostic strategy is proposed based on reliability analysis and
an improved VIKOR algorithm [28], [29]. This method can
deal with epistemic uncertainty and heterogeneous informa-
tion. However, it ignores the uncertainty of the test cost
and to some extent, has some influence on the diagnosis
efficiency. Reference [30] presents a hybrid multi-attribute
decision-making method, which considers the uncertainty
of language assessment by decision makers and uses inter-
val numbers to represent the language evaluation grades.
This method has small information loss in the fusion pro-
cess and can effectively overcome the defects of traditional
methods.

Motivated by the problems mentioned above, this paper
presents a fault diagnosis strategy for complex systems based
on multi-source heterogeneous information such as test cost

and reliability results shown in Fig. 1. Multiple factors are
considered to construct the DFT model of complex systems.
Interval numbers are used to describe the failure distribution
parameters of basic events and test cost of these events are
evaluated using the domain experts and intuitionistic fuzzy
linguistic set to deal with epistemic uncertainty; Aiming at
the problem of fault correlation, a DFT is used to establish
the dynamic failure model and is converted into a dynamic
evidential network to calculate some reliability parameters;
Furthermore, a diagnostic decision table is constructed based
on multi-attribute heterogeneous information such as qualita-
tive evaluation information and quantitative reliability param-
eters; Finally, a novel fault diagnosis strategy is designed
based on distance-based VIKOR algorithm, which can pro-
vide some decision support for fault diagnosis and locate the
fault as quickly as possible.

The rest of the paper is arranged as follows. Section II
introduces the concept of D-S evidence theory, VIKOR
algorithm and interval numbers ranking method based on
the probability degree. Section III presents the fusion rules
of basic probability assignment (BPA), test cost evaluation
method of basic events based on domain experts and D-S
evidence theory. In section IV, the reliability analysis method
and reliability parameters are introduced. Section V shows
the fault diagnosis strategy based on multi-source heteroge-
neous information in detail. In section VI, an example of a
specific braking system to illustrate the effectiveness of the
proposed method. Finally, section VII draws conclusions and
offers the further work suggestions.
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II. PRELIMINARIES
A. INTUITIONISTIC FUZZY LINGUISTIC SET
Definition 1: Let S = {si |i = 1, 2, . . . , 2t, s ∈ N } be

a limited set of linguistic terms [31]–[33]. si represents the
combination of possible value sets of language variables with
the following properties:

1) si ≥ sj, when i ≥ j
2) Min{si, sj} = sj, when i ≥ j
3) Max{si, sj} = si, when i ≥ j

Intuitionistic fuzzy language set S is an extension of
linguistic term set, that is, the possible values of all its
variables are represented by intuitionistic fuzzy numbers,
S = {[s−i , s

+

i ]|i = 1, 2, . . . , 2t, s ∈ N }.

B. D-S EVIDENCE THEORY
Definition 2: D-S evidence theory [34], [35] is also called

D-S theory. For a proposition that needs to be judged, the set
of all the combinations of judgment hypotheses is limited.
The set of these combinations of judgment hypotheses can be
recorded as 2 and called 2 as the frame of discernment of
this proposition [36].

2 = {θ1, θ2, . . . , θi, . . . , θN } (1)

where all the elements in 2 are mutually independent and
mutually exclusive, and contain all possible assumptions of
the proposition. Since all the calculations of the evidence
theory are carried out on the power set, the power set is
defined as 22.

22 = {φ, {θ1}, {θ2}, . . . , {θn}, {θ1, θ2}, . . . , {θ1, θn},

{θ1, θ2, θ3}, . . . ,2} (2)

Definition 3: When the frame of discernment is deter-
mined, the mass function m is defined as:

m : 22→ [0, 1] (3)

In D–S theory, a mass function is also called a BPA [37],
which satisfies the following conditions:

m(φ) = 0 (4)

m(X ) ≥ 0 (5)∑
X∈22

m(X ) = 1 (6)

Definition 4: Suppose m1 and m2 are two mass functions.
Dempster’s rule denoted by m = m1 ⊕ m2 is defined as:

m(A) =

∑
B∩C=A m1(B)m2(C)

1− K
(7)

where K is the conflict coefficient between different evi-
dences,
K =

∑
B∩C 6=φ

m1(B) · m2(C) = 1 −
∑

B∩C=φ
m1(B) · m2(C),

that is K < 1.

C. ENTROPY WEIGHT METHOD
In multi-attribute decision-making problems, the weights of
evaluation attributes may be different, and their weights may
also be unknown. The entropy weight method is a more
objective evaluation method, which can obtain the weight of
each attribute objectively. Entropy valueHi under criterionCi
is calculated by

Hi = −K
n∑
j=1

m(Fij) lnm(Fij) (8)

where K = 1/ ln n(K > 0, 0 ≤ m(Fij) ≤ 1); if m(Fij) =
0,m(Fij) lnm(Fij) = 0.
Then, the deviation degree coefficient αi under attribute Ci is
calculated by the following equation.

αi = 1− Hi (9)

Finally, we can get the weight value of each attribute:

ωi =
αi∑m
i=1 αi

(10)

where
n∑
i=1
ωi = 1, 0 ≤ ωi ≤ 1.

D. PIGNISTIC PROBABILITY FUNCTION BETPm

Definition 5: Suppose m be a BPA on θ , so its Pignistic
probability function BetPm [38] is defined as:

BetPm(ω) =
∑

A⊆θ,ω∈A

1
|A|

m(A)
1− m(φ)

, m(φ) 6= 1 (11)

As m(φ) = 0, A ∈ 2, we can simplify the above formula to
the following equation.

BetPm(ω) =
∑
ω∈2

m(A)
|A|

(12)

where |A| is the cardinality of subset A; ω is the subset propo-
sition in A. The purpose of the above formula is to convert
BPA into the probability distribution for decision-making.

E. VIKOR METHOD
Vlsekriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) method was developed by Opricovic in 1998 for
multi-criteria optimization of complex systems. It can rank
the limited decision-making schemes, maximize the group
benefit value and minimize the individual regret, and finally
obtain the compromise solution acceptable to the decision-
maker. VIKOR method can rank the solutions directly, and
the optimal solution obtained is closer to the ideal solution.
In the case of decision-making, attribute evaluation values are
usually expressed by more than two types of values. In order
to take advantage of the information as much as possible,
this heterogeneous information needs to be processed. The
basic principle of VIKOR method is based on an aggregation
function Lp-metric, which can describe the distance between
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TABLE 1. Intuitionistic fuzzy linguistic set and corresponding values.

different attributes [39], [40]. The aggregation function is
defined as follows:

Lp,j = {
n∑
i=1

[ωi(f ∗i − fij)/(f
∗
i − f

−

i )]p}1/p (13)

where 1 ≤ p ≤ α, j = 1, 2, . . . , J ; f − is the worst solution;
f ∗ is the optimal solution of ideal solution; ωi is the weight
of attribute i; The value obtained from jth basic event under
ith attribute is denoted by fij.

F. RANKING METHOD OF INTERVAL NUMBERS BASED ON
THE POSSIBILITY DEGREE
Interval numbers can be obtained based on domain expert
evaluation. Nevertheless, these interval values cannot be used
directly to rank components and should be converted into
relative possibility degrees. This paper uses a ranking method
based on the possibility degree [41].
Definition 6: Suppose A = [al, au],B = [bl, bu] are two

interval numbers, the possibility degree that A is greater than
B is calculated by:

PAB =


1−

1
2es−1/2

, s ≥ 1/2

1
2es−1/2

, s < 1/2
(14)

where L(a) = au − al,L(b) = bu − bl, e = au − bl, s =
e/(L(a)+ L(b)).
T is obtained by adding the rows to PAB, and the final sort

result value is calculated by the following formula:

r =
1
i
−

i
2(i− 1)2

+
1

(i− 1)2T
(15)

where i is the rows of PAB.

III. EVALUATION METHOD OF TEST COST BASED ON
DOMAIN EXPERT AND D-S THEORY
Test cost of basic events is an important evaluation parameter
and plays an important role in actual fault diagnosis. The opti-
mal diagnosis strategy should be low cost and high efficiency.
For different basic events, their test cost may be different,
and it is generally difficult to be evaluated with crisp values
because of the uncertainty. Fuzzy set theory has been widely
used to deal with vague scenarios by attributing a degree to
which a certain object belongs to a set. However, traditional
fuzzy set theory is not able to incorporate the uncertainty or

hesitation in the membership functions. Intuitionistic fuzzy
set, an extension to traditional fuzzy set, is useful in defin-
ing an imprecise quantity using fuzzy set where traditional
fuzzy set cannot define the quantity due to the inadequacy of
available information. In this section, intuitionistic fuzzy set
is used to evaluate the test cost of basic events based on expert
judgment.

A. EXPERT EVALUATION
Now suppose there are K = {1, 2, . . . , k} experts E to make
decisions onM = {1, 2, . . . ,m} basic eventsA under attribute
C . Each expert evaluates basic events based on his or her own
experience. The intuitionistic fuzzy linguistic term set is used
to represent the corresponding evaluation value under each
attribute. In this paper the linguistic term set of intuitionis-
tic fuzzy numbers [42] is used to describe decision-making
information as shown in Table 1, so the uncertainty can be
judged more flexibly.

As shown in Table 1 above, 7 evaluation elements are
defined, and these 7 elements constitute the recognition
framework, and the corresponding BPA is assigned to the
basic events under each criterion. For example, there are
elements A, B, C, . . ., and the corresponding belief function
is a, b, c, . . .. If m(A) = a, m(B) = b, m(C) = c, the rest part
is θ , so we can get m(θ ) = 1− a− b− c− . . . .

B. BPA FUSION RULE
Definition 7: Based on Definition 4 and correspond-

ing weight Wi(BPA), a compromise mass function can be
obtained before combining them, expressed as follows:

mωi (A) = ωi(BPA)× mi(A)

mωi (θ ) = (1− ωi(BPA))+ ωi(BPA)× mi(θ ) (16)

After getting information on basic events under different
criteria of each expert for subsequent criteria determination.
The next step is to obtain the mass function under each
expert’s criteria. According to the fusion information, all the
distribution of mass function under different criteria can be
obtained using the following formula.

mi(BPA) = ⊕Ri m
ω
i (BPA) (17)

where ⊕ is an orthogonal sum symbol; R is the number of
evidences.
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C. TRANSFORMING BPA INTO PROBABILITY
DISTRIBUTION
The mass function of each basic event under each crite-
rion can be obtained from the previous section. BPA can
be transformed into probability distribution using Pignistic
probability function BetPm. Each probability distribution can
be integrated into a value according to the aggregate function.
Definition 8: Suppose the importance of linguistic term

set is I1, I2, . . . , In and the corresponding values is W =

(< W−1 ,W
+

1 >,< W−2 ,W
+

2 >, . . . , < W−n ,W
+
n >)T ,

the probability distribution is P = (P1,P2, . . . ,Pn), so,
the test cost of aggregate is:

F(I1, I2, . . . , In) = PW =<P1W
−

1 +P2W
−

2 +· · · + PnW
−
n ,

P1W
+

1 +P2W
+

2 + · · · + PnW
+
n > (18)

where P is the probability distribution of BetPm; F is the test
cost of basic events. The probability function BetPm under
each criterion can be aggregated into a numerical value using
the equation above.

IV. RELIABILITY ANALYSIS BASED ON DYNAMIC
EVIDENCE NETEORK
Interval numbers are used to describe the failure distribution
parameters of basic events to deal with the epistemic uncer-
tainty problem in this paper. A dynamic evidence network,
an extension of static initial evidence network in time, can
propose a solution for DFT with interval distribution param-
eters of basic events. For the conversion of DFT into the
dynamic evidence network, it can be divided into two parts.
One part is a static evidence network, and the other part is a
time attribute. DFT can be converted into a static evidence
network first, and then dynamic evidence network can be
obtained by adding time attribute [43]. After establishing the
DFT model of the system, the DFT is mapped into a corre-
sponding dynamic evidence network according to the above
method and inference algorithm can be used to calculate some
importance factors. Importance refers to the degree to which
system performance is affected when several components
fail.

A. DIF
DIF is the cornerstone of fault diagnosis method based on
reliability analysis. It distinguishes different basic events in
the system from the perspective of diagnosis. Basic events
with higher diagnostic importance are more important. The
DIF of a basic event refers to the failure probability of a basic
event when the system fails. The calculation formula is:

DIFX =P(X=1|S=1)= [Bel({FX |S}), Pl({FX |S})] (19)

where X is a basic event in the system; DIFX represents
the DIF of the basic event X ; P(X |S) represents the failure
probability of the basic event X when the system S fails;
[Bel({FXi|S}),Pl({FXi|S})] indicates the interval value of the
failure probability that the basic eventX fails when the system
S fails.

B. BIRNBAUM IMPORTANCE MEASURE (BIM)
Birnbaum first introduced the reliability importance measure
of a basic event in 1969 [44]. This measure is defined as
the probability that a basic event is critical to the system
failure i.e. when a basic event X fails it causes the system
to move from a working to a failed state. BIM of a basic
event X can be interpreted as the rate at which the system’s
reliability improves as the reliability of the basic event X is
improved [45]. Similarly, interval BIM of a basic event X can
be defined by the following equation.

BIMX = [Bel({WS}|{WX }),Pl({WS}|{WX })]

− [Bel({WS}|{FX }),Pl({WS}|{FX })] (20)

where Bel({Ws}|{WX }) and Pl({Ws}|{WX }) represent respec-
tively the belief and plausibility measures that the system is
functioning when it is known that the basic event X is in
a working state; Bel({Ws}|{FX }) and Pl({Ws}|{FX }) denote
respectively the belief and plausibility measures that the
system is functioning when the basic event X is in a failed
state.

V. FAULT DIAGNOSIS STRATEGY BASED ON
MULTI-SOURCE HETEROGENEOUS INFORMATION
A. CONSTRUCTING DIAGNOSTIC DECISION MATRIX
Three important parameters such as DIF, BIM and test
cost are used to construct the diagnostic decision matrix of
complex systems. DIF of a basic event distinguishes com-
ponents from the perspective of diagnosis and the more
important the basic event with a higher DIF is. BIM is
one of the most widely used degrees of importance, which
measures the increase of the system reliability when the
reliability of the basic event is improved. Considering the
cost problem in actual diagnosis, we have also introduced
the test cost as an important evaluation parameter. Test
cost plays an important role in actual fault diagnosis. The
optimal diagnosis strategy should be low cost and high
efficiency.

Based on the previous analysis, DIF and BIM are both
expressed in interval numbers and belong to the benefit
attributes. If the attribute value of a basic event is larger,
the basic event is more important to the system failure. How-
ever, test cost is expressed by an intuitionistic fuzzy number,
which is a cost attribute. Similarly, the smaller cost attribute
value of a basic event is more favorable for the system fault
diagnosis. In a word, DIF, BIM and test cost are used to
construct the diagnostic decision matrix which is used to
make decisions for fault diagnosis.

B. NORMALIZING DIAGNOSTIC DECISION MATRIX
Generally, the evaluation values of different attributes have
different dimensions and cannot be directly compared. There-
fore, heterogeneous information from different dimensions
needs to be normalized to eliminate the influence of the
dimension. The normalized matrix is obtained based on the
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following formula.
rLij =

uLij
max
j
uUij

rUij =
uUij

max
j
uUij
,

[uLij , u
U
ij ] is a benefit attribute (21)


rLij =

min
j
uLij

uUij

rUij =
min
j
uLij

uLij
,

[uLij , u
U
ij ] is a cost attribute (22)

Pij=



[
1
n

n∑
i=1

rLij ,
1
n

n∑
i=1

rUij ]

< 1−
n∏
i

(1− uLij)
1
n ,

n∏
i

(uUij )
1
n ,

n∏
i

(1− uLij)
1
n −

n∏
i

(uUij )
1
n >

(23)

where rij is a interval number; uij is a intuitionistic number;
Pij is the final normalized matrix.

C. HAMMING DISTANCE MEASURE OF HETEROGENEOUS
INFORMATION
Based on the previous analysis, evaluation values of attributes
are expressed in interval numbers and intuitionistic fuzzy
numbers. Hamming distance is used to measure the distance
of the heterogeneous information.

Suppose A = [a−, a+] is an interval number, B = [b−, b+]
is its normalized number, and the hamming distance between
A and B is defined as:

d(A,B) = (|a− − b−| + |a+ − b+|)/2 (24)

Suppose C = (u1 , u2) is intuitionistic fuzzy number, D =
(d1, d2) is its normalized number, and the degree of uncer-
tainty is u3 = 1 − u1 − u2. If d3 is its normalized number,
we can calculate the hamming distance between C and D
using the following equation.

d(C,D) = (|u1 − d1| + |u2 − d2| + |u3 − d3|)/2 (25)

D. DETERMING WEIGHT OF ATTRIBUTES
In order to determine the weight of each attribute, we need
to calculate the BPA of basic events under each attribute
using the fusion formula proposed above. The weight of each
attribute can be obtained using the entropy weight method
mentioned in Section II-C. Detail steps are as follows.

Firstly, the worst value f −j and optimal value f ∗j of the
attribute are calculated using the following equation.f

−

j = min
i

f Lij

f ∗j = min
i

f Uij
(26)

TABLE 2. Ranking comparisons between the proposed method and
existing methods.

In order to get the weight, as the evaluation value is the
interval number or intuitionistic fuzzy number, the distance
is needed to quantize these numbers to get the weight.

Secondly, m(Fij) is obtained using the following equation.

m(Fij) =
dij
n∑
i=1

dij

(27)

Finally, substituting equation (8), equation (9), and
equation (10), we can obtain the weight of each attribute.

E. DETERMING THE OPTIMAL DIAGNOSTIC SEQUENCE
The group benefit value Si = [Si, Si] and individual regret
value Ri = [Ri,Ri] can be calculated using the following
equations.

Si =
n∑
j=1

ωj(
f ∗j − f

U
ij

f ∗j − f
−

j

) (28)

Si =
n∑
j=1

ωj(
f ∗j − f

L
ij

f ∗j − f
−

j

) (29)

Ri = max
j∈N
{ωj(

f ∗j − f
U
ij

f ∗j − f
−

j

)} (30)

Ri = max
j∈N
{ωj(

f ∗j − f
L
ij

f ∗j − f
−

j

)} (31)

The compromise value of Qi = [Qi,Qi] can be calculated
by

Qi = v
Si − S−

S+ − S−
+ (1-v)

Ri − R−

R+ − R−
(32)

Qi = v
Si − S−

S+ − S−
+ (1-v)

Ri − R−

R+ − R−
(33)

where S− = min
i
Si; S+ = max

i
Si; R− = min

i
Ri; R+ =

max
i
Ri; v is introduced as the weight for the strategy of

maximum group utility, whereas 1 − v is the weight of the
individual regret.

If the condition v > 0.5 is met, it means that the decision is
made with the consent of the vast majority of decision mak-
ers. If the condition v < 0.5 is met, the decision is made with
the refusal of the vast majority of decision makers. In general,
v can be arbitrarily selected from 0 to 1. In this paper, taking v
as 0.5 means that the optimal diagnosis scheme of the system
is determined according to the maximization of group benefit

VOLUME 8, 2020 50927



S. Huang et al.: Fault Diagnosis Strategy for Complex Systems Based on Multi-Source Heterogeneous Information

FIGURE 2. A DFT for service braking failure of a braking system.

TABLE 3. Basic events in a braking system.

value and the minimization of group individual regret degree.
Finally, we can rank the basic events according to Qi based
on the possibility degree and obtain the optimal diagnosis
sequence.

F. AN ILLUSTRATIVE EXAMPLE
To illustrate the effectiveness of the proposed multi-source
heterogeneous fault diagnosis method, some existing meth-
ods are compared with our proposed method in this paper,

which include Ref. [28], [46], [47]. We take the example
shown in [46] so that we can compare the proposed method
with existing methods.
Example:

(uij, vij)

=


[0.75, 0.90] [0.60, 0.75] < 0.80, 0.20 >

[0.80, 0.85] [0.68, 0.80] < 0.45, 0.50 >

[0.40, 0.55] [0.75, 0.95] < 0.60, 0.30 >
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TABLE 4. Interval failure rates of basic events.

TABLE 5. BPA of three experts’ evaluation of the basic events.

where (uij, vij) represents the value of the ith alternative under
the jth attribute.

Consider an air-condition system selection problem. Sup-
pose there exist three air-condition systems X1, X2 and X3.
Denote the alternative set by

A = {X1, X2, X3}. Suppose three attributes C1 (eco-
nomical), C2 (function), and C3 (being operative) are taken
into consideration in the selection problem. Values under
attributes C1 and C2 are both interval numbers, and val-
ues under attribute C3 are intuitionistic fuzzy numbers. For
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TABLE 6. Diagnostic decision table for fault diagnosis of the braking system.

TABLE 7. Normalized multiple attribute decision table.

comparison, the interval numbers under the attributes C1 and
C2 need to be converted into intuitionistic fuzzy numbers
in [47]. Similarly, the intuitionistic fuzzy numbers under

the attribute C3 need to be converted into interval numbers
in [28], [47]. Table 2 exhibits the order results of the proposed
method and existing methods.
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TABLE 8. Interval values of S, R and Q for search scheme of system fault diagnosis.

From the ranking results given in Table 2, it can be
observed that all methods show X2 is the worst choice.
In addition, the ranking results obtained by our proposed
method are completely consistent with [46], [28], which
shows that the method proposed in this paper is effective. The
inconsistent results between different methods can be under-
stood by the different expressions of information and different
weighting methods. The comparisons between the proposed
method and [47] method show that there are a few differences
in ranking order. The reason is that the intuitionistic fuzzy
numbers are transformed into the interval numbers which can
be applied in [47] and this transformation will cause some
errors. Moreover, the normalization of multi-source hetero-
geneous matrix is different from that of the single attribute
matrix, which is also the reason for the deviation of the
results. The methods in [46], [47], [28] proposed essentially
can only process single data type. However, our proposed
method can deal with the multi-source heterogeneous infor-
mation and can more accurately describe the uncertainty of
complex systems.

VI. APPLICATION IN A BRAKING SYSTEM
In this section, the proposed method is applied to a braking
system in urban rail transit system. DFT of the braking system
is shown in Figure 2. The fault treemodel is mainly composed

of basic events X1 ∼ X26, several intermediate events and
a top event, which includes logical AND gates, OR gates
and cold spare gates. Table 3 lists all basic events in the
braking system. It is assumed that basic event X2 follows
a two-parameter Weibull distribution with parameters β =
3.304, η = [4692.7, 5159.7] and other basic events follow
the exponential distribution and corresponding failure rates
expressed with interval values are given in Table 4.

In order to evaluate the test cost of 26 basic events, three
experts are used to obtain BPA of three experts’ evaluation of
the basic events shown in Table 5 based on the intuitionistic
fuzzy set. The test cost of all events can be obtained using
the proposed method in section 3. Assume that the task time
is 2000 hours, the DFT is converted into a corresponding
dynamic evidential network. Furthermore, the DIF and BIM
of all basic events can be calculated. In the end, a multi-
attribute decision table and the normalized table are given
in Table 6 and 7 respectively.

Based on the entropy methodology, the weights of three
attributes are determined to be ω1 = 0.2484, ω2 = 0.2968,
and ω3 = 0.4548. The S, R and Q values of fault diagnosis
strategy can be obtained according to the improved VIKOR
method, as shown in Table 8. Interval Q values are converted
into definite values using the equation (15). The correspond-
ing results are shown in Table 9. According to the Table 9,
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TABLE 9. Ranking of search schemes for system fault diagnosis.

the optimal diagnosis sequence is X26 � X1 � X2 �
X18(X22) � X19(X23) � X13 � X15 � X21 � X25 �
X20(X24) � X12 � X5 � X7(X8 X9 X16) � X3 (X4 X6
X10 X11 X14 X17). Obviously, the first basic event to be
diagnosed is X26 when the braking system fails. If X26 fails,
the diagnosis process is over. Otherwise, we should diagnose
the next basic event X1 until the braking system is back to
normal. In order to avoid subjectivity and arbitrariness, this
method uses entropy weight method to determine attribute
weights. In addition, the proposed diagnosis algorithm is
based on multi-source heterogeneous information and adopts
a new normalization method to obtain the optimal diagnosis
sequence, which can handle the epistemic uncertainty prob-
lem and dynamic fault behaviors in complex systems.

VII. CONCLUSION
This paper proposes a novel fault diagnosis strategy for
complex systems based on the multi-attribute heterogeneous
information, which combines reliability analysis and intu-
itionistic fuzzy linguistic set. A DFT is adopted to establish a
system fault model to capture the dynamic failure behaviors,
and interval numbers are used to represent interval distribu-
tion parameters of the basic events in the fault tree to deal with
the problem of epistemic uncertainty. Furthermore, DFT is
converted into a dynamic evidence network for quantitative
analysis, which can effectively handle the problem of DFT
solution with an interval distribution parameter. Besides, test
cost of basic events is evaluated using domain experts and
intuitionistic fuzzy linguistic set; In addition, a diagnostic
decision table is constructed based on multi-attribute het-
erogeneous information such as DIF, BIM and test cost;
Finally, a novel fault diagnosis strategy is designed based on
distance-based VIKOR algorithm, which can provide some
decision support for fault diagnosis and locate the fault as
quickly as possible.

In the future, we will fuse sensor information to update the
reliability results in order to optimize the diagnosis process.
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