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ABSTRACT Computed Tomography (CT) scanners that are commonly-used in hospitals andmedical centers
nowadays produce low-resolution images, e.g. one voxel in the image corresponds to at most one-cubic
millimeter of tissue. In order to accurately segment tumors and make treatment plans, radiologists and
oncologists need CT scans of higher resolution. The same problem appears in Magnetic Resonance Imaging
(MRI). In this paper, we propose an approach for the single-image super-resolution of 3D CT or MRI scans.
Our method is based on deep convolutional neural networks (CNNs) composed of 10 convolutional layers
and an intermediate upscaling layer that is placed after the first 6 convolutional layers. Our first CNN, which
increases the resolution on two axes (width and height), is followed by a second CNN, which increases
the resolution on the third axis (depth). Different from other methods, we compute the loss with respect
to the ground-truth high-resolution image right after the upscaling layer, in addition to computing the loss
after the last convolutional layer. The intermediate loss forces our network to produce a better output, closer
to the ground-truth. A widely-used approach to obtain sharp results is to add Gaussian blur using a fixed
standard deviation. In order to avoid overfitting to a fixed standard deviation, we apply Gaussian smoothing
with various standard deviations, unlike other approaches. We evaluate the proposed method in the context
of 2D and 3D super-resolution of CT and MRI scans from two databases, comparing it to related works
from the literature and baselines based on various interpolation schemes, using 2× and 4× scaling factors.
The empirical study shows that our approach attains superior results to all other methods. Moreover, our
subjective image quality assessment by human observers reveals that both doctors and regular annotators
chose our method in favor of Lanczos interpolation in 97.55% cases for an upscaling factor of 2× and in
96.69% cases for an upscaling factor of 4×. In order to allow others to reproduce our state-of-the-art results,
we provide our code as open source at https://github.com/lilygeorgescu/3d-super-res-cnn.

INDEX TERMS Convolutional neural networks, single-image super-resolution, CT images, MRI images,
medical image super-resolution.

I. INTRODUCTION
Medical centers and hospitals around the globe are typically
equipped with single-energy Computer Tomography (CT)
or Magnetic Resonance Imaging (MRI) scanners that pro-
duce cross-sectional images (slices) of various body parts.
The resulting images are of low-resolution, since one pixel
usually corresponds to at most one-millimeter piece of tis-
sue. The thickness of one slice is one millimeter at best,
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so the 3D CT images are composed of volumetric pix-
els (voxels) that usually correspond to one cubic millimeter
(1×1×1 mm3) of tissue. One of themain benefits of this non-
invasive scanning technique is that it allows doctors to see
if there are malignant tumors inside the body. Nevertheless,
doctors, and even machine learning systems [1], are not able
to accurately contour (segment) the tumor regions because
of the low-resolution of CT or MRI scans. According to a
team of radiologists from Colţea Hospital in Bucharest, that
provided a set of anonymized CT scans for our experiments,
the desired resolution is to have one voxel correspond to one
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FIGURE 1. Our method for 3D image super-resolution based on two subsequent fully
convolutional neural networks. In the first stage, the input volume is resized in two
dimensions (width and height). In the second stage, the processed volume is further resized
in the third dimension (depth). Using a scale factor of 2×, an input volume of 256× 256× 64
components is upsampled to 512×512×128 components (on all axes). Best viewed in color.

cubic micrometer (a thousandth part of a cubic millimeter)
of tissue. In other words, the goal is to increase the resolution
of 3D CT andMRI scans by a factor of 10× in each direction.
The main motivation behind our work is to allow radiolo-

gists and oncologists to accurately segment tumors and make
better treatment plans. In order to achieve the desired goal,
we propose a machine learning method that takes as input a
3D image and increases the resolution of the input image by
a factor of 2× or 4×, providing as output a high-resolution
3D image. To our knowledge, there are only a few previous
works [1]–[18] that study the super-resolution of CT or MRI
images. Similar to some of these previous works [2]–[7],
[9], [11]–[18], we approach single-image super-resolution
(SISR) of CT andMRI scans using deep convolutional neural
networks (CNNs).We propose a CNN architecture composed
of 10 convolutional layers and an intermediate sub-pixel
convolutional (upscaling) layer [19] that is placed after the
first 6 convolutional layers. Different from related works [3],
[6], [16], [18] that use the sub-pixel convolutional layer of
Shi et al. [19], we add 4 convolutional layers after the upscal-
ing layer. In order to obtain 3D super-resolution, we employ
two CNNs with similar architectures, as illustrated
in Figure 1. The first CNN increases the resolution on two
axes (width and height), while the second CNN takes the
output from the first CNN and further increases the resolution
on the third axis (depth). Different from related methods [3],
[6], [16], [18], we compute the loss with respect to the
ground-truth high-resolution image right after the upscaling
layer, in addition to computing the loss after the last convo-
lutional layer. The intermediate loss forces our network to
produce a better output, closer to the ground-truth. In order
to improve the results and obtain sharper images, a common
approach is to apply Gaussian smoothing on top of the input
images, using a fixed standard deviation. Different from other

medical image super-resolution methods [3], [14], [17],
we use various standard deviations in order to avoid over-
fitting to a certain standard deviation and improve the gener-
alization capacity of our model.

We note that our model belongs to a class of deep neural
networks known as fully convolutional neural networks. The
main advantage of using such models, which do not include
dense (fully-connected) layers, is that the input samples do
not have to be of the same size. This flexibilty enables a
broad range of applications such as image segmentation [20],
object tracking [21], crowd detection [22], time series clas-
sification [23] and single-image super-resolution [3], [6],
[16], [18]. Different from other fully convolutional neural
networks [3], [6], [16], [18], [20]–[23], our network is specif-
ically designed for SISR, having a custom architecture that
includes an upscaling layer [19] useful only for SISR, as well
as a novel loss function.

We conduct super-resolution experiments on two databases
of 3D CT and MRI images, one gathered from the Colţea
Hospital (CH) and one that is publicly available online,
known as NAMIC.1 We compare our method with several
interpolation baselines (nearest, bilinear, bicubic, Lanczos)
and state-of-the-art methods [3], [13], [15], [17], in terms
of the peak signal-to-noise ratio (PSNR), the structural sim-
ilarity index (SSIM) and the information fidelity criterion
(IFC). We perform comparative experiments on both 2D
and 3D single-image super-resolution under commonly-used
upscaling factors, namely 2× and 4×. The empirical results
indicate that our approach is able to surpass all the other
methods included in the experiments. For example, on the
NAMIC data set, we obtain a PSNR of 40.57 and an SSIM
of 0.9835 for 3D super-resolution by a factor of 2×, while

1Available at http://hdl.handle.net/1926/1687.
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Pham et al. [13] reported a PSNR of 38.28 and an SSIM
of 0.9781 in the same setting. Furthermore, we conduct a
subjective image quality assessment by human observers,
asking 6 doctors and 12 regular annotators to choose between
the CT images produced by our method and those produced
by Lanczos interpolation (the best interpolation method).
The annotators opted for our method in favor of Lanczos
interpolation in 97.55% cases for an upscaling factor of 2×
and in 96.69% cases for an upscaling factor of 4×. These
results indicate that our method is significantly better than
Lanczos interpolation. In order to allow further developments
and results replication, we provide our code as open source in
a public repository.2

To summarize, our contribution is threefold:
• We propose a novel CNNmodel for 3D super-resolution
of CT andMRI scans, which is based on an intermediate
loss added to the standard output loss and on smoothing
the input using random standard deviations for the Gaus-
sian blur.

• We conduct a subjective image quality assessment by
human observers to determine the quality and the utility
of our super-resolution results, as in [15].

• We provide our code online for download, allowing our
results to be easily replicated.

We organize the rest of this paper as follows. We present
related work in Section II.We describe our method in detail in
Section III. We present experiments and results in Section IV.
Finally, we draw our conclusions in Section V.

II. RELATED WORK
The purpose of SISR is to reconstruct a high-resolution (HR)
image from its low-resolution (LR) counterpart. Before the
deep learning age, researchers have used exemplar-based or
sparse coding methods for SISR. Exemplar-based methods
learn mapping functions from external LR and HR exemplar
pairs [24]–[26]. Sparse coding methods [27] are representa-
tive for external exemplar-based SR methods. For example,
the method of Yang et al. [27] builds a dictionary with LR
patches and the corresponding HR patches.

To our knowledge, the first work to present a deep learning
approach for SISR is [28]. Dong et al. [28] proposed a CNN
composed of 8 convolutional layers. The network was trained
in an end-to-end fashion, minimizing the reconstruction error
between the HR image and the output of the network. They
used bicubic interpolation to resize the image, before giving
it as input to the network. Hence, the CNN takes a blurred HR
image as input and learns how to make it sharper. Since the
input is an HR image, this type of CNN is time consuming.
Therefore, Shi et al. [19] introduced a newmethod for upsam-
pling the image using the CNN activation maps produced
by the last layer. Their network is more efficient, because
it builds the HR image only at the very end. Other works,
such as [29], proposed deeper architectures, focusing strictly
on accuracy. Indeed, Zhang et al. [29] presented one of the

2Available at https://github.com/lilygeorgescu/3d-super-res-cnn.

deepest CNNs used for SR, composed of 400 layers. They
used a channel attention mechanism and residual blocks to
handle the depth of the network.

For medical SISR, some researchers have focused on
sparse representations [8], [10], while others on training con-
volutional neural networks [1]–[7], [9], [11], [12], [14]–[16],
[18].

The authors of [8] proposed a weakly-supervised joint
convolutional sparse coding method to simultaneously solve
the problems of super-resolution and cross-modal image
synthesis. In [10], the authors adopted a method based on
compressed sensing and self-similarity constraint, obtaining
better results than [17] in terms of SSIM and PSNR.

Some works [1], [3], [5], [6], [9]–[11], [14]–[16], [18]
focused on 2D upsampling, i.e. on increasing the width and
height of CT/MRI slices, while other works [2], [4], [8], [12]
focused on 3D upsampling, i.e. on increasing the resolution
of full 3D CT/MRI scans on all three axes (width, height and
depth).

For 2D upsampling, some works [1], [5], [9], [14]
used interpolated low resolution (ILR) images, while other
works [3], [6], [16], [18] used the efficient sub-pixel convo-
lutional neural network (ESPCN) introduced in [19]. Similar
to the latter approaches [3], [6], [16], [18], we employ the
sub-pixel convolutional layer of Shi et al. [19]. Different from
these related works [3], [6], [16], [18], we add a convolutional
block after the sub-pixel convolutional layer, in order to
enhance the HR output image. Furthermore, we propose a
novel loss function for our CNN model. Instead of comput-
ing the loss between the output image and the ground-truth
high-resolution image, we also compute the loss between the
intermediate image given by the sub-pixel convolutional layer
and the high-resolution image. This forces our neural network
to learn a better intermediate representation, increasing its
performance.

There are some works [2], [11], [15] that employed gener-
ative adversarial networks (GANs) [30] to upsample medical
images. Although our approach based on fully convolutional
neural networks is less related to GAN-based SISR methods,
we decided to include the approach of You et al. [15] in our
experiments, as a recent and relevant baseline.

For 3D upsampling, Chen et al. [2] trained a CNN with
3D convolutions and used a GAN–based loss function to
produce sharper and more realistic images. In order to
upsample a 3D image, Du et al. [4] employed a deconvo-
lutional layer composed of 3D filters to upsample the LR
image, in an attempt to reduce the computational complexity.
As [2], [4], [8], [12], we tackle the problem of 3D CT/MRI
image super-resolution. However, instead of using inefficient
3D filters to upsample the LR images in a single step, we pro-
pose a more efficient two-stage approach that uses 2D filters.
Our approach employs a CNN to increase the resolution in
width and height, and another CNN to further increase the
resolution depth-wise.

Most SISR works [3], [14], [17], apply Gaussian smooth-
ing using a fixed standard deviation on the training images,
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FIGURE 2. Our convolutional neural network for super-resolution on two axes, height and width. The network is composed of 10 convolutional layers
and an upsampling (sub-pixel convolutional) layer. It takes as input low-resolution patches of 7× 7 pixels and, for the r = 2 scale factor, it outputs
high-resolution patches of 14× 14 pixels. The convolutional layers are represented by green arrows. The sub-pixel convolutional layer is represented by
the red arrow. The long-skip and short-skip connections are represented by blue arrows. Best viewed in color.

thus training the models in more difficult conditions. How-
ever, we believe that using a fixed standard deviation can
harm the performance, as deep models tend to overfit to the
training data. Different from the standard methodology, each
time we apply smoothing on a training image, we chose a
different standard deviation, randomly. This simple change
improves the generalization capacity of our model, yielding
better performance at test time.

While many works focus only on the super-resolution task,
the work of Sert et al. [1] is focused on the gain brought
by the upsampled images in solving a different task. Indeed,
the authors [1] obtained an improvement of 7.5% in the
classification of segmented brain tumors when the upsampled
images were used.

We note that there is also some effort in designing and
obtaining CT scan results of higher resolution directly from
CT scanners. For example, X-ray microtomography (micro-
CT) [31], which is based on pixel sizes of the cross-sections
in the micrometer range, has applications in medical imag-
ing [32], [33]. Another alternative to standard (single-energy)
CT is dual-energy or multi-energy CT [34], [35]. Different
from the expensive alternatives such as dual-energy CT and
micro-CT, our approach to increasing the resolution of single-
energy CT images using a machine learning algorithm repre-
sents an economical and accessible mode.

III. METHOD
Our method for solving the 3D image super-resolution prob-
lem relies on deep neural networks. The universal approxi-
mation theorem [36], [37] states that neural networks with
at least one hidden layer are universal function approxi-
mators. Hence, the hypothesis class represented by neural
networks is large enough to accommodate any hypothesis
explaining the data. This high model capacity seems to help
deep neural networks in attaining state-of-the-art results in
many domains [38], including image super-resolution [28].
This is the main reason behind our decision to use neural
networks. Interestingly, Dong et al. [28] show that deep

convolutional neural networks for super-resolution are equiv-
alent to previously-used sparse-coding methods [27]. How-
ever, the recent literature indicates that deep neural networks
attain better results than handcrafted methods in practice
[28], [39], mainly because the parameters (weights) are
learned from data in an end-to-end fashion. Further specific
decisions, such as the neural architecture or the loss function,
are taken based on empirical observations.

Our approach is divided into two stages, as illustrated
in Figure 1. In the first stage, we upsample the image on
height and width using a deep fully convolutional neural
network. Then, in the second stage, we further upsample the
resulting image on the depth axis using another fully convo-
lutional neural network. Therefore, our complete method is
designed for resizing the 3D input volume on all three axes.
While the CNN used in the first stage resizes the image on
two axes, the CNN used in the second stage resizes the image
on a single axis. Both CNNs share the same architecture,
the only difference being in the upsamling layer (the second
CNN upsamples in only one direction). At training time, our
CNNs operate on patches. However, since the architecture is
fully convolutional, the models can operate on entire slices at
inference time, for efficiency reasons.

We hereby note that 3D super-resolution is not equivalent
to 2D super-resolution in a slice-by-slice order. Our first
CNN performs 2D super-resolution in a slice-by-slice order,
increasing an input of size h×w×d to the size r ·h×r ·w×d ,
where r is the scale factor. Since we end up with the same
number of slices (r), this is not enough. This is why we
need the second CNN to further increase the image from
r · h × r · w × d voxels to r · h × r · w × r · d voxels.
The final output of r · h × r · w × r · d voxels could also be
obtained by employing a single CNN with 3D convolutions.
In most of our convolutional layers, each 2D convolutional
filter is formed of 3 · 3 · 32+ 1 = 289 weights to be learned.
Aswe employ two networks for 3D super-resolution, we learn
2 · 289 = 578 weights. For an equivalent model based on 3D
convolutions, each 3D convolutional filter would be formed
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of 3 · 3 · 3 · 32 + 1 = 865 weights. This analysis proves
that our two CNNs put together have less weights than a
single 3D CNN. We thus conclude that our approach is more
efficient. We note that our approach is essentially based on
decomposing the 3D convolutional filters in a product of two
2D convolutional filters. We note that the same principle is
applied in literature [40], [41] to build more efficient CNN
models by decomposing 2D convolutional layers in two sub-
sequent 1D convolutional layers that operate on independent
dimensions.

We further describe in detail the proposed CNN architec-
ture, loss function and data augmentation procedure.

A. ARCHITECTURE
Our architecture, depicted in Figure 2 and used for both
CNNs, is composed of 10 convolutional (conv) layers, each
followed by Rectified Liner Units (ReLU) [42] activations.
We decided to use ReLU activations, as this represents the
most popular choice of transfer function in current research
based on deep learning. All convolutional layers contain fil-
ters with a spatial support of 3× 3. While older deep models
were based on larger filters, e.g. the AlexNet [43] architecture
contains filters of 11 × 11, the recent trend is towards using
smaller filters, e.g. the ResNet [44] architecture does not
contain filters larger than 3× 3.
Our 10 conv layers are divided into two blocks. The first

block, formed of the first 6 conv layers, starts with the input
of the neural network and ends just before the upscaling layer.
Each of the first 5 convolutional layers are formed of 32
filters. For the CNN used in the first stage, the number of
filters in the sixth convolutional layer is equal to the square
of the scale factor, e.g. for a scale factor of 4× the number of
filters is 16. For the CNNused in the second stage, the number
of filters in the sixth convolutional layer is equal to the scale
factor, e.g. for a scale factor of 4× the number of filters is
4. The difference is caused by the fact that the first CNN
upscales on two axes, while the second CNN upscales on
one axis. The first convolutional block contains a short-skip
connection, from the first conv layer to the third conv layer,
and a long-skip connection, from the first conv layer to the
fifth conv layer.

The first convolutional block is followed by a sub-
pixel convolutional (upscaling) layer, which was introduced
in [19]. In the upscaling layer, the activation maps produced
by the sixth conv layer are assembled into a single activation
map. Throughout the first convolutional block, the spatial size
of the low-resolution input is preserved, i.e. the activation
maps of the sixth conv layer have hI ×wI components, where
hI and wI are the height and the width of the input image I .
In order to increase the input r times on both axes, the output
of the sixth conv layer must be a tensor of hI × wI × r2

components. The activation map resulting from the sub-pixel
convolutional layer is a matrix of (hI ·r)×(wI ·r) components.
For super-resolution on two axes, the pixels are rearranged
as shown in Figure 3. In a similar fashion, we can increase
the input r times on one axis. In this case, the output of the

FIGURE 3. An example of low-resolution input activation maps and the
corresponding high-resolution output activation map given by the
sub-pixel convolutional layer for upscaling on two axes. For a scaling
factor of r = 2 in both directions, the sub-pixel convolutional layer
requires r2 = 4 activation maps as input. Best viewed in color.

FIGURE 4. An example of low-resolution input activation maps and the
corresponding high-resolution output activation map given by the
sub-pixel convolutional layer for upscaling on one axis. For a scaling
factor of r = 2 in one direction, the sub-pixel convolutional layer requires
r = 2 activation maps as input. Best viewed in color.

sixth conv layer must be a tensor of hI ×wI × r components.
This time, the activation map resulting from the sub-pixel
convolutional layer can be either a matrix of (hI · r) × wI
components or amatrix of hI×(wI ·r) components, depending
on the direction we aim to increase the resolution. For super-
resolution on one axis, the pixels are rearranged as shown
in Figure 4. To our knowledge, we are the first to propose a
sub-pixel convolutional (upscaling) layer for super-resolution
in one direction.

When Shi et al. [19] introduced the sub-pixel convolutional
layer, they used it as the last layer of their CNN. Hence,
the output depth of the upscaling layer is equal to the number
of channels in the output image. Different from Shi et al. [19],
we employ further convolutions after the upscaling layer.
Nevertheless, since we are working with CT/MRI (grayscale)
images, our final output has a single channel. In our archi-
tecture, the upscaling layer is followed by our second con-
volutional block, which starts with the seventh convolutional
layer and ends with the tenth convolutional layer. The first
three conv layers in our second block are formed of 32 filters.
The tenth conv layer contains a single convolutional filter,
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since our output is a grayscale image that has a single channel.
The second convolutional block contains a short skip con-
nection, from the seventh conv layer to the ninth conv layer.
The spatial size of hO × wO components of the activation
maps is preserved throughout the second convolutional block,
where hO and wO are the height and the width of the output
image O.

B. LOSSES AND OPTIMIZATION
In order to obtain a CNN model for single-image super-
resolution, the aim is to minimize the differences between
the ground-truth high-resolution image and the output image
provided by the CNN. Researchers typically employ themean
absolute difference as the objective function. Given a low-
resolution input image I and the corresponding ground-truth
high-resolution imageO, the loss based on the mean absolute
value is formally defined as follows:

L(θ, I ,O) =
wO∑
i=1

hO∑
j=1

|f (θ, I )− O|, (1)

where θ are the CNN parameters (weights), f is the trans-
formation function learned by the CNN, and wO and hO
represent the width and the height of the ground-truth image
O, respectively.

When we train our CNN model, we do not employ the
standard approach of minimizing the difference between the
output provided by the CNN and the ground-truth HR image.
Instead, we propose a novel approach based on an interme-
diate loss function. Since the conv layers after the upscaling
layer are meant to refine the high-resolution image without
taking any additional information from the low-resolution
input image, we note that the high-resolution image resulting
immediately after the upscaling layer should be as similar
as possible to the ground-truth high-resolution image. There-
fore, we propose a loss function that aims to minimize the
difference between the intermediately-obtained HR image
and the ground-truth HR image, in addition to minimizing
the difference between the final HR output image and the
ground-truth HR image. Let f1 denote the transformation
function that corresponds to the first convolutional block
and the upscaling layer, and let f2 denote the transformation
function that corresponds to the second convolutional block.
With these notations, the transformation function f of our full
CNN architecture can be written as follows:

f (θ, I ) = f2(θ2, f1(θ1, I )), (2)

where θ are the parameters of the full CNN, θ1 are the param-
eters of the first convolutional block and θ2 are the parameters
of the second convolutional block, i.e. θ is a concatenation of
θ1 and θ2. Having defined f1 and f2 as above, we can formally
write our loss function as follows:

Lfull = Lstandard + λ · Lintermediate, (3)

where λ is a parameter that controls the importance of the
intermediate loss with respect to the standard loss, Lstandard

is the standard loss defined in Equation (1) and Lintermediate is
defined as follows:

Lintermediate(θ1, I ,O) =
wO∑
i=1

hO∑
j=1

|f1(θ1, I )− O|. (4)

In the experiments, we set λ = 1, since we did not find any
strong reason to assign a lower or higher importance to the
intermediate loss. By replacing λ with 1 and the loss values
from Equation (1) and Equation (4), Equation (3) becomes:

Lfull(θ, I ,O) =
wO∑
i=1

hO∑
j=1

|f (θ, I )− O|

+

wO∑
i=1

hO∑
j=1

|f1(θ1, I )− O|. (5)

In order to optimize towards the objective defined in Equa-
tion (5), we employ the Adam optimizer [45], which is known
to converge faster than Stochastic Gradient Descent.

C. DATA AUGMENTATION
A common approach to force the CNN to produce sharper
output images is to apply Gaussian smoothing using a fixed
standard deviation at training time [3], [14], [17]. By train-
ing the CNN on blurred low-resolution images, the super-
resolution task becomes harder. During inference, when the
input images are no longer blurred, the task will be much
easier. However, smoothing only the training images with
a fixed standard deviation will inherently generate a dis-
tribution gap between training and test data. If the CNN
fits the training distribution well, it might not produce the
desired results at inference time. This is because machine
learning models are based on the assumption that training
data and test data are sampled from the same distribution.
We propose to solve this problem by using a randomly-
chosen standard deviation for each training image. Although
the training data distribution will still be different from the
testing data distribution, it will include the distribution of test
samples, as illustrated in Figure 5. In order to augment the
training data, we apply Gaussian blur with a probability of
0.5 (only half of the images are smoothed) using a kernel of
3× 3 components and a randomly-chosen standard deviation
between 0 and 0.5. In this way, we increase the variance of
the training data without introducing any bias. In this case,
if the CNN fits the training distribution well, it will produce
good super-resolution outputs during inference, since there is
no distribution gap between training and test.

IV. EXPERIMENTS
A. DATA SETS
The first data set used in the experiments consists of 10
anonymized 3D images of brain CT provided by the Medical
School at Colţea Hospital. We further refer to this data set as
the Colţea Hospital (CH) data set. In order to fairly train and
test our CNN models and baselines, we randomly selected
6 images for training and used the remaining 4 images for
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FIGURE 5. Distribution of training samples (represented by green
triangles) and test samples (represented by red circles), when the training
samples are smoothed using a fixed standard deviation (left-hand side)
versus using a randomly-chosen standard deviation (right-hand side).
In example (a), overfitting on the training data leads to poor results on
test data. In example (b), the danger of overfitting is diminished because
the test distribution is included in the training distribution. Best viewed in
color.

testing. The training set has 359 slices (2D images) and the
testing set has 238 slices. The height and the width of the
slices vary between 192 and 512 pixels, while the depth of the
3D images varies between 3 and 176 slices. The resolution of
a voxel is 1× 1× 1 mm3.
The second data set used in our experiments is the National

Alliance forMedical Image Computing (NAMIC) BrainMul-
timodality data set. The NAMIC data set consists of 20 3D
MRI images, each composed of 176 slices of 256 × 256
pixels. As for the CH data set, the resolution of a voxel is
1 × 1 × 1 mm3. For our experiments, we used T1-weighted
(T1w) and T2-weighted (T2w) images independently. Fol-
lowing [13], we split the NAMIC data set into a training set
containing 10 3D images and a test set containing the other
10 images. We kept the same split for T1w and T2w.

B. EXPERIMENTAL SETUP
1) EVALUATION METRICS
Asmost previousworks [3], [5], [10], [12]–[18], we employed
the two most common evaluation metrics, namely the peak
signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM). The PSNR is the ratio between the maximum
possible power of a signal and the power of corrupting noise
that affects the fidelity of its representation. Although the
PSNR is one of the most used metrics for image reconstruc-
tion, some researchers [46], [47] argued that it is not highly
indicative of the perceived similarity. The SSIM [46] aims to
address this shortcoming by taking contrast, luminance and
texture into account. The result of the SSIM is a number
between -1 and 1, where a value of 1 means the ground-
truth image and the reconstructed image are identical. Simi-
larly, a higher PSNR value indicates a better reconstruction,
although the PSNR does not have an upper bound.

Since PSNR and SSIM values cannot guarantee a visu-
ally favorable result, we employ an additional metric for
the final results, namely the information fidelity criterion
(IFC) [48]. Although IFC is scarcely used in literature [15],

TABLE 1. Preliminary 2D super-resolution results on the CH data set for
an upscaling factor of 2×. The PSNR and the SSIM values are reported for
various patch sizes and different numbers of filters. For models with 7× 7
patches, we report the inference time (in seconds) per CT slice measured
on an Nvidia GeForce 940MX GPU with 2GB of RAM.

Yang et al. [49] pointed out that IFC is correlated well with
the human perception of SR images. As for PSNR and SSIM,
higher IFC values indicate better results.

2) IMAGE QUALITY ASSESSMENT BY HUMAN OBSERVERS
Because the above metrics rely only on the pixel values and
not on the perceived visual quality, we decided to evaluate
our method with the help of human annotators. Although
a deep learning method can provide better PSNR, SSIM or
IFC values, it might produce artifacts that could be mis-
leading for right diagnostics and treatment. We thus have to
make sure that our approach does not produce any unwanted
artifacts visible to humans. We conducted the image qual-
ity assessment on the CH data set, testing our CNN-based
method against Lanczos interpolation. We used CT slices
extracted from high-resolution 3D images resulting after
applying super-resolution on all three axes. For each upsam-
pling factor, 2× and 4×, we extracted 100 CT slices at
random from the test set. Hence, each human evaluator had to
annotate 200 image pairs (100 for each upsampling factor).
For each evaluation sample, an annotator would have seen
the original image in the middle and the two reconstructed
images on its sides, one on the left side and the other on the
right side. The annotators had a magnifying glass tool that
allowed them to look at details and discover artifacts. The
locations (left or right) of the images reconstructed by our
CNN and by Lanczos interpolation were randomly picked
every time. To prevent any form of cheating, the randomly
picked locations were unknown to the annotators. For each
test sample, we asked each annotator to select the image that
best reconstructed the original image. Our experiment was
completed by 18 human annotators, 6 of them being doctors
specialized in radiotherapy and oncology. In total, we col-
lected 3600 annotations (18 annotators × 200 samples).

3) BASELINES
We compared our method with standard resizing meth-
ods based on various interpolation schemes, namely nearest
neighbors, bilinear, bicubic and Lanczos. In addition to these
baselines, we comparedwith threemethods [3], [15], [17] that
focused on 2D SISR and one method [13] that focused on 3D
SISR. We note that You et al. [15] did not report results on
NAMIC. Nonetheless, You et al. [15] were kind to provide
access to their source code. We thus applied their method
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TABLE 2. Ablation 2D super-resolution results on the CH data set for an upscaling factor of 2×. The PSNR and the SSIM values are reported various
ablated versions of our CNN model. The best results are highlighted in bold. Results of ablated models marked with † are significantly worse than our
complete model, according to paired McNemar’s testing [50] for the significance level 0.001.

on both CH and NAMIC data sets, keeping the same set-
tings and hyperparameters as recommended by the authors.
As You et al. [15], we employed their method only on 2D
super-resolution for the 2× upscaling factor. For the other
three baselines, we included the NAMIC scores reported in
the respective articles [3], [13], [17].

C. PARAMETER TUNING AND PRELIMINARY RESULTS
We conducted a series of preliminary experiments to deter-
mine the optimal patch size as well as the optimal width
(number of convolutional filters) for our CNN. In order to
find the optimal patch size, we tried out patches of 4 × 4,
7 × 7, 14 × 14 and 17 × 17 pixels. In term of the number
of filters, we tried out values in the set {32, 64, 128} for all
conv layers in our network. These parameters were tuned in
the context of 2D super-resolution on the CH data set. The
corresponding results are presented in Table 1. First of all,
we note that our method produces better SSIM and PSNR
values, i.e. 0.9270 and 36.22, for patches of 7 × 7 pixels.
Second of all, we observe that adding more filters on the
conv layers slightly increases the SSIM and PSNR values.
However, the gains in terms of SSIM and PSNR come with
a great cost in terms of time. For example, using 128 filters
on each conv layer triples the processing time in comparison
with using 32 filters on each conv layer. For the subsequent
experiments, we thus opted for patches of 7 × 7 pixels and
conv layers with 32 filters.

We believe that it is important to note that, although the
number of training CT slices is typically in the range of a few
hundreds, the number of training patches is typically in the
range of hundreds of thousands. For instance, the number of
7× 7 training patches extracted from the CH data set for the
2× upscaling factor is 326,000. We thus stress out that the
number of training samples is high enough to train highly-
accurate deep learning models.

During training, we used mini-batches of 128 images
throughout all the experiments. In a set of preliminary exper-
iments, we did not observe any significant differences when
using mini-batches of 64 or 256 images. In each experiment,
we trained the CNN for 40 epochs, starting with a learning
rate (step size) of 10−3 and decreasing the learning rate to
10−4 after the first 20 epochs.

D. ABLATION STUDY RESULTS
We performed an ablation study to emphasize the effect
of various components over the overall performance.

The ablation results obtained on the CH data set for super-
resolution on height and width by a factor of 2× are presented
in Table 2.

In our first ablation experiment, we have eliminated all the
enhancements in order to show the performance level of a
baseline CNN on the CH data set. Since there are several
SISR works [3], [6], [16], [18] based on the standard ESPCN
model [19], we have eliminated the second convolutional
block in the second ablation experiment, transforming our
architecture into a standard ESPCN architecture. The perfor-
mance drops from 0.9270 to 0.9236 in terms of SSIM and
from 36.22 to 35.94 in terms of PSNR. In the subsequent
ablation experiments, we have removed, in turns, the inter-
mediate loss, the short-skip connections and the long-skip
connection. The results presented in Table 2 indicate that all
these components are relevant to our model, bringing signifi-
cant performance benefits in terms of both SSIM and PSNR.
In our last ablation experiment, we used a fixed standard
deviation instead of a variable one for theGaussian blur added
on training patches. We notice that our data augmentation
approach based on a variable standard deviation brings the
highest gains in terms of SSIM (from 0.9236 to 0.9270) and
PSNR (from 35.69 to 36.22), with respect to the other ablated
components.

Since the differences in terms of PSNR or SSIM for the
ablated models are hard to quantify as small or large with
respect to the complete CNN, we conducted paired McNe-
mar’s significance testing [50] to determine if the differences
are statistically significant or not. We considered a p-value
threshold of 0.001 for our statistical testing. Every ablated
model that is significantly different from the complete model
is marked with † in Table 2. We note that the complete CNN
is significantly better than each ablated version, although the
actual differences in terms of PSNR or SSIM might seem
small. We thus conclude that all the proposed enhancements
provide significant performance gains.

E. RESULTS ON CH DATA SET
We first compared our CNN-based model with a series of
interpolation baselines and a state-of-the-art method [15] on
the CH data set. We present the results for super-resolution on
two axes (width and height) in Table 3. Among the considered
baselines, it seems that the Lanczos interpolation method
provides better results than the bicubic, the bilinear or the
nearest neighbor methods. Our CNNmodel is able to surpass
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TABLE 3. 2D super-resolution results of our CNN model versus a
state-of-the-art method [15] and several interpolation baselines on the
CH data set. The PSNR, the SSIM and the IFC values are reported for two
upscaling factors, 2× and 4×. The best result on each column is
highlighted in bold.

TABLE 4. 3D super-resolution results of our CNN model versus several
interpolation baselines on the CH data set. The PSNR, the SSIM and the
IFC values are reported for two upscaling factors, 2× and 4×. The best
result on each column is highlighted in bold.

all baselines for both upscaling factors, 2× and 4×. Com-
pared to the best interpolation method (Lanczos), our method
is 0.0180 better in terms of SSIM, 1.31 better in terms of
PSNR and 0.43 better in terms of IFC. Furthermore, our
CNN provides superior results to the GAN-based method of
You et al. [15].

We note that, in Table 2, we reported an SSIM of 0.9270
and a PSNR of 36.22 for our method, while in Table 3,
we reported an SSIM of 0.9291 and a PSNR of 36.39.
In order to boost the performance of our method in accor-
dance with the observed differences between Tables 2
and 3, we employed the self-ensemble strategy used by
Lim et al. [51]. For each input image, the self-ensemble
strategy consists in generating additional images using geo-
metric transformations, e.g. rotations and flips. Following
Lim et al. [51], we generated 7 augmented images from the
LR input image, upsampling all 8 images (the original image
and the 7 additional ones) using our CNN. We then applied
the inverse transformations to the resulting 8 HR images in
order to obtain 8 output images that are aligned with the
ground-truth HR images. The final output image is obtained
by taking the median of the HR images. In the following
experiments on CH andNAMIC data sets, the reported results
always include the described self-ensemble strategy.

We provide the results for super-resolution on all three axes
in Table 4. First of all, we notice that the SSIM, the PSNR and
the IFC values are lower for all methods when dealing with
3D super-resolution (Table 4) instead of 2D super-resolution
(Table 3). This shows that the task of 3D super-resolution is
much harder than 2D super-resolution. This is an expected
result, considering that the dimensionality of the reconstruc-
tion space increases significantly for 3D super-resolution, i.e.
there are many more HR outputs corresponding to a single
LR input, while the training data is the same. Nevertheless,

our method exhibits smaller performance drops when going
from 2D super-resolution to 3D super-resolution. As for the
2D super-resolution experiments on CH data set, our CNN
model for 3D super-resolution is superior to all baselines for
both upscaling factors.We thus conclude that our CNNmodel
is better than all interpolation baselines on the CH data set, for
both 2D and 3D super-resolution and for all upscaling factors.

F. RESULTS ON NAMIC DATA SET
On the NAMIC data set, we compared our method with the
best-performing interpolation method on the CH data set,
namely Lanczos interpolation, as well as some state-of-the-
art 2D [3], [15], [17] and 3D [13] super-resolution methods.
We note that most previous works, including [3], [13], [17],
used bicubic interpolation as a relevant baseline. Unlike these
works, we opted for Lanczos interpolation, which provided
better results than bicubic interpolation and other interpola-
tion methods on the CH data set.

We first present the 2D super-resolution results in Table 5.
The 2D SR results indicate that the GAN-based method of
You et al. [15] is superior to the CNN baselines [3], [17].
However, none of the state-of-the-art methods [3], [15], [17]
is able to attain better performance than Lanczos interpo-
lation. This proves that Lanczos interpolation is a much
stronger baseline. Among the deep learning methods, our
CNN is the only one to surpass Lanczos interpolation for 2D
SR on NAMIC. We believe that this result is noteworthy.

We also present the 3D super-resolution results in Table 6.
The 3D SR results show that the approach of Pham et al. [13]
is better than Lanczos interpolation, which is remarkable. Our
CNN is even better, surpassing both the Lanczos interpolation
and the approach of Pham et al. [13].
As for the CHdata set, we observe that the PSNR, the SSIM

and the IFC scores for 2D super-resolution are higher than
the corresponding scores for 3D super-resolution. The same
explanation applies to the NAMIC data set, i.e. the CNNs
have to produce likely reconstruction patterns in a much
larger space.

While some of the considered state-of-the-art methods [3],
[13], [17] presented results only for some cases on NAMIC,
either 2D super-resolution on T1w images or 3D super-
resolution on T2w images, we provide our results for all
possible cases. We note that our CNN model surpasses Lanc-
zos interpolation in each and every case. Furthermore, our
model provides superior results than all the state-of-the-art
methods [3], [13], [15], [17] considered in our evaluation on
the NAMIC data set.

In addition to the quantitative results shown in Tables 5
and 6, we present qualitative results in Figure 6. We selected
5 examples of 2D super-resolution results generated by
Lanczos interpolation, by the GAN-based method of
You et al. [15] and by our CNN model. A close inspection
reveals that our results are generally sharper than those of
Lanczos interpolation and those of You et al. [15]. As also
confirmed by the SSIM, the PSNR and the IFC values pre-
sented in Tables 5 and 6, the images generated by our CNN

49120 VOLUME 8, 2020



M.-I. Georgescu et al.: Convolutional Neural Networks With Intermediate Loss for 3D Super-Resolution of CT and MRI Scans

TABLE 5. 2D super-resolution results of our CNN model versus several state-of-the-art methods [3], [15], [17] and the Lanczos interpolation baseline on
the NAMIC data set. For Zeng et al. [17], we included results for both single-channel super-resolution (SCSR) and multi-channel super-resolution (MCSR).
The PSNR, the SSIM and the IFC values are reported for both T1w and T2w images and for two upscaling factors, 2× and 4×. The best results on each
column are highlighted in bold.

TABLE 6. 3D super-resolution results of our CNN model versus a state-of-the-art method [13] and the Lanczos interpolation baseline on the NAMIC data
set. The PSNR, the SSIM and the IFC values are reported for both T1w and T2w images and for two upscaling factors, 2× and 4×. The best results on each
column are highlighted in bold.

TABLE 7. Image quality assessment results collected from 6 doctors and
12 regular annotators, for the comparison between our CNN-based
method versus Lanczos interpolation. For each upscaling factor, each
annotator had to select an option for a number of 100 image pairs.
To prevent cheating, the randomly picked locations (left or right) for the
generated HR images were unknown to the annotators.

are closer to the ground-truth images. At the scale factor of
2× considered in Figure 6, our CNN does not produce any
patterns or artifacts that deviate from the ground-truth.

G. IMAGE QUALITY ASSESSMENT RESULTS
We provide the outcome of the subjective image qual-
ity assessment by human observers in Table 7. The study
reveals that both doctors and regular annotators opted for our
approach in favor of Lanczos interpolation at an overwhelm-
ing rate (97.55% at the 2× scale factor and 96.69% at the

4× scale factor). For the 2× scale factor, 10 out of 18 annota-
tors preferred the output of our CNN in all the 100 presented
cases. We note that doctors #2 and #4 opted for Lanczos
interpolation in 15 and 14 cases (for the 2× scale factor),
respectively, which was not typical to the other annotators.
Similarly, for the 4× scale factor, there are 3 annotators
(doctor #4, doctor #5 and person #6) that seem to prefer Lanc-
zos interpolation at a higher rate than the other annotators.
After discussing with the doctors about their choices, we dis-
covered that, in most cases, they prefer the sharper output
of our CNN. However, the CNN seems to introduce some
reconstruction patterns (learned from training data) that do
not correspond exactly to the ground-truth. This phenomenon
seems to be more prevalent at the 4× scale factor, although
the phenomenon is still rarely observed. This explains why
doctors #4 and #5 preferred Lanczos interpolation in more
cases than the other doctors, although the majority of their
votes are still in favor of our CNN.When they opted for Lanc-
zos interpolation, they considered that it is safer to consider
its blurred and less informative output. In trying to find an
explanation for these reconstruction patterns, we analyzed the
output of the CNN without data augmentation. We observed
such reconstruction patterns even when training data aug-
mentation was removed, ruling out this hypothesis. Given a
low-resolution input patch, the CNN finds the most likely
high-resolution patch corresponding to the input. This likeli-
hood is learned by the CNN when it is trying to minimize the
loss over the entire training set. Although producing the most
probable output works well in most cases, using a machine
learning model, e.g. a CNN, is not the perfect solution. The
explanation becomes clear if we consider that multiple HR
patches can correspond to the same LR input patch and that
choosing the most likely HR patch is not always the right
answer.We thus conclude that our CNN suffers from the same
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FIGURE 6. Image super-resolution examples selected from the NAMIC data set. In order to obtain the input images of 128× 128 pixels,
the original NAMIC images were downsampled by a scale factor of 2×. HR images of 256× 256 pixels generated by Lanczos interpolation, by the
GAN-based method of You et al. [15] and by our CNN model are compared with the original (ground-truth) HR images.

problem as any other machine learning model. Furthermore,
we stress out that the reconstruction patterns in question are
plausible from a biological point of view, i.e. the doctors
were able to spot them only by comparing the HR output
with the ground-truth HR image. We note that these patterns
should not be mistaken with artifacts that could be caused by
underfitting or a poor architectural choice. Our CNN does not
introduce such artifacts.

Based on our subjective image quality assessment, we con-
cluded with the doctors that going beyond the 4× scale factor,
solely with a method based on algorithmic super-resolution,
is neither safe (a CNN might introduce too many patterns far
from the ground-truth) nor helpful (a standard interpolation
method is not informative). However, the doctors agree that
either super-resolution method is desirable in favor of the

input low resolution images. Therefore, in order to reach
the scale factor of 10× desired by the doctors, we have to
look in other directions in future work. A promising direction
is to combine multiple inputs, e.g. by using CT and MRI
scans of the same person or by using CT/MRI scans taken at
different moments in time (before and after the contrast agent
is introduced).

V. CONCLUSION
In this paper, we have presented an approach based on fully
convolutional neural networks for the super-resolution of
CT/MRI scans. Our method is able to reliably upscale 3D
CT/MRI image up to a scale factor of 4×. We have com-
pared our approach with several baseline interpolation and
state-of-the-art methods [3], [13], [15], [17]. The empirical
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results indicated that our approach provides superior results
on both CH and NAMIC data sets. We have also conducted
a subjective image quality assessment by human observers,
showing that our method is significantly better than Lanczos
interpolation. The subjective image quality assessment also
revealed the limitations of a pure algorithmic approach. The
doctors invited to take part in our study concluded that going
to a scale factor higher than 4× requires alternative solutions.
In future work, we aim to continue our research by extending
the proposed CNN method to multi-channel input. This will
likely help us in achieving higher upscaling factors, e.g.
10×, required for the accurate diagnostics and treatment of
cancer, an actively studied and extremely important research
topic [52], [53].
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