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ABSTRACT Deep learning based on convolutional neural network (CNN) has been successfully applied to
stereo matching, which has achieved greater improvement in speed and accuracy compared with traditional
methods. However, existing CNN-based stereo matching frameworks frequently encounter two problems.
First, the existing stereo matching network has a large number of parameters, which results in too long
matching running time since excessive network width and excessive number of convolution kernels. Second,
in some areas where reflection, refraction and fine structure may lead to ill-posed problems, the disparity
estimation errors can be occurred. In this paper, we proposed a lightweight network, convolution attention
residual network (CAR-Net), which can balance the real-time matching and matching accuracy for stereo
matching. Besides, a multi-scale residual network called CBAM-ResNeXt, which combines attention, was
proposed for features extraction. With an aim is to simplify the parameters of the network model by reducing
the size of filters and to extract the semantic features such as categories and locations from the image through
convolutional block attention module (CBAM). Here, the CBAM consists of channel attention module and
spatial attention module, where the semantic information of the feature map can be fully maintained after the
parameters were simplified. Moreover, we proposed a dimension-extended 3D-CBAM, which is connected
to 3DCNN for cost aggregation. By combining these two sub-modules of attention, the network is guided
to selectively focus on the foreground or background regions, so as to improve the disparity accuracy in the
ill-posed regions. The experimental results showed that our proposed method generated high accuracy and
optimized the velocity compared to the state-of-the-art benchmark on KITTI 2012, KITTI 2015 and Scene
Flow.

INDEX TERMS Stereo matching, residual network, attention module, running time.

I. INTRODUCTION
Stereo matching is an important issue in computer vision
tasks. An objective is to find corresponding points in the
left and right views of stereo images. Stereo matching is the
basis of depth calculation, which is widely used in real-world
scene reconstruction, industrial ranging, 3D reconstruction
and other fields, such as automatic driving, UAV, robot navi-
gation, etc. However, there are still many challenges in stereo
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matching, such as weak texture regions, repetitive texture
regions, occluded areas, reflection, refraction, fine structure
and so on, whichmay lead to ill-posed problem, stereomatch-
ing effect is usually poor [1]–[5]. In addition, the velocity of
stereo matching algorithm has been studied, but the predic-
tion in weak texture region does not achieve good results [5].

The traditional stereo matching pipeline consists of four
steps: matching cost, cost aggregation, disparity estimation,
and disparity refinement [6], [7]. The matching cost tests
the dissimilarity of the pixels in the potential corresponding
positions, including absolute differences, relative differences,
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truncation differences etc., [7]. In the cost aggregation stage,
the similarity confidence of the corresponding pixels in stereo
images is calculated, and the pixels with high confidence
should be given a low penalty value [8]. The disparity estima-
tion phase usually uses the winner-takes-all (WTA) approach
to select the lowest cost aggregated matching pixel or block.
Disparity refinement consists of three parts including regu-
larization, the penalty coefficient at the edge should be small,
and allowing disparity jumps [7]. However, in the occlusion
area, the weak texture area, and the repeated texture area,
the matching problem has still not been solved [7].

In recent years, researchers began to apply deep learn-
ing to stereo matching algorithm research [1], [2], [9]–[11].
The main ideas include: using the deep learning network
framework to simulate several steps in the traditional stereo
matching pipeline, designing end-to-end network, etc. Stereo
matching algorithm based on deep learning greatly improves
the accuracy and speed. Despite, the deep learning approach
is still accompanied bymany challenges. For example, a large
number of labeled stereo image datasets are required, and
a deep network, a large number of parameters of network
training requires a huge computational resource. There are
also difficulties in ill-posed areas.

Large-scale labeled stereo image datasets and high-
performance new CNN provide us with the possibility to
solve the above challenges. Mayer et al. proposed the first
large-scale dataset for scene flow that can be trained and
evaluated, and DispNet for stereo matching [1]. In the fol-
lowing work, Mayer et al. further proposed DispNetC [1]
to simplify the calculation of neighborhood contrast by lim-
iting the epipolar geometry search to a horizontal sweep
line. DispNetC can handle the occlusion area better, but
only half-resolution disparity map can be obtained. For large
disparity, smooth road surface and reflection area, disparity
calculation is still not accurate, and the parameters are up
to 42M. The proposed residual network [12] makes it eas-
ier to directly learn disparity, and people build end-to-end
networks that do not require post-processing by improving
multi-scale residual networks [11], [13], such as CRL [10],
which is based on cascaded two residual networks proposed
by Pang et al. However, compared to the parameter quan-
tity of DispNetC, the parameter quantity of CRL is as high
as 75M. As shown in Fig. 1, in reflection areas, refraction
and fine structure the accuracy still has limitation.

However, in neural network, very deep models with enor-
mous parameters need vast amount of computer resources,
and require a lot of data to be well tuned. Therefore, the sim-
plified model with an issue of preventing deep CNNs from
going beyond a couple dozen layers becomes one of the key
issues for researchers to improve the CNNs performance.
That means to optimize the network from the perspective of
depth, width and cardinality.

Recently, some researchers have added the attention factor
to the network [14], [15], selectively focusing on the salient
part to improve the performance of CNNs in large-scale
classification tasks. For example, the CBAM [16] proposed

FIGURE 1. The disparity estimation results of the latest method in
ill-posed areas. The error map scales linearly between 0 (black) and
5 (white) pixels error. As shown in the enlarged area of the image frame,
there is a large error in disparity estimation in the reflected area of
vehicle and wall.

byWoo et al. does not directly calculate the 3D attentionmap,
but decomposes it into the learning channel attention and
spatial attention to obtain more representative points of inter-
est, by using attention mechanism to increase expressiveness,
and focusing on important features and inhibit unnecessary
features. Since the convolution operation extracts information
features by mixing cross-channel and spatial information,
the CBAM can emphasize features along the channel dimen-
sion as well as features of the spatial dimension.

Inspired by attention model, we propose CAR-Net
for stereo matching. By adjusting the structure of the
ResNeXt [17] and using the shared weight attention CBAM
to extract high-order semantic features of images, the com-
plexity of the model is greatly reduced, but the accuracy
of matching is maintained. The first part of the CAR-Net
is CBAM-ResNeXt module which consists of a multi-scale
residual network with a reduced number of filters and an
integration of attention modules. CBAM-ResNeXt extracts
information from channels and spaces by embedding atten-
tion modules into multiple residual network bottleneck mod-
els, which further improves the relevant feature information
of regions, but only increases the computational complexity
slightly. The extracted semantic features can solve the ambi-
guity of disparity in ill-posed area and improve the matching
accuracy. At the same time, the number of parameters is
greatly reduced by changing the cardinality and the number
of filters, which eases the computational burden. The second
part is to generate 4D cost volume. The third part improves the
matching ability of the network by embedding the expanded
dimension 3D attention module into the 3D CNN to regular-
ize cost volume. The last part uses soft argmin [2] to get the
sub-pixel disparity by the regression.

The main contributions of this paper are summarized into
three points.

(i) The attention-based CBAM-ResNeXt structure is pro-
posed. By adjusting the structure and parameters of the resid-
ual network, the complexity of the model is reduced, and the
high-order semantic features of the image are extracted by
using the CBAM with shared weights to maintain the stereo
matching accuracy.

(ii) A dimension-extended 3D-CBAM model is proposed
for sub-pixel prediction of 4D cost volume in cost aggregation
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to guide the network to focus on foreground or background
areas. It can solve the problem of ill-posed area matching
errors in images.

(iii) CAR-Net, an end-to-end stereo matching scheme
based on CBM-ResNeXt and 3D-CBAM, is proposed.
We verify our model in multiple benchmark datasets (Scene
Flow [1], KITTI 2012 [18] and KITTI 2015 [19]), and the
results show that the performance of stereomatching has been
improved, especially the running time has been significantly
reduced.

II. RELATED WORK
Stereo matching is a classical problem in computer vision.
The existing research results can be summarized as follows:
traditional stereo matching algorithm, deep learning method
combined with traditional post-processing, and end-to-end
network.

A. TRADITIONAL STEREO MATCHING ALGORITHM
Traditional stereo vision matching methods can be roughly
classified into three categories: global matching method,
local matching method and semi-global matching method.

Global matching: The global matching method usually
assigns a given disparity value by geometric constraints, then
constructs the global energy function and iteratively allo-
cates disparity to minimize and optimize the global energy
function. Wang et al. [20] used the global method to solve
the problem of limited search range of local methods by
using smooth constraints in adjacent pixels or superpixels.
Pacheco et al. [21] used belief propagation to compensate dis-
parity of locally fixed size windows in challenging areas, but
added expensive global matching to enhance spatial smooth-
ness. Since dynamic programming or belief propagation is
only an optimization algorithm, directly using it for matching
takes a lot of running time, and it will have better effect only
if the number of iterations is reached. Yang [22] first pro-
posed applying the minimum spanning tree (MST) structure
to non-local 1D cost aggregation. However, the accuracy of
global optimization by using MST structure is limited by the
integer disparity label, and when the depth information is
independent of color, edge and so on, the matching error will
occur.

Local matching: Local stereo matching is usually done on
the basis of a fixed window, which is based on the gray and
color feature vectors extracted from the window. The local
stereo method encounters matching ambiguities in weak tex-
ture, saturated or reflected regions, which can be refined by
iteration [23]. The super-pixel method models each entity as
an inclined plane, implicitly enhancing planarity and allow-
ing for a wider range of interactions, depending on the size
of the superpixel [24]. Geiger et al. [25] used gradient-based
local descriptors for textureless regions, reflective surfaces,
fine structures, and repetitive patterns, but it needs to be com-
promised in smooth surfaces and fine structures. Although the
local matching calculation is low in complexity and high in
efficiency, it is also easier to cause mismatching due to noise
or similarity in brightness of weakly textured regions.

A typical representation of the semi-global matching
method is the SGM algorithm [7]. SGM uses joint probability
distribution based on mutual information in the matching
cost part. In the cost aggregation part, the energy function
is obtained by minimizing the cost of multiple directions
in dynamic programming. The aggregation part simplifies
the NP hard problem in the global matching, so it is called
semi-global matching. Because SGM takes into account the
quality and speed of disparity map and has the advantages
of efficiency, accuracy and simplicity. Hence, the pixel-level
SGM-based method is very popular. Yin et al. [26] proposed
an approximate fuzzy adaptive fault-tolerance method, which
guaranteed the semi-global uniformly ultimately bounded-
ness of all closed-loop variables in the model. The advantage
of this method is that the order of magnitude of adaptive
parameters is small, so the computational burden is small.
However, SGM can not express planar priori [27] by using
the first-order method. Moreover, SGM regularization steps
are limited to manual processing and weak form of partial dif-
ferential equations, which can not guarantee the convergence
of the results and the rationality of the physical reality [7].
To this end, Park and Yoon [28] used confidence to improve
the performance of SGM, and Droy et al. [29] proposed
learning SGM based on MRF.

B. DEEP LEARNING METHOD COMBINED WITH
TRADITIONAL POST-PROCESSING
Some researchers try to use deep learning model to replace
some stages of stereo matching, so as to improve the perfor-
mance and efficiency of stereo matching.

For the first time, Žbontar and LeCun proposed MC-CNN
based on convolution neural network to replace the match-
ing cost calculation stage in stereo matching, comparing
the similarity between left and right view pixels of stereo
images, and performing several post-processing, including
cross-based cost aggregation, left and right consistency
detection, sub-pixel enhancement, median filtering, bilateral
filtering, etc., [9]. However, using CNN to compare the sim-
ilarity of left and right view pixels, the problems that usually
need to be faced include using the network to calculate the
matching cost in all potential disparity, resulting in a high
computational burden. The occlusion area cannot be applied
to the training and the ill-posed area is not accurate enough.
Several heuristic post-processing processes are required
to refine the disparity, but these parameters are chosen
empirically [9], [30], [31].

Kim and Kim [32] optimized the network to reduce
the burden and proposes a network to calculate the
matching cost quickly. According to MC-CNN [9], modi-
fying the network, use of the connection network to clas-
sify disparities by multi-label, will reduce the accuracy.
Badrinarayanan et al. [33] proposed to reduce the compu-
tational burden by down-sampling and coding the feature
map and then decoding it with up-sampling. Shaked and
Wolf proposed the use of multi-level weighted highway net-
works for the calculation of matching costs and an additional
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CNN to replace the traditional methods of WTA strate-
gies in cost aggregation and disparity regression [31].
Wang et al. [34] proposed a novel KDD algorithm. It extracts
the complete correction information of the feature matrix
by direct orthogonal decomposition of the cross-covariance
matrix between the feature and the output matrix. Com-
pared with traditional methods, the feature information
extracted by this method has obvious advantages. Match-
Net extracts features from image pairs and measures sim-
ilarities through decision models [35]. Zagoruyko and
Komodakis [36] used a series of CNN structures for pixel-
by-pixel binary classification and image block matching
in disparity calculation. Chen et al. [37] obtained a good
local matching score by weight-sharing patches matching.
Gidaris and Komodakis [38] calculated the initial disparity
with the method in [30], then refined the disparity with three
additional neural networks, which detect the wrong label, and
replace the wrong label with a new one.

Recently, some researchers used deep learning net-
works to replace the pipeline of SGM and learned
offline parameters to improve the performance of SGM.
Zhang and Wah [39] used CNN to find Pareto frontier and
proposed multi-objective optimization in dense image pair
matching, which can improve the performance of SGM and
other methods. SGM-Net [3] learns the manual penalty coef-
ficient in SGM, and uses SGM [7] post-processing to add
filters and regularization to refine disparity.

Even though the deep learning method combined with
traditional post-processing can obtain the accuracy results
better than or equivalent to the traditional method. The prob-
lems such as complex model structure, lack of large-scale
training datasets, uncertainty of post-processing selection,
and heavy computational burden caused by large amount of
parameters have put forward an urgent demand for the use of
end-to-end deep learning network to solve stereo matching
problems.

C. END-TO-END NETWORK
To achieve end-to-end computational disparity maps,
Knöbelreiter [40] proposed a hybrid CNN-CRF model.
Unary-CNN is used to calculate the features of a pair of
images. The features are compared in the correlation layer
to calculate the optimal matching disparity of the pixels.
Then CRF model is used to optimize the matching cost.
When calculating the matching cost, Pairwise-CNN is used
to calculate the contrast-sensitive edge weights. Different
weights are allocated to the matching cost caused by the
disparity changes at the object boundary and inside the object,
and the weight is calculated based on the adaptive allocation
cost of image content. Jie et al. [4] combined LSTM to build
an end-to-end LRCR model, which combined with the soft
attention mechanism to generate disparity maps based on left
and right views respectively, and to improve the accuracy of
disparity through left and right consistency detection.

DispNetC [1] improved end-to-end networks (DispNet
and FlowNet) to solve the problem of depth estimation of

disparity and optical flow, and provided a large number
of synthetic datasets that can be used for training.
Mayer et al. [1] also proposed an encoding/decoding struc-
ture to calculate disparity, and refined disparity with addi-
tional networks (required input pictures and initial disparity).
DispResNet [10] cascaded a residual network in the Disp-
NetC network [1] for disparity refinement. Pang et al. [10]
proposed CRL, which optimized residual signals by cascad-
ing two residual networks to improve the disparity effect in
an ill-posed area. Liang et al. [41] divided the network into
several modules according to the four-step pipeline, using
the residual network in the cost aggregation and disparity
refinement module, and obtaining better results through
iterative refinement sub-networks. The network acquired
target knowledge by learning dependencies between ground
truth and semantic categories, and improved accuracy by
combining disparity calculation and semantic segmentation
with semantic tags. Kendall et al. [2] used 3D convolution to
calculate matching cost and disparity map after integrating
context information and semantic information, and proposed
a differentiable disparity regression method ‘‘soft argmin’’
to calculate disparity. Chang and Chen [11] used encoding
and decoding to obtain multi-scale down-sampling features,
and then connected the left and right feature maps obtained
by SPP [13] to obtain 4D cost volumes to improve spatial
information acquisition capability.

With the continuous optimization and development of deep
learning networks, the excellent performance of advanced
visual tasks and the acquisition of high-level semantic infor-
mation make the use of end-to-end networks better and better.
Aforementioned, the advantages of end-to-end network, such
as simple construction, easy modification and excellent per-
formance, are leveraged to optimize our proposed end-to-end
network model.

III. CAR-NET: CONVOLUTIONAL ATTENTION RESIDUAL
NETWORK
The stereo matching framework based on CNN usually
encounters two problems: one is that the networkmodel needs
a large number of parameters, and the running time is too
long to meet the real-time requirements, the other is that the
disparity estimation in the ill-posed regions such as reflec-
tion, refraction, and fine structure are incorrect (see Fig. 1).
In this section, we propose an end-to-end stereo match-
ing model called CAR-Net, which reduces the number of
parameters by introducing CBAM-ResNeXt structure and
improves the matching accuracy by introducing 3D-CBAM
structure.

A. OUR FRAMEWORK
In this paper, based on the CBAM-ResNeXt and 3D-CBAM,
our proposed CAR-Net is an end-to-end stereo matching
network (see Fig. 2). The CAR-Net model consists of four
modules: CBAM-ResNeXt feature extractionmodule, match-
ing cost module, cost aggregation module, and disparity esti-
mation module.
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FIGURE 2. Convolutional Attention Residual Network (CAR-Net) network structure. From left to right, there are five modules: input image, feature
extraction, cost volume generation, cost aggregation and disparity regression.

TABLE 1. CBAM-ResNeXt. The second column is the network structure of ResNeXt. The third column is the feature extraction network CBAM-ResNeXt
proposed by us. The network reduces the number of parameters and adds CBAM to each bottleneck module and the final convolution layer. The fourth
column is the size of the CBAM-ResNeXt output image.

1) CBAM-RESNEXT FEATURE EXTRACTION MODULE
Based on the CBAM-ResNeXt structure, three cascaded ker-
nels are used as the 3 × 3 convolution filter in the first
convolutional layer to reduce the parameter usage while
obtaining the same perceptual domain. As shown in Table 1,

the output image size is 1
4H ×

1
4W . In addition, conv2_x,

conv3_x and conv4_x are the bottleneck models of residual
networks. Unlike blocks in ResNet [12], each channel of
CBAM-ResNeXt is reduced to one-eighth and the cardinality
(C=8) of ResNeXt is used to reduce parameters.

50832 VOLUME 8, 2020



G. Huang et al.: CAR-Net for Stereo Matching

2) MATCHING COST MODULE
Through the shared weight CBAM-ResNeXt, two unary fea-
ture maps with dimensions of 32 × 1

4H ×
1
4W are obtained

respectively. Different from directly connecting these two
feature maps, the cost volume adds disparity information.
Through geometric constraints, the left and right featuremaps
corresponding to the disparity are connected, and the number
of channels is expanded to 64. After adding disparity dimen-
sion, the dimension of 4D cost volume is 64× 1

4D×
1
4H×

1
4W .

As shown in the experiments [2] that the cost volume with
geometric priori had better performance.

3) COST AGGREGATION MODULE
The cost volume that integrates the disparity information
calculates the image pair similarity by cost aggregation.
The module uses three hourglass models with jumping con-
nections in convolution and deconvolution blocks to cal-
culate matching costs. In each bottleneck model, we add
3D-CBAM to obtain aggregated information of channels
and spaces, which reduces the inconsistency of luminosity
and the appearance of high frequency noise in ill-posed
regions, so as to improve matching accuracy. At the same
time, we avoid manual adjustment errors due to the use of
off-line post-processing for filtering. The 3D-CBAM solely
increases small parameters. As shown in Fig. 2, the output of
each cascade bottleneck module is entered into the disparity
estimation module for calculation.

4) DISPARITY ESTIMATION MODULE
We use soft argmin for disparity estimation. The soft
argmin is an improved regression disparity method based on
argmin [2]. The soft argmin is able to not only obtain disparity
results at sub-pixel level but also propagate backward because
of its differentiability. However, the soft argmin is susceptible
to multi-modal effects and requires control of the 4D regular-
ized volume to single-mode in a regularized 3D convolution
module [2].

Among them, Cd is the probability volume of each dis-
parity in disparity dimension, and soft argmin gets the final
probability volume by taking the opposite number and nor-
malizing it through a softmax layer (σ (·)). The final disparity
expectation is obtained by multiplying the weight of each
disparity within the disparity range. The output of this layer
is full resolution disparity map, which is widely used because
of its simplicity and accuracy.

soft argmin :
Dmax∑
0

d × σ (−cd ) (1)

B. CBAM-ResNeXt
The main function of the CBAM-ResNeXt structure is to
greatly reduce the complexity of the model by adjusting the
structure and parameters of the residual network. The shared
weight attention module is used to extract the high-level
semantic features of images and maintain the accuracy of
stereo matching.

FIGURE 3. Convolutional Block Attention Module (CBAM) structure
diagram [16]. From left to right, they are input features, channel attention
sub-module, spatial attention sub-module and output features.

The CBAM-ResNeXt structure is mainly composed
of the CBAM [16] and ResNeXt [17]. As shown in Table 1,
the CBAM is embedded into ResNeXt module. In the
CBAM-ResNeXt structure, we simplify the model parame-
ters in two steps. Step 1: Modify the cardinality to simplify
the model parameters with the ResNeXt module. The split-
transform-merge structure in ResNeXt adds a 1 × 1 kernel
layer on both sides of the large convolution kernel layer.
This is to ensure that the repeat layer can be controlled
by the value of cardinality (C) to achieve the purpose of
controlling the number of cores and reducing the number
of parameters. However, ResNeXt’s parameter simplification
ability is limited, and the performance improvement of the
network is not enough to meet the requirements of real-time
extraction features. Step 2: We further simplify the neurons
of ResNeXt module, and reduce the number of convolution
kernels from conv_2 to conv_5 to one-eighth of the original.
Therefore, the model can meet the requirements of real-time
computing. The output stride is set to 2. Since the resolution
of the feature map is halved, and the number of convolution
kernels per layer is doubled. However, streamlining the neu-
ron size of the ResNeXt module can significantly degrade the
performance of the module. To this end, we use the CBAM
to improve the performance of the ResNeXt module after
parameter simplification. Combining with attention mecha-
nism, it can improve the representation of interest regions
and inhibit unnecessary features, and effectively help the flow
of information in the network. Therefore, the problem of the
traditional computation of cost aggregation which has never
been converged is solved, and the accuracy of stereomatching
is improved.

The CBAM selected in this paper is shown in Fig. 3. It con-
sists of channel attention sub-module and spatial attention
sub-module, which can reduce the confusion of cross-channel
and spatial information features caused by convolution oper-
ation. The module applies the channel and spatial attention
module in turn. Here, each branch can learn the two semantic
features of ‘what’ and ‘where’ respectively on the channel
and spatial axis.

The channel attention sub-module compresses the feature
map to 1× 1. The working steps are as follows: 1) The input
feature map is processed through global max pooling and
global average pooling based on width and height respec-
tively, before being processed through Multi-Layer Percep-
tron (MLP) with expansion coefficient of 4. 2) The output
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feature of the MLP is subjected to an elementwise-based
addition operation. After that, it will be processed through
the sigmoid activation operation. The final channel attention
feature map is generated. 3) The channel attention feature
map and input feature map are multiplied by elementwise
operation to generate the input features needed by spatial
attention module [16].

Spatial attention sub-module of CBAM does not change
the size of the input feature map. The working steps are as fol-
lows: 1) The features of the same position in each feature map
are averaged and maximized respectively. 2) Two connected
feature maps are reduced to a channel through a convolution
layer. 3) The spatial attention module activated by sigmoid is
used to multiply the input features of the module to obtain the
final features.

C. 3D-CONVOLUTIONAL BLOCK ATTENTION MODULE
(3D-CBAM)
The cost aggregation module is an important component
of the stereo matching framework based on CNN, which
is mainly used to measure the overall matching accuracy
between the left and right view pixels of a stereo image.
People usually impose regularization constraints to improve
the matching ability of cost aggregation module [2]. In this
paper, the CBAM is used to regularize the cost aggregation.
By adding space and location information to the regulariza-
tion, the matching accuracy is improved. Because the channel
attention module of CBAM is not consistent with the dimen-
sion of cost aggregation. Hence, it can not be directly applied
to the regularization of cost aggregation. We need to extend
the CBAM to 3D-CBAM in our preliminary process.

As shown in Fig. 4, the 3D-CBAM consists of
a 3D-Channel Attention Sub-module and a 3D-Spatial Atten-
tion Sub-module. The 4D cost volume V ∈ R64× 1

4D×
1
4H×

1
4W

pass into these two modules in sequence. 3D-CBAM sequen-
tially infers a 3D channel attention map Mc ∈ RC×1×1×1

and a 3D spatial attention map Ms ∈ R1× 1
4D×

1
4H×

1
4W . The

processing flow of 3D-CBAM can be summarized as:

V1 = Mc (V )⊗ V

V2 = Ms (V1)⊗ V1 (2)

where ⊗ denotes element-wise multiplication. V2 is the final
refined output, which is passed into the next 3DCNNmodule.
The workflow of these two attention modules is described in
detail below.

1) 3D-CHANNEL ATTENTION MODULE
Unlike the 2D pooling in CBAM channel attention, the
3D-Channel Attention Module is transmitted by the 3D
global maximum pooling V c

max and the 3D global average
pooling V c

avg based on width, height and disparity respec-
tively. After that, it obtains two channel attention mapsMc1 ∈

R64×1×1×1 andMc2 ∈ R64×1×1×1 similar to CBAM through
Multi-Layer Perceptron (MLP). The output maps of MLP are
added based on elementwise, and then the final 3D channel

attention mapMc ∈ R64×1×1×1 is generated by sigmoid acti-
vation. Hence, the 3D channel attentionmap can be expressed
as:

Mc (V ) = σ (Mc1 (V )+Mc2 (V ))

= σ (MLP (3DAvgPool (V ))

+MLP (3DMaxPool (V )))

= σ
(
W1

(
W0

(
V c
avg

))
+W1

(
W0

(
V c
max
)))

(3)

where W0 ∈ RC/r×C and W1 ∈ RC×C/r in MLP are shared
for both inputs and the ReLU activation function. r is the
reduction rate used to reduce the number of neurons in the
hidden layer. To reduce the number of parameters, we set r
to 8. σ denotes the sigmoid function.

2) 3D-SPATIAL ATTENTION MODULE
The maximum and average values of 4D cost volume at the
same location of different channels are calculated respec-
tively. We obtain two 3D maps V s

avg ∈ R1× 1
4D×

1
4H×

1
4W and

V s
max ∈ R1× 1

4D×
1
4H×

1
4W . And then two maps are reduced

to one channel through one convolution layer. The final
3D spatial attention map Ms ∈ R1× 1

4D×
1
4H×

1
4W is generated

by sigmoid activation. Hence, the 3D spatial attention map
can be expressed as:

Ms (V ) = σ
(
f 3×3 ([AvgPool (V ) ;MaxPool (V )])

)
= σ

(
f 3×3

([
V s
avg;V

s
max

]))
(4)

where f 3×3 represents a standard convolution layer with the
filter size of 3× 3 and σ denotes the sigmoid function
The experimental results in Section IV-B and Section IV-C

show that adding 3D-CBAM only slightly increases the
parameters, but achieves better results in details. Especially,
with the help of 3D-CBAM, the matching effect of reflection,
refraction and fine structure can be improved.

D. LOSS FUNCTION
In order to better learn the content information, we choose the
L1 loss weighting strategy adopted by Chang and Chen [11]
in the multi-level stacked hourglass structure to design the
loss function. As shown in Fig. 2, in the cost aggregation,
we perform a weighted loss calculation on the disparity map
generated by the three cascaded hourglass networks and the
disparity map of ground truth. With the robustness of the L1
loss function and the low sensitivity to outliers, we use a
smooth L1 loss function:

L
(
d, d̂

)
=

1
N

N∑
i=1

smoothL1 (di − d̂i) (5)

in which

smoothL1 =

{
0.5x2 if |x| < 1
|x − 0.5| otherwise

where N is the number of labeled pixels, d is the ground truth
disparity, and d̂i is the predicted disparity.
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FIGURE 4. 3D-CBAM. 3D-CBAM consists of 3D-Channel Attention Module and 3D-Spatial Attention Module. The 4D cost volume with dimension size of
64 ×

1
4 D ×

1
4 H ×

1
4 W is input into our 3D-Channel Attention Module. The channel attention features with dimension of 64 ×

1
4 D ×

1
4 H ×

1
4 W are

obtained through the first channel attention module. After multiplying with the input elements, the feature V1 is obtained and input into 3D-Spatial
Attention Module. The spatial attention features with dimension of 1 ×

1
4 D ×

1
4 H ×

1
4 W are obtained through the second spatial attention module. After

multiplying with the input elements V1, the feature V2 is obtained and input to the next 3D-CNN module.

The experiments of non-probability model carried out by
Kendall et al. [2] show that the effect of cross-entropy loss
based on one-hot coding is not as good as the L1 loss function
with sub-pixel accuracy, because the evaluation standard of
disparity accuracy is the percentage within the real disparity
pixel range.

IV. EXPERIMENTAL RESULTS
In this section, we will introduce the datasets used in the
experiment including Scene Flow [1], KITTI 2012 [18]
and KITTI 2015 [19], experimental details and evaluation
indicators. Then in Section IV-B, ablation of each component
of our proposed Convolutional Attention Residual Network
(CAR-Net) is studied to assess the impact of CBAM-ResNeXt
and 3D-CBAM on performance under different settings and
iterations. In Section IV-C, we choose disparity estimation
methods GC-NET [2] and PDSNet [5], which are equiv-
alent to CAR-Net in structure or parameters, and com-
pare these three methods qualitatively. In Section IV-D,
the performance of our method is quantitatively com-
pared with other disparity estimation methods based on
Scene Flow and KITTI benchmarks, and a comprehen-
sive evaluation of the effect, parameters and efficiency is
made.

A. DATASETS
We evaluate the performance of our model on common public
datasets such as Scene Flow [1], KITTI 2012 [18], KITTI
2015 [19].

1) SCENE FLOW
A set of binocular synthesis datasets of objects with complex
motion patterns rendered by software. When rendering from
3D to 2D, the 3D model of the object and the scene is known,
and the training dataset is generated. The dataset contains
more than 39,000 images, where the image has H = 540 and
W = 960. The dataset provides dense and refined disparity
maps as basic facts. If the disparity is greater than the limit
set in our experiment, then the pixel is excluded from the
loss calculation. We removed some useless images according
to the author’s latest modifications. The number of images
eventually used for training and testing was 34,881 and 4,248,
respectively. This dataset is large enough to facilitate the
training of convolution network and is used as a general stereo
matching training dataset.

2) KITTI 2012
It contains road scenes of a pair of calibration cameras
mounted on the car. The real data of optical flow and disparity
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TABLE 2. The results of the ablation comparison of the Scene Flow dataset. EPE in second column represents the end-point-error (lower is better). The
third to fifth columns represent the percentage of erroneous pixels (lower is better), and if the pixel’s disparity EPE> t px (greater than t pixels), the pixel
is considered to be erroneous. The sixth column is the parameter quantity. We train the models on Scene Flow dataset for 20 epochs. Note that SPP
stands for Spatial Pyramid Pooling.

can be obtained from 3D laser scanner combined with vehicle
motion data. But this acquisition method limits the ground
truth to the static part of the scene. Among them, 194 training
stereo image pairs contain ground truth, and 195 test images
need to be evaluated online without ground truth. The image
sizeH×W is 376×1240.We further divide the entire training
data into a training set (160 image pairs) and a validation set
(34 image pairs).

3) KITTI 2015
The KITTI dataset was expanded in 2015, which is the largest
dataset used for evaluating the computer vision algorithm of
autopilot. For the latest version, the 3D point cloud model of
the car is used to get more dense labels, and also includes
dynamic scenes. It contains 200 training stereo image pairs
and their ground truth, while the other 200 test image pairs do
not provide ground truth and rank through online leaderboard.
The image size H ×W is 376× 1240. We further divide the
entire training data into a training set (80%) and a validation
set (20%).

We validated our model on the stereo matching standard
dataset using the PyTorch1 framework. The results of our
experiments will be reported in Section IV-B to IV-D.

We evaluated our method CAR-Net on the above three
datasets. Our method is compared with the latest method
of KITTI dataset (Section IV-D), and the best results
are obtained. All models were optimized using the Adam
method [42], where β1 = 0.9, β2 = 0.999, and the batch
size was 2. Specifically, for the training of the Scene Flow
dataset, the learning rate is set to 10−4, and 20 epochs are
iterated repeatedly to further optimize the model. We per-
formed a fine-tuning of 1000 epochs on the KITTI dataset.
The learning rate is set to 10−4 in the first 200 epochs
iterations, and then reduced to 2 × 10−5 in the following
200 epochs iterations. Finally, 600 epochs are trained with
the learning rate of 10−5. Data enhancement is also used
for training, including spatial and color transformations. This
data enhancement helps to learn robust models for lighting
changes and noise.

In quantitative evaluation, KITTI 2012 uses two com-
monly used metrics: 1) End-point-error (EPE) is used to esti-
mate the average Euclidean distance between the predicted

1https://pytorch.org

disparity and ground-truth. 2) Three-pixel-error (3PE) is used
to calculate the percentage of pixels with an end-point-error
exceeding 3 pixels. KITTI 2015 uses a metric that calculates
the percentage of pixels whose end-point-error is greater than
3 pixels or whose disparity error is more than 5 percent.

B. ABLATION STUDY
Table 2 gives the comparison results of different module
combinations on the Scene Flow dataset. We compare the
experimental results of EPE, 1, 3, 5 pixel errors, number of
parameters and iteration times of each model combination.

As shown in Table 2, Spatial Pyramid Pooling (SPP) is
a module used in PSMNet [11]. It can extract high-level
context location information to solve the problem of ill-posed
region matching. 3DCNN is the network we use to regularize
the cost volume. In the second model, we add our proposed
3D-CBAM module. In the third model, the SPP module is
replaced by the CBAM-ResNeXt module in Table 1, but only
the output of conv2-conv5 is connected in the last convolution
layer. The fifth model changes the cardinality (C) of the
bottleneck module for parameter reduction. As xie et al. [17]
said, by changing the cardinality, we can get better perfor-
mance under lower parameters. The last line is our CAR-Net,
which adds a connection to the output conv2_1 of the pooling
layer in the last convolution layer of CBAM-ResNeXt mod-
ule. As demonstrated in Table 2, our combination of CAR-Net
shows the best performance of Scene Flow. Adding the con-
nection of pooling layer output conv2_1 in CBAM-ResNeXt
can obviously improve the effect. Embedded 3D-CBAM only
adds 0.002-0.003M parameters, but can get better results.

As shown in Fig. 5, using MC-CNN [9] as baseline we
compare the convergence speeds of different models, and
we can see that the convergence speeds of the proposed
model is faster. In addition, as shown in Fig. 6, we use
class activation mapping [43] to obtain the heat map of the
convolution layer. We visualized each convolution layer in
CBAM-ResNeXt. Since the stride of each convolution layer
in the CBAM-ResNeXt is 2, and the size of the feature map is
reduced to one-half, the attention information after sampling
through bilinear interpolation will gradually decrease. It can
be seen from the figure that the attention information from
conv2-conv5 is less and less, so the information obtained
from each layer can be fused by concatenating in the last
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FIGURE 5. Comparison of the convergence speed on Scene Flow dataset
with different models.

convolution layer of CBAM-ResNeXt. Then the attention
feature information of the feature extraction layer is obtained.
The marker box of the left image contains the reflection, tex-
tureless, occlusion areas. After the feature extraction fusion
layer (last conv), the local attention feature information is
obtained. It can be seen from the figure that feature extraction
focuses on the most important area of attention contribution
in the image. After the 3D-CBAM in cost aggregation, more
ill-posed areas (such as the reflection area in the first first
picture) have been paid attention, and the attention has spread
from the local attention to the global attention. The results
show that the network which benefits from our attentionmod-
ule can effectively obtain regional attention information. So it

can improve the contribution of the region to the disparity
calculation, and get a better disparity map.

C. QUALITATIVE EXPERIMENTAL RESULTS OF SCENE
FLOW AND KITTI DATASET
As can be seen from the comparison of the results of Scene
Flow qualitative experiment in Fig. 7, we can judge the
foreground object and background object well when one
object is semi-occluded from another object. For areas where
traditional methods such as SGM, we can’t get accurate
disparity in simple background without texture or repeated
texture. We can still distinguish the results more accurately.
For objects with complex structure and fine structure, we can
also get better performance.

A challenge in real scenes is a large number of reflective
and occluded areas. We decided to compare three meth-
ods, GC-NET, PDSNet and DispNetC, which are close to
our parameter quantities or structure. From the disparity
pseudo-color map of the first and third images in Fig. 8
and the error map of the first and second images in Fig. 8,
we can see that our results are better than those of GC-
NET, PDSNet and DispNetC, in maintaining the disparity
information integrity of fine-structured objects such as rail-
ings and fences. It reduces uncertainty and has fewer error
pixels. From the error maps of the three contrast images
in Fig. 8, we can see that our method can achieve higher
accuracy in the disparity of high-brightness highway and
wall, which occupies a large area of the picture. Here, we thus
achieve better performance in the overall prediction. From the
selected area in the disparity pseudo-color map of the second

FIGURE 6. The visualization results of heat map in CAR-Net, which are based on the model finetuned on KITTI dataset. The pixels that have a greater
impact on the final result generate a higher degree of heat. From top to bottom are the results of three pairs of images in different convolution layers,
only the extraction position is indicated above the first image pair.
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FIGURE 7. Qualitative evaluation results of Scene Flow. The first column shows the left images, the second column shows the ground truth, and the third
column shows the pseudo-color images for predicting disparity map.

FIGURE 8. Qualitative evaluation results of KITTI 2012 dataset. The first column shows the left images. For each image, the first row shows the
pseudo-color images for predicting disparity map, and the second row shows the error maps. From left to right are the results of GC-NET [2], PDSNet [5],
DispNetC [1] and CAR-Net (ours) respectively.

contrast image of Fig. 8 and Fig. 9, it can be seen that
our method can accurately extract the geometric shape of
the window glass and the glass embedded in the wall. The
disparity can be predicted according to the content of the
reflection or refraction of the glass, and the result is accurate.

This shows that our method not only has the ability to acquire
and analyze semantic information, but also accurately calcu-
late pixel similarity in the reflection region of real scenes.
From the disparity pseudo-color map of the first contrast
image and the error maps of the second contrast image
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FIGURE 9. Qualitative evaluation results of KITTI 2015 dataset. The first column shows the left images. For each image, the first row shows the
pseudo-color images for predicting disparity map, and the second row shows the error maps. From left to right are the results of GC-NET [2], PDSNet [5],
DispNetC [1] and CAR-Net (ours) respectively.

TABLE 3. Quantitative evaluation results of Scene Flow. The first line are the methods for comparison, the second line shows the experimental result of
the EPE in the Scene Flow test set, and the third line shows the size of the parameter quantity.

in Fig. 9, we can see that the disparity of the tree and car
contours is better.

By comparing the test image groups, we found that atten-
tion can guide the foreground or the background of the
picture, improving the robustness in the area. Our method
performs better on multi-level road signs or in the foreground
part with obvious layered objects. Generally, the background
part of the spacious road performs better. Our network also
furnishes the advantages of reflecting and refracting area
sensitivity and accurate recognition of vehicle lateral driving
as background area. The closest approach to our architecture
is GC-NET [2], which is an end-to-end regression network
pre-trained on the Scene Flow, but our approach is remarkably
effective in testing pictures. GC-NET uses the 3D convolution
and soft argmin layers to create a complete cost. In con-
trast, our architecture uses attention context informationmore
clearly and improves performance by adding multi-scale fea-
ture extraction and 3D-CBAM attention model to cost cal-
culation. The closest method to our parameter quantity is
PDSNet. From the above results, we can see that the disparity
obtained by our method is obviously more accurate.

D. QUANTITATIVE EXPERIMENT OF BENCHMARK DATASET
In this section, we will compare the quantitative evaluation
results of several representative algorithms in the Scene Flow
test set, and give the rankings of KITTI 2012 andKITTI 2015.

1) QUANTITATIVE EVALUATION OF SCENE FLOW DATASET
To illustrate the adaptability of our CAR-Net to Scene Flow,
this model is compared with other methods in Table 3. First,
we consider some traditional local matching methods or deep
learning method combined with traditional post-processing,
including SGM [7] and iResNet [41]. Next, we consider the
most advanced end-to-end models, including DispNetC [1],
LRCR [4], CRL [10], GC-NET [2], PDSNet [5], and
PSMNet [11]. As shown in Table 3, our end-to-end model
achieves the best EPE performance with the same order of
magnitude of parameters. iResNet [41] does not use end-
to-end learning, and usually uses SGM regularization [7] to
post-process the unary output to generate the final disparity
map. Our method is superior to the previous methods based
on deep learning method combined with traditional post-
processing. These methods produce noise which makes it
impossible to predict with sub-pixel accuracy. The results
of the end-to-end model may be slightly better than the
post-processing model, but they are all trained in a large
amount of additional training data. The requirement for a
large training set is due to the need for a very deep network
for end-to-end disparity estimation. For example, the CRL
model [10] contains 47 convolutional layers with approxi-
mately 75M learnable parameters in its two-level cascade
architecture. In contrast, our CAR-Net has only about 3.1M
learnable parameters in all bottleneck models that include
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TABLE 4. Running time results on the Scene Flow test set for networks of each period. The time is the inference time for 960 × 540 inputs on a single
Nvidia RTX 2080 Ti GPU. The result of GC-NET [2] and PSMNet [11] are trained with published code with our batch size, evaluation settings for fair
comparison. Experimental results are in milliseconds(ms).

TABLE 5. KITTI 2012 Quantitative Assessment Results. We use Out-Noc (percentage of error pixels in non-occluded areas) and Out-All (percentage of
total error pixels). If the disparity end-point-error (EPE) of the pixel > t px (greater than t pixel), the pixel is considered to be wrong. Avg-Noc denotes the
average disparity/end-point-error in the non-occluded area. Avg-All denotes the average disparity/end-point-error for all pixels.

TABLE 6. KITTI 2015 Quantitative Assessment Results. We use the percentage of incorrect pixels in the background (D1-bg), the foreground (D1-fg), or all
the pixels (D1-all). Here, if the disparity end-point-error is less than 3 px or less than 5%, the pixel is considered correct.

feature extraction and cost matching. Although PDSNet
has only 2.2M learnable parameters, our method performs
significantly better, and also meets the needs of real-time
computing.

In order to more clearly explain the improvement of run-
ning time. In Table 4, we choose the network with 3DCNN
module (GC-NET and PSMNet) to experiment on the Scene
Flow test set. It can be seen from the comparison results
that compared with the two models, the time of CAR-Net
in feature extraction is reduced by nearly half. In particular,
PSMNet and CAR-Net build the cost volume at quarter res-
olution. GC-NET builds cost volume at half resolution, so it
takes longer. More importantly, cost aggregation takes up the
largest proportion of time in all three models. Experiments
show that the calculation time of cost aggregation is greatly
reduced through attention guidance. Thanks to the decline in
the running time of each period, our total running time has
declined significantly.

2) QUANTITATIVE EVALUATION OF KITTI DATASET
In 1000 iteration fine-tuning training, 40 image pairs
are retained as our validation set. We calculated the
disparity maps of 195 test images in the KITTI 2012 dataset

and submitted the results to the KITTI evaluation server
for quantitative evaluation. According to the online leader-
board, as shown in Table 5, compared to SegStereo [44],
iResNet [41], EdgeStereo [45], GC-NET [2], PDSNet [5],
L-ResMatch [31], CNNF+SGM [39] and SGM-Net [3]
methods, the overall three-pixel-error of CAR-Net is 1.98%.
Our method achieves the best performance in the same
scale parameter quantity, and runs faster than most
methods.

According to the KITTI 2015 online leaderboard, as shown
in Table 6, our model is compared to other top-ranked meth-
ods including EdgeStereo [45], SegStereo [44], PDSNet [5],
SCV [46], CRL [10], GC-NET [2], LRCR [4] and NVStere-
oNet [47]. It contains 200 training images. Similarly,
in 1000 iteration fine-tuning training, 40 image pairs are
retained as our validation set, and the model with the least
training loss and the least three-pixel error on the validation
set is selected. Our approach ranks high on KITTI 2012 and
KITTI 2015 datasets, and our approach is significantly
faster than most competitive methods, which usually require
expensive post-processing. Our method achieves the most
advanced performance in terms of parameter volume and
speed.
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V. CONCLUSION
In this work, we propose a CAR-Net model that provides
a novel attention-based end-to-end deep learning architec-
ture for stereo vision. The four steps of stereo matching are
integrated and no additional post-processing or regularized
sub-networks are needed to eliminate the differences. The
embedded channel and spatial attention-guiding module only
slightly increases the amount of computation.We can observe
that the module induces the network to correctly focus on
the target object. Our method can further improve the per-
formance of ill-posed areas (such as car windows, fine struc-
tures, etc., which are common in most existing work). The
experimental results show that the proposed method achieves
advanced disparity estimation performance on Scene Flow,
KITTI 2012 and KITTI 2015 datasets. More importantly, our
model significantly reduces the running time. At the same
time, our method greatly reduces the scale of the model and
effectively utilizes the computing power of GPU. For future
work, we are interested in exploring more real-time stereo
models, and continue to strive to achieve satisfactory results
in accuracy and speed.

REFERENCES
[1] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and

T. Brox, ‘‘A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4040–4048.

[2] A. Kendall, H. Martirosyan, S. Dasgupta, and P. Henry, ‘‘End-to-end
learning of geometry and context for deep stereo regression,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 66–75.

[3] A. Seki and M. Pollefeys, ‘‘SGM-nets: Semi-global matching with neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 231–240.

[4] Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng, and W. Liu, ‘‘Left-right
comparative recurrent model for stereo matching,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3838–3846.

[5] S. Tulyakov, A. Ivanov, and F. Fleuret, ‘‘Practical deep stereo (PDS):
Toward applications-friendly deep stereo matching,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 5875–5885.

[6] D. Scharstein and R. Szeliski, ‘‘A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,’’ Int. J. Comput. Vis., vol. 47,
nos. 1–3, pp. 7–42, 2002.

[7] H. Hirschmuller, ‘‘Stereo processing by semiglobal matching and mutual
information,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 328–341, Feb. 2008.

[8] A. Seki and M. Pollefeys, ‘‘Patch based confidence prediction for dense
disparity map,’’ in Proc. BMVC, 2016, vol. 2, no. 3, p. 4.

[9] J. Zbontar and Y. LeCun, ‘‘Stereo matching by training a convolutional
neural network to compare image patches,’’ J. Mach. Learn. Res., vol. 17,
nos. 1–32, p. 2, 2016.

[10] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, ‘‘Cascade residual
learning: A two-stage convolutional neural network for stereo matching,’’
in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 887–895.

[11] J.-R. Chang and Y.-S. Chen, ‘‘Pyramid stereo matching network,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5410–5418.

[12] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[13] A. Ranjan and M. J. Black, ‘‘Optical flow estimation using a spatial
pyramid network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4161–4170.

[14] H. Sang, Q. Wang, and Y. Zhao, ‘‘Multi-scale context attention network
for stereo matching,’’ IEEE Access, vol. 7, pp. 15152–15161, 2019.

[15] G. Zhang, D. Zhu, W. Shi, X. Ye, J. Li, and X. Zhang, ‘‘Multi-dimensional
residual dense attention network for stereomatching,’’ IEEE Access, vol. 7,
pp. 51681–51690, 2019.

[16] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, ‘‘CBAM: Convolutional
block attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

[17] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1492–1500.

[18] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[19] M. Menze and A. Geiger, ‘‘Object scene flow for autonomous vehicles,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 3061–3070.

[20] L. Wang, H. Jin, and R. Yang, ‘‘Search space reduction for MRF stereo,’’
in Proc. Eur. Conf. Comput. Vis. Berlin, Germany: Springer, 2008,
pp. 576–588.

[21] J. Pacheco, S. Zuffi, M. Black, and E. Sudderth, ‘‘Preserving modes and
messages via diverse particle selection,’’ in Proc. Int. Conf. Mach. Learn.,
2014, pp. 1152–1160.

[22] Q. Yang, ‘‘A non-local cost aggregation method for stereo match-
ing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 1402–1409.

[23] P. Milanfar, ‘‘A tour of modern image filtering: New insights and methods,
both practical and theoretical,’’ IEEE Signal Process. Mag., vol. 30, no. 1,
pp. 106–128, Jan. 2013.

[24] M. Schonbein and A. Geiger, ‘‘Omnidirectional 3D reconstruction in
augmented manhattan worlds,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Sep. 2014, pp. 716–723.

[25] A. Geiger, M. Roser, and R. Urtasun, ‘‘Efficient large-scale stereo match-
ing,’’ in Proc. Asian Conf. Comput. Vis. Berlin, Germany: Springer, 2010,
pp. 25–38.

[26] S. Yin, H. Gao, J. Qiu, and O. Kaynak, ‘‘Adaptive fault-tolerant control
for nonlinear system with unknown control directions based on fuzzy
approximation,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 8,
pp. 1909–1918, Aug. 2016.

[27] S. N. Sinha, D. Scharstein, and R. Szeliski, ‘‘Efficient high-resolution
stereo matching using local plane sweeps,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 1582–1589.

[28] M.-G. Park and K.-J. Yoon, ‘‘Leveraging stereo matching with learning-
based confidence measures,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 101–109.

[29] A. Drory, C. Haubold, S. Avidan, and F. A. Hamprecht, ‘‘Semi-global
matching: A principled derivation in terms of message passing,’’ in Proc.
German Conf. Pattern Recognit. Cham, Switzerland: Springer, 2014,
pp. 43–53.

[30] W. Luo, A. G. Schwing, and R. Urtasun, ‘‘Efficient deep learning for stereo
matching,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 5695–5703.

[31] A. Shaked and L.Wolf, ‘‘Improved stereo matching with constant highway
networks and reflective confidence learning,’’ inProc. IEEEConf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4641–4650.

[32] K.-R. Kim and C.-S. Kim, ‘‘Adaptive smoothness constraints for efficient
stereo matching using texture and edge information,’’ in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2016, pp. 3429–3433.

[33] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[34] G. Wang, J. Jiao, and S. Yin, ‘‘A kernel direct decomposition-based moni-
toring approach for nonlinear quality-related fault detection,’’ IEEE Trans
Ind. Informat., vol. 13, no. 4, pp. 1565–1574, Aug. 2016.

[35] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, ‘‘MatchNet: Uni-
fying feature andmetric learning for patch-basedmatching,’’ inProc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3279–3286.

[36] S. Zagoruyko and N. Komodakis, ‘‘Learning to compare image patches via
convolutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 4353–4361.

[37] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang, ‘‘A deep visual corre-
spondence embedding model for stereo matching costs,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 972–980.

[38] S. Gidaris and N. Komodakis, ‘‘Detect, replace, refine: Deep structured
prediction for pixel wise labeling,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5248–5257.

VOLUME 8, 2020 50841



G. Huang et al.: CAR-Net for Stereo Matching

[39] F. Zhang andB.W.Wah, ‘‘Fundamental principles on learning new features
for effective dense matching,’’ IEEE Trans. Image Process., vol. 27, no. 2,
pp. 822–836, Feb. 2018.

[40] P. Knobelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, ‘‘End-to-
end training of hybrid CNN-CRF models for stereo,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2339–2348.

[41] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, and
J. Zhang, ‘‘Learning for disparity estimation through feature constancy,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2811–2820.

[42] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[43] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

[44] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, ‘‘SegStereo: Exploiting
semantic information for disparity estimation,’’ in Proc. Eur. Conf. Com-
put. Vis. (ECCV), 2018, pp. 636–651.

[45] X. Song, X. Zhao, H. Hu, and L. Fang, ‘‘EdgeStereo: A context integrated
residual pyramid network for stereo matching,’’ 2018, arXiv:1803.05196.
[Online]. Available: http://arxiv.org/abs/1803.05196

[46] C. Lu, H. Uchiyama, D. Thomas, A. Shimada, and R.-I. Taniguchi, ‘‘Sparse
cost volume for efficient stereo matching,’’ Remote Sens., vol. 10, no. 11,
p. 1844, 2018.

[47] N. Smolyanskiy, A. Kamenev, and S. Birchfield, ‘‘On the importance of
stereo for accurate depth estimation: An efficient semi-supervised deep
neural network approach,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2018, pp. 1007–1015.

GUANGYI HUANG received the B.Eng. degree
in information engineering from South China
Normal University, Guangzhou, China, in 2017,
where he is currently pursuing the M.E. degree
in software engineering. His research interests
include stereo vision and machine learning.

YONGYI GONG received the Ph.D. degree in
computer science from Sun Yat-sen University,
in 2007. He is currently a Professor with the
School of Information Science and Technology,
Guangdong University of Foreign Studies. His
current research interests include image seg-
mentation, image matching, and stereo image
retargeting.

QINGZHEN XU received the Ph.D. degree in
computer science from Sun Yat-sen University,
in 2006. He is currently serving as a Professor
with the School of Computer Science, South China
Normal University.

KANOKSAK WATTANACHOTE does research
in computer vision, image processing, computer
graphics, big data technologies and analytics, data
mining, and machine learning. He is currently
working as an Assistant Professor with the School
of Information Science and Technology, Guang-
dong University of Foreign Studies. He is also
involved in the projects are computer vision based
on dynamic texturesmotion analytics and learning,
antiphishing Web security, and big data technolo-

gies for text mining analytics on social media.

KUN ZENG received the Ph.D. degree from the
National Laboratory of Pattern Recognition Insti-
tute of Automation, Chinese Academy of Sci-
ences, in 2008. He is currently an Associate
Professor with Sun Yat-sen University (SYSU),
Guangzhou, China. His research interests are in
computer vision, machine learning, multimedia,
and non-photorealistic rendering.

XIAONAN LUO received the B.S. degree in
computational mathematics from Jiangxi Uni-
versity, Nanchang, China, the M.S. degree in
applied mathematics from Xidian University,
Xi’an, China, and the Ph.D. degree in computa-
tional mathematics from the Dalian University of
Technology, Dalian, China.

He was the Director of the National Engineer-
ing Research Center of Digital Life, Sun Yat-sen
University, Guangzhou, China. He is currently a

Professor with the School of Computer and Information Security, Guilin
University of Electronic Technology, Guilin, China. His current research
interests include computer graphics, machine learning, and pattern recog-
nition. He received the National Science Fund for Distinguished Young
Scholars granted by the National Natural Science Foundation of China.

50842 VOLUME 8, 2020


