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ABSTRACT Optimization problems lie at the core of scientific and engineering endeavors. Solutions
to these problems are often compute-intensive. To fulfill their compute-resource requirements, graphics
processing unit (GPU) technology is considered a great opportunity. To this end, we focus on linear program-
ming (LP) problem solving on GPUs using revised simplex method (RSM). This method has potentially
GPU-friendly tasks, when applied to large dense problems. Basis update (BU) is one such task, which is
performed in every iteration to update a matrix called basis-inverse matrix. The contribution of this paper
is two-fold. Firstly, we experimentally analyzed the performance of existing GPU-based BU techniques.
We discovered that the performance of a relatively old technique, in which each GPU thread computed
one element of the basis-inverse matrix, could be significantly improved by introducing a vector-copy
operation to its implementation with a sophisticated programming framework. Second, we extended the
adapted element-wise technique to develop a newBU technique by using three inexpensive vector operations.
This allowed us to reduce the number of floating-point operations and conditional processing performed by
GPU threads. A comparison of BU techniques implemented in double precision showed that our proposed
technique achieved 17.4% and 13.3% average speed-up over its closest competitor for randomly generated
and well-known sets of problems, respectively. Furthermore, the new technique successfully updated basis-
inverse matrix in relatively large problems, which the competitor was unable to update. These results strongly
indicate that our proposed BU technique is not only efficient for dense RSM implementations but is also
scalable.

INDEX TERMS Dense matrices, GPU, GPGPU, linear programming, revised simplex method.

I. INTRODUCTION
Contemporary graphics processing units (GPUs) can eas-
ily perform thousands of giga floating-point operations
per second (GFLOPS) for efficient real-time processing of
high-definition (HD) graphics [1]. This capability of GPUs
has encouraged high-performance-computing community to
explore general-purpose computing on GPUs (GPGPU) for
solving an ever-growing set of compute-intensive prob-
lems [2]. NVIDIA has become a leading manufacturer of
GPUs used for general-purpose computing [3]. It provides
a convenient programming environment based on C++ lan-
guage, which is specifically tailored for its GPUs [4].
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approving it for publication was Juan Touriño .

Linear programming (LP), a technique used to find the
optimal value of a linear objective function subject to a set
of linear constraints, is extensively used in a wide range of
fields like scientific research, engineering, economics and
industry [5]. LP problem solvers also serve as drivers for
optimizing more complex nonlinear and mixed integer pro-
gramming (MIP) problems [6]. The two basic algorithms
available for solving LP problems, simplex method and
interior-point method [7], have at least some phases with
potential to benefit from extensive computational capability
of modern GPUs [8], [9]. An LP problem can be categorized
as being either dense or sparse, depending on the density
of matrix containing coefficients of its constraints. Interior-
point method is the preferred algorithm for solving sparse
problems, which are more prevalent in real-world applica-
tions [10]. GPU implementations of interior-point method for
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sparse problems have been proposed, which use the GPU
either for processing sets of similar columns that can be
treated as dense submatrices, called supernodes, present in
an otherwise sparse matrix or for multiplying sparse matrices
with dense vectors [9]–[11]. However, the peculiar memory
organization of GPUs makes them more efficient at process-
ing dense data structures [8]. This encouraged us to consider
in this work an adaptation of simplex method that is suitable
for solving dense LP problems. Dense LP problems are less
widely used than sparse problems, yet they remain useful in
fields like digital filter circuit design, data analysis and clas-
sification, financial planning and portfolio management [12].
Dense problems also arise while solving LP problems having
special structural properties using Benders or Dantzig-Wolfe
decomposition [13].

GPU implementations of standard simplex method
have already been proposed [13], [14]. Revised simplex
method (RSM) is an extension of the standard algo-
rithm, which is suitable for developing efficient computer
implementations owing to its use of matrix manipulation
operations [15], [16]. Even though, relatively advanced
GPU-based solvers have been proposed, like multi-GPU
and batch-processing implementations of standard simplex
method [14], [17], [18], we decided to focus on the tra-
ditional approach of solving a single large LP problem
using a single GPU. We selected this approach because our
analysis revealed that there still was potential for improv-
ing the performance of existing single-problem-single-GPU
solvers. Furthermore, any resultant enhancement could be
incorporated into future multi-GPU and batch-processing
implementations.

RSM is an iterative algorithm. During each iteration,
it requires solution of a system of linear equations for dif-
ferent right-hand-side (RHS) vectors, but the same coeffi-
cient matrix, called basis matrix (B). Three main methods
are available for solving these systems of linear equations.
The first method, called Gaussian Elimination, is relatively
expensive in terms of its time complexity [19]. The sec-
ond method, called LU factorization, is less expensive than
Gaussian-Elimination method. It is widely used in RSM
implementations for sparse problems. However, in the context
of solving dense problems using RSM, LU factorization is
outperformed by variants of a method that involves updating
inverse of the basis matrix (B−1) [19]. The third method for
solving systems of linear equations involves multiplication of
matrix B−1 and the RHS vector. However, computing inverse
of a matrix may itself be an expensive operation. Fortunately,
there is a specific relationship between instances of matrix B
in successive iterations of RSM. This relationship leads to
a basis-update (BU) technique called the product form of
inverse (PFI), which requires a matrix-matrix multiplication
as its primary operation. This multiplication also has a high
time complexity [19]. However, a more efficient adaptation
of PFI exists, which requires a vector product and a matrix
addition. This technique, called modified product form of
inverse (MPFI), is less expensive than original PFI [8].

During literature review, we came across five single-
problem-single-GPU implementations of RSM. Greeff [20]
first proposed a GPU implementation of RSM as early as
2005. In 2009, Spampinato and Elster [21] extended Gre-
eff’s work by using NVIDIA’s proprietary programming
environment, known as compute-unified device architecture
(CUDA) [4]. They implemented the classical PFI-based BU
technique in single precision, using linear algebra functions
from NVIDIA’s highly optimized CUBLAS library [22].
In 2010, Bieling et al. [16] proposed another single-precision
implementation of RSM using NVIDIA’s Cg programming
language, which has since become obsolete [23]. Instead
of directly using either PFI or MPFI, they proposed a BU
technique in which each GPU thread computed exactly one
element of matrix B−1. In 2013, Ploskas and Samaras [19]
published the results of a comparative study of different BU
techniques that could be used in GPU implementations of
RSM. They concluded that MPFI was more efficient than
both LU factorization and PFI. It is important to mention
that they did not consider the element-wise BU technique
proposed earlier by Bieling et al. Later in 2015, Ploskas and
Samaras proposed a GPU implementation of RSM, which
used MPFI to perform BU [8]. They used MATLAB to
develop their implementation in double precision. The latest
GPU implementation of RSM was proposed by He et al.
in 2018 [24]. They followed a column-wise approach towards
updating the matrix B−1 by exploiting symmetry among its
columns. They developed their implementation using CUDA
in single precision. However, they did not provide perfor-
mance comparison of their technique against any of the pre-
viously proposed techniques.

We began by implementing all the BU techniques dis-
cussed in the preceding paragraph using CUDA. It turned out
that the column-wise technique, proposed by He et al., pro-
vided the best performance. However, it had a drawback in the
form of its inability to update matrix B−1 in large problems.
This encouraged us to explore possibilities for developing a
BU technique that was efficient as well as scalable.

We discovered that our CUDA implementation of the
element-wise technique, proposed by Bieling et al., offered
the most obvious enhancement opportunity in the form of an
avoidable matrix-copy operation. Consequently, we adapted
the original element-wise technique to exploit this opportu-
nity. The adapted technique also had a significantly reduced
memory requirement, which enabled it to update matrix B−1

in large problems. In this work, we propose a new BU tech-
nique that further extends our adaptation of the element-wise
technique. The new technique gains performance by reduc-
ing the number of control-flow instructions and floating-
point operations (FLOPs) required to update the matrix B−1.
We used ideas from MPFI and the column-wise technique to
achieve this reduction in the amount of processing by intro-
ducing a preprocessing phase that included three inexpensive
vector operations.

Our results show that the new BU technique imple-
mented in double precision, outperformed all the existing
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BU techniques for randomly generated LP problems as
well as large test problems from a well-known problem
set. For the selected well-known problems, it achieved an
average speed-up of 13.3% over its closest competitor; the
column-wise technique. An LP problem solver implementing
our proposed BU technique showed an average solution-
time speed-up of 1.56% over a version of the same solver
implementing the column-wise technique. Furthermore, the
new technique requires the least amount of space in GPU’s
global memory, except for the column-wise technique and our
prior adaptation of element-wise technique. However, unlike
the column-wise technique, our proposed technique is not
limited by the amount of shared memory that can be allocated
to a block of GPU threads. Consequently, as opposed to the
column-wise technique, the new technique was able to update
matrix B−1 for two of the largest test problems as well.
The rest of this paper is organized as follows. In Section II,

we provide background knowledge by introducing the pro-
cess of solving LP problems using RSM and relevant
BU techniques. In Section III, we first provide details
about our implementation of existing GPU-based tech-
niques using CUDA. Afterwards, we present an adaptation
of the element-wise technique followed by our proposed
BU technique. In Section IV, we describe the experimental
environment under which we performed our experiments.
In Section V, we provide a detailed performance comparison
of all the BU techniques.We conclude the paper in Section VI
by summarizing our contributions and proposing directions
for future research.

II. BACKGROUND
A. SOLVING LP PROBLEMS USING RSM
Linear programming (LP) involves optimization, minimiza-
tion or maximization, of the value of a given linear function,
called objective function, subject to linear constraints [25].
Any LP problem can be brought into a standard minimiza-
tion form having only equality constraints by scaling the
objective function, and adding appropriate slack, surplus and
artificial variables to its constraints. A minimization prob-
lem in standard form, having n number of variables and m
number of constraints, can be mathematically represented as
follows [21], [26].

Minimize : z = cT x + c0
s.t : Ax = b, x ≥ 0

where; x represents the n number of variables in the objective
function and constraints, c contains coefficients of the vari-
ables in the objective function, c0 is a constant representing
a shift in the value of the objective function; A = [aij]
is the constraint matrix where aij, i = {1, 2, . . . ,m} , j =
{1, 2, . . . , n} represents coefficient of the jth variable in the
ith constraint.

Standard simplex method provides a tableau-based
method for solving an LP problem following an itera-
tive approach towards computing the optimal value of the

objective function. The algorithm begins by setting up a
basis, representing an initial feasible solution. It then iter-
atively performs three major tasks to improve the solution:
(1) Search for an entering variable, whose inclusion in the
basis improves the solution; (2) Find the leaving variable
to be excluded from the basis to accommodate the entering
variable; (3) Updating the basis to represent the new feasible
solution. These tasks are repeatedly performed, until the
feasible solution cannot be further improved [7].

Simplex method can be represented as an iterative algo-
rithm for a straightforward computer implementation [25].
However, it needs to maintain an updated copy of the entire
tableau in the memory, making it inefficient for solving large
LP problems. On the other hand, RSM reduces standard
simplex method’s processing overhead by using matrices to
represent only relevant portions of the tableau in the mem-
ory. It applies linear algebra operations on these matrices to
perform the required tableau manipulation tasks of simplex
method [15], [21].

B. BASIS-UPDATE METHODS
As mentioned previously in Section I, RSM needs to solve a
system of linear equations defined by matrix B, which has m
number of rows and columns, four times (in some cases three
times) during each iteration. Two of these solutions, called
forward transformation (FTRAN), can be mathematically
represented as follows.

By = x, or (1)

y = B−1x (2)

The remaining two solutions (or one solution in some cases)
of the system of linear equations, called backward trans-
formation (BTRAN), can be mathematically represented as
follows.

BT y = x, or (3)

y =
(
BT
)−1

x =
(
B−1

)T
x (4)

As briefly discussed in Section I, there are three main
options for performing FTRAN and BTRAN in the context of
RSM. The first option of using Gaussian Elimination method
requires O(n3) time for performing each instance of FTRAN
and BTRAN [19], making it inefficient for solving large LP
problems using RSM. The second option is to decompose the
matrix B into its lower and upper triangular factors using a
technique called LU factorization. This technique also runs in
O(n3) time. However, FTRAN and BTRAN can be performed
in onlyO(n2) time by performing substitution using triangular
factors computed during the factorization phase. LU factor-
ization has been used to efficiently factorize the matrix B
in RSM for sparse LP problems [26]. However, Ploskas and
Samaras experimentally showed that in the context of solving
dense LP problems using RSM, LU factorizationwas the least
efficient method among all the methods tested by them [19].

Apart from Gaussian Elimination method and LU factor-
ization, the remaining option for performing FTRAN and
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BTRAN operations is to use (2) and (4), respectively. The
use of these equations requires multiplication of the matrix
B−1 or (B−1)

T
with the RHS vector x. This matrix-vector

multiplication operation runs in only O(n2) time. Unfortu-
nately, as mentioned previously, matrix inversion is an expen-
sive operation. However, the property that the instances of
matrix B in two consecutive iterations of RSM differ from
each other in only one column makes it possible to update
the matrix B−1 cheaply, using a method called MPFI. In the
following paragraphs, we provide mathematical background
for MPFI.

The simplest formulation of a BU technique, which
exploits the relationship between the instances of matrix B
in two consecutive iterations, is called PFI, which works as
follows. Suppose that

B−1N

=



b00 b01 · · · b0k · · · b0(m−1)
b10 b11 · · · b1k · · · b1(m−1)
...

...
...

...

bk0 bk1 · · · bkk · · · bk(m−1)
...

...
...

...

b(m−1)0 b(m−1)1 · · · b(m−1)k · · · b(m−1)(m−1)


(5)

represents the matrix B−1 during the N th iteration of RSM.
Also suppose that index k of the leaving variable and the
vector α (pivoting column) have both been already computed.
We then set the variable θ = αk , and calculate the elements
of vector ω using the following rule.

ω =

{
1/
θ, i = k
−αi

/
θ, i 6= k

(6)

PFI also requires anotherm×mmatrix called Eta matrix (E).
For the N th iteration of RSM, matrix E can be constructed by
replacing the k th column of an identity matrix with vector ω,
as shown below.

EN =



1 0 · · · ω0 · · · 0
0 1 · · · ω1 · · · 0
...

...
...

...

0 0 · · · ωk · · · 0
...

...
...

...

0 0 · · · ω(m−1) · · · 1


(7)

Matrix B−1N+1, basis-inverse matrix for iteration number
(N + 1), can then be computed by performing a straightfor-
ward matrix multiplication as follows.

B−1N+1 = ENB
−1
N (8)

Both the matrices, B and B−1, during the first iteration of
RSM are known to be identity matrices.

The operation shown in (8) is a general matrix-matrix
multiplication having a time-complexity of O(n3). However,
this cost can be significantly reduced if we use an alternative

formulation; MPFI. This formulation represents BU as a
combination of an outer product between two vectors and a
matrix addition, as shown below.

B−1N+1 = B̄−1N + ω ⊗ b̄k (9)

In the above equation, b̄k represents the k th row of the
matrix B−1N :

b̄k =
[
bk0 bk1 · · · bkk · · · bk(m−1)

]
(10)

Thematrix B̄−1N is obtained by setting all the elements belong-
ing to the k th row ofmatrixB−1N equal to zero, as shown below.

B̄−1N

=



b00 b01 · · · b0k · · · b0(m−1)
b10 b11 · · · b1k · · · b1(m−1)
...

...
...

...

0 0 · · · 0 · · · 0
...

...
...

...

b(m−1)0 b(m−1)1 · · · b(m−1)k · · · b(m−1)(m−1)


(11)

As shown in (9), MPFI requires a matrix addition
and an outer product of two vectors, which results in a
time-complexity of O(n2). This cost is significantly lower
than the time complexity of PFI, explicit matrix inversion and
LU factorization. However, we must emphasize that both PFI
and MPFI result in the same updated matrix as shown in (12)
at the bottom of the next page.

If we substitute the values of ω in the above matrix, then
we get its more detailed representation, as shown in (13) at
the bottom of the next page.

Different equations given in this section correspond to
each of the existing four BU techniques. Spampinato and
Elster used (8) to implement PFI, whereas Ploskas and Sama-
ras implemented MPFI using (9). Bieling et al. exploited
symmetry among elements of the matrix B−1, as shown
in (13). Finally, He et al. based their technique on symme-
try among columns of the matrix B−1, as shown in (12).
In the next section, we provide implementation details of
all these BU techniques. We also describe an adaptation
of the element-wise technique as well as our proposed BU
technique.

III. IMPLEMENTAION DETAILS
To implement and compare the performance of different
BU techniques, we decided to use an existing GPU-based
LP problem solver as a baseline implementation. For this
purpose, we selected the solver developed by Spampinato
and Elster, since its entire source code was publicly avail-
able [7]. We began by debugging the source code of the
selected baseline solver. We discovered that the minimum-
element search routine used in the baseline solver did not
always return the index of the first instance of the mini-
mum element. This was contrary to the behavior exhibited
by the CPU-based benchmark developed by Spampinato and
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Elster. Consequently, we replaced the original search routine
with the corresponding function from an open-source library
known as Thrust [27]. The new function exhibited the desired
behavior of always returning the index of the first instance of
theminimum element. Our choice of Thrust library’s function
was driven by the fact that CUBLAS library, already used
in the baseline solver, only provided search routines based
on absolute values [22], which could not be directly used
for implementing all the required search operations. We also
modified the baseline solver so that it was able to perform
double-precision FLOPs.

Since the BU technique in the baseline solver already
called functions from the CUBLAS library, we decided to use
it while implementing other techniques aswell, wherever pos-
sible. Table 1 shows a summary of double-precision versions
of CUBLAS functions used in this work. Other than using
functions of CUBLAS library, we kept our implementation
of each technique identical to the method proposed in its
respective publication. Furthermore, we avoided the use of
low-level optimizations to keep our comparison limited to
the fundamental operations related to each BU technique.
In Section IV, we describe the approach we followed towards
selecting appropriate values of block size (BS), number of
threads per block, for each kernel.

In addition to the baseline solver, we introduced implemen-
tations of all the BU techniques to an adapted version of a
popular open-source solver called GNU linear programming
kit (GLPK) [26], [28]. This allowed us to test the performance
of all the BU techniques for well-known test problems, which
could not be correctly solved by the cut-down version of RSM

TABLE 1. Functions used from the CUBLAS library.

implemented in the baseline solver. Details related to our
GPU implementation of GLPK are provided in Section III-G.
We have made the source code, along with necessary instruc-
tions, required to reproduce all the solvers discussed in this
paper publicly available [29].

While implementing different BU techniques, we also con-
sidered the implications of selecting one of the two main
orders in which elements of matrices can be stored in GPU’s
global memory; column-major (CM) order and row-major
(RM) order. A matrix stored in either of these orders can be
converted to the other by simply transposing it. The baseline
solver used CM order, which as shown in the next subsec-
tion, suited the PFI-based BU technique implemented in it.
However, we discovered that storage of matrix B−1 in RM
order better suited the GPU implementation of most of the
other BU techniques. Therefore, we proceeded to adapt the
baseline solver so that it was able to process the matrix
B−1, and other matrices needed to update it, stored in RM
order. It turned out that by simply interchanging instances of
matrix-vector multiplication routine ( cublasDgemv()) corre-
sponding to FTRANandBTRAN, the original baseline solver

B−1N+1 =



b00+
ω0bk0

b01+
ω0bk1

· · ·
b0k+
ω0bkk

· · ·
b0(m−1)+
ω0bk(m−1)

b10+
ω1bk0

b11+
ω1bk1

· · ·
b1k+
ω1bkk

· · ·
b1(m−1)+
ω1bk(m−1)

...
...

...
...

ωkbk0 ωkbk1 · · · ωkbkk · · · ωkbk(m−1)
...

...
...

...

b(m−1)0+
ω(m−1)bk0

b(m−1)1+
ω(m−1)bk1

· · ·
b(m−1)k+
ω(m−1)bkk

· · ·
b(m−1)(m−1)+
ω(m−1)bk(m−1)


(12)

B−1N+1 =



b00−
α0

θ
bk0

b01−
α0

θ
bk1

· · ·

b0k−
α0

θ
bkk

· · ·

b0(m−1)−
α0

θ
bk(m−1)

b10−
α1

θ
bk0

b11−
α1

θ
bk1

· · ·

b1k−
α1

θ
bkk

· · ·

b1(m−1)−
α1

θ
bk(m−1)

...
...

...
...

1
θ
bk0

1
θ
bk1 · · ·

1
θ
bkk · · ·

1
θ
bk(m−1)

...
...

...
...

b(m−1)0−
α(m−1)

θ
bk0

b(m−1)1−
α(m−1)

θ
bk1

· · ·

b(m−1)k−
α(m−1)

θ
bkk

· · ·

b(m−1)(m−1)−
α(m−1)

θ
bk(m−1)



(13)
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could be made to process BU-related matrices stored in RM
order. As shown respectively in (2) and (4), FTRAN uses
the matrix B−1 in a non-transposed form, whereas, BTRAN
uses it in a transposed form. The version of RSM imple-
mented in the baseline solver performed one BTRAN and
two FTRAN operations per iteration. Therefore, in order to
enable the baseline solver to correctly process the matrix B−1

stored in RM order, we were required to replace one trans-
posed and two non-transposed matrix-vector multiplications
with one non-transposed and two transposed multiplications.
This slightly degraded the combined performance of the two
operations, FTRAN and BTRAN, while having a negligible
effect on the overall performance of the solver. Fortunately,
the more sophisticated version of RSM present in GLPK
performed exactly two FTRAN and two BTRAN operations
per iteration. Therefore, in our GLPK-based implementa-
tions, there was no difference in the combined performance
of FTRAN and BTRAN, if either of the two matrix-storage
orders was used.

A. PFI
The baseline solver used the implementation of a straightfor-
ward PFI-based BU technique, which we left unaltered. In the
rest of this paper, we refer to this implementation as PFI-BU.
Fig. 1 shows details of the four steps involved in PFI-BU.
In Step 1, it spawnedm2 number of threads to initialize matrix
E as an identity matrix. In Step 2, it spawned m number of
threads to replace the k th column of matrix E with vector ω.
Storage of matrix E in CM order suited the implementation
of this step, since it allowed threads to access elements of
the k th column in a coalesced manner. In Step 3, it called the
function cublasDgemm(), for multiplying matrix E with the
current instance of matrix B−1, to get updated values of the
matrix B−1. Unfortunately, the function cublasDgemm() did
not allowwriting back directly to the inputmatrix. Therewere
two consequences of this restriction. First, memory allocation
for an additionalm×mmatrix was required. Second, an addi-
tional processing step (Step 4) was required, during which the
original version of matrix B−1 was updated with the newly
computed values.

In Section V, we show that even the use of highly optimized
CUBLAS library could not significantly mitigate the high
(O(n3)) processing cost of PFI-BU. In addition, it required
space for three m×m matrices (E , B−1N and B−1N+1) in GPU’s
global memory, which is the highest memory requirement
among all the BU techniques. We subsequently refer to
the original version of baseline solver, which implements
PFI-BU, as PFI-SOL.

B. MPFI
Ploskas and Samaras also proposed a four-step GPU imple-
mentation of conventional MPFI. In each step, their imple-
mentation spawned T number of threads to perform the
relevant task, where T represents the total number of cores
available in a GPU (1024 in our case). In Step 1, it used the T
number of threads to compute elements of vector ω using the

FIGURE 1. PFI-BU implemented for matrices stored in CM order.

rule given in (6). In Step 2, it performed the product of vector
ω with the k th row of matrix B−1. In Step 3, all the elements
belonging to the k th row of matrix B−1 were set equal to zero.
In the final step, output matrices of the preceding two steps
were added to get the updated matrix B−1.

Fig. 2 shows the details of our implementation of MPFI,
which is subsequently referred to as MPFI-BU. We imple-
mented the first step exactly as suggested by Ploskas and
Samaras. We spawned T = 1024 threads as eight blocks
of 128 threads each. Our choice of these values is explained
later in Section IV. We determined that the remaining three
steps could be implemented in a more generalized way using
functions of the CUBLAS library, which did not require
us to specify the number of threads to be spawned. Con-
sequently, we implemented the outer product of vectors in
Step 2 using the function cublasDgemm(), the row opera-
tion in Step 3 using the function cublasDscal() and matrix
addition in the final step using the function cublasDgeam().
Use of the function cublasDgeam() in the final step had the
additional advantage that, as opposed to the use of function
cublasDgemm() in PFI-BU, it allowed MPFI-BU to update
the matrix B−1 in place. Hence, MPFI-BU required space in
GPU’s global memory for only two m×mmatrices (B−1N and
output matrix of Step 2) and one vector having m number of
elements (ω).

52126 VOLUME 8, 2020



U. A. Shah et al.: Accelerating Revised Simplex Method Using GPU-Based Basis Update

FIGURE 2. MPFI-BU implemented for matrices stored in RM order.

While implementing MPFI-BU, we observed that stor-
age of matrix B−1 in CM order led elements in each row
to be stored m locations apart. This caused operations in
Step 2 and Step 3 to access elements of matrix B−1 in a
non-coalesced manner. On the other hand, storing matrix B−1

in RM order resulted in coalesced access to its elements.
Hence, we implemented MPFI-BU for matrices stored in RM
order. This required us to interchange operands’ positions in
the function cublasDgemm(). This reordering was required
because CUBLAS expects the matrices to be stored in CM
order. Interchanging the positions of operands, causes the
output of a product to be transposed, which is equivalent to
representing the output in RM order.

In Section V, we show that lower time complexity of MPFI
as compared to PFI also translated into significant perfor-
mance gains for MPFI-BU over PFI-BU. In the rest of this
paper, a version of the baseline solver having MPFI-BU as its
BU technique is referred to as MPFI-SOL.

C. COLUMN-WISE TECHNIQUE
He et al. proposed a two-step implementation of their
column-wise BU technique. In Step 1, their implementa-
tion computed vector ω using a procedure similar to the
one discussed in the previous subsection for MPFI-BU. The
only difference is that the new procedure used m number of
threads, each computing one element of vector ω, as opposed
to the use of T number of threads in MPFI-BU. We show in

Section V, that the m-thread method provided slightly better
performance as compared to the earlier T -thread method.
However, the impact on overall performance was negligible.

In Step 2, again m number of threads were spawned, each
updating elements of one column. The following equation
shows the rule used by the jth thread to update its correspond-
ing column.

bij =

{
bkjωi, i = k
bij + bkjωi, i 6= k

(14)

It is evident from this rule that vector ω can be symmetrically
used to update each column of matrix B−1. The column-wise
technique exploited this symmetry by storing a copy of vector
ω in the shared memory, enabling threads in a single block
to share it. To this end, all the threads belonging to a single
block collaboratively copied vector ω from global memory to
their corresponding multiprocessor’s shared memory, before
proceeding with actual computations. This allowed threads
to subsequently read elements of vector ω cheaply from
shared memory. However, there is a downside to following
this approach as well, which limits the size of problems that
can be successfully solved. Each block can be allocated a
limited amount of shared memory, say S bytes, from the
total available in its correspondingmultiprocessor. Therefore,
a block can store an instance of vector ω having S/4 elements
represented in single precision and S/8 elements represented
in double precision. Since the number of elements in vector
ω is equal to the number of constraints in an LP problem,
an implementation of the column-wise technique can only
handle problems having m ≤ S/4 using single-precision
FLOPs and m ≤ S/8 using double-precision FLOPs. For
example, our GPU allowed a maximum of 48KB of shared
memory per block, which meant that we could not solve
any problem with m > 12288 using single-precision arith-
metic and m > 6144 using double-precision arithmetic.
A related observation regarding the use of shared mem-
ory is that even though we did not explicitly use shared
memory earlier while implementing PFI-BU and MPFI-BU,
we subsequently learnt that functions cublasDgemm() and
cublasDgeam() were using shared memory at the back end.
We show in Section IV that storage of vector ω in shared
memory prevented our implementation of the column-wise
technique from efficiently solving different problems using
only a single value of BS.
The column-wise technique required the least amount of

global memory among all the BU techniques. LikeMPFI-BU,
this technique also updated the matrix B−1 in place, resulting
in a requirement to allocate memory for only one m × m
matrix, along with a vector having m elements (ω), in global
memory. However, this saving in terms of memory space led
to the following restriction on the order in which elements
in a column could be updated. Since, as shown in (14),
all the elements in a column were computed using current
value of that column’s k th element (bkj), it was necessary that
bkj be updated last by each thread. We further discuss the
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FIGURE 3. COL-WISE-ORIG-BU implemented for matrices stored in RM
order.

consequences of this restriction in Section III-E. It is evident
that, like MPFI-BU, the time complexity of this technique is
also O(n2).
We implemented the column-wise technique by following

the two-step approach proposed by He et al. In Step 1,
we spawned m number of threads to compute vector ω.
In Step 2, we again spawned m number of threads and
dynamically allocated the required amount of shared memory
per block; (8 × m) bytes. Each thread first copied m/BS
number of elements of vector ω from global memory to the
shared memory. We ensured that vector ω was read from
the global memory in a coalesced manner using an appro-
priate stride after each iteration of the for-loop. Afterwards,
each thread computed all the elements of its corresponding
column in the following order. Firstly, it updated elements
in rows {0, 1, . . . , (k − 1)}. Second, it updated elements in
rows {(k + 1) , (k + 2) , . . . , (m− 1)}. Finally, the element
belonging to the k th row was updated, when it was no longer
required to update other elements.

Fig. 3 shows the details of our implementation of the
column-wise technique. It is evident that successive threads

FIGURE 4. COL-WISE-ORIG-BU implemented for matrices stored in CM
order, included only for illustration.

during each iteration access (read from and write to) elements
of the matrix B−1 stored in contiguous memory locations.
This leads to a coalesced memory-access pattern. For the pur-
pose of clarity, we also show an alternative implementation
in Fig. 4, which assumes storage of matrix B−1 in CM order.
It shows that successive threads access elements m locations
apart, resulting in a non-coalesced memory-access pattern.
Consequently, in the rest of the paper, we only consider
the version shown in Fig. 3, which we refer to as COL-
WISE-ORIG-BU. A version of the baseline solver having
COL-WISE-ORIG-BU as its BU techniques is subsequently
referred to as COL-WISE-ORIG-SOL.

D. ORIGINAL ELEMENT-WISE TECHNIQUE
Bieling et al. developed a Cg shader to implement their
element-wise BU technique. The shader defined all the opera-
tions required to compute one element of the updated matrix.
Therefore, there was a one-to-one mapping between threads
and elements of matrix B−1. The following equation summa-
rizes the combined effect of operations defined in the shader.

b′ij =


bkj
θ
, i = k

bij −
(
bkj
θ

)
αi, i 6= k

(15)
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Since, Cg language did not allow threads to update the
matrix B−1 in place, we use b′ij in the above equation to
distinguish newly computed values of the matrix from current
values (bij). It is clear from (15) that computation of all the
elements requires the result of a division (bkj/θ ). Further
multiplication and subtraction are required while computing
elements that do not belong to the k th row. Consequently, each
thread is required to evaluate a condition (i 6= k), to determine
if it needs to perform the multiplication and subtraction.

As mentioned in the previous subsection, the current value
of the k th element in each column is required to compute other
values of that column. However, unlike COL-WISE-ORIG-
BU, there is no straightforward way to delay the computation
of elements belonging to the k th row in the element-wise tech-
nique. Therefore, Bieling et al. did not update the matrix B−1

in place. This resulted in the requirement of performing an
additional matrix-copy operation to update the matrix B−1

with newly computed values. However, it is important to
reiterate that the use of Cg language did not allow writing
back to the same matrix in any case [16], [24].

We implemented the original element-wise technique by
simply porting source code of the Cg shader to a CUDA
kernel. Fig. 5 shows our two-step implementation, which is
subsequently referred to as ELE-WISE-ORIG-BU. In Step 1,
it spawned m2 number of threads. Each thread computed one
element of the updated matrix using the rule given in (15).
In Step 2, the function cublasDcopy()was called to write back
newly computed values to the original matrix. ELE-WISE-
ORIG-BU required space for two m × m matrices (B−1N and
B−1N+1) in the global memory. Like MPFI and COL-WISE-
ORIG-BU, this technique has a time complexity of O(n2).
In this paper, we only consider an implementation of

ELE-WISE-ORIG-BU for matrices stored in RM order, even
though the same coalesced memory access pattern could also
be achieved for CM order. We prefer RM order because
adaptations of ELE-WISE-ORIG-BU proposed in the next
two subsections gained a slight advantage if matrix B−1 was
stored in RM order. ELE-WISE-ORIG-BU and BU tech-
niques discussed in the next two subsections do not show
any obvious potential for benefiting from using shared mem-
ory because, unlike sharing of vector ω among threads in
COL-WISE-ORIG-BU, their element-wise approach does
not allow threads to share multiple values. A version of
the baseline solver having ELE-WISE-ORIG-BU as its BU
techniques is referred to as ELE-WISE-ORIG-SOL in the rest
of this paper.

E. MODIFIED ELEMENT-WISE TECHNIQUE
In this section, we describe our initial adaptation of ELE-
WISE-ORIG-BU, which was made possible by our use of
CUDA. Fig. 6 shows the two steps of the new implementation.
We refer to this implementation as ELE-WISE-MOD-BU
in the rest of this paper. To exploit flexibility offered by
CUDA that allowed the matrix B−1 to be updated in place,
we needed to address the restriction imposed on the order in

FIGURE 5. ELE-WISE-ORIG-BU implemented for matrices stored in RM
order.

which elements could be updated. To address this restriction,
we copied the k th row of matrix B−1 to a separate vector (b̄k )
in Step 1. This resulted in (15) to be transformed as follows.

bij =


b̄kj
θ
, i = k

bij −

(
b̄kj
θ

)
αi, i 6= k

(16)

It is clear from this equation that elements belonging to the
k th row could be updated before computing other elements in
Step 2, since current values of elements belonging to the k th

row were preserved in vector b̄k . Hence, it was possible to
update the matrix B−1 in place, which subsequently removed
the requirement of performing the expensive matrix-copy
operation.

In both (15) and (16), division is performed before mul-
tiplication for updating elements that do not belong to the
k th row. We also implemented a version of the new tech-
nique in which multiplication was performed before division,
as shown below.

bij =


b̄kj
θ
, i = k

bij −

(
αib̄kj

)
θ

, i 6= k
(17)

We initially considered this reordering of operations to
be a possible optimization opportunity, since our prelim-
inary experiments indicated that the new implementation
required, on average, fewer iterations to solve a given prob-
lem as compared to the original implementation, if both
used single-precision FLOPs. Unfortunately, we could not
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FIGURE 6. ELE-WISE-MOD-BU implemented for matrices stored in RM
order.

reproduce the effect for double-precision implementations.
Moreover, the reordering of operations in the new implemen-
tation made it slightly less efficient because, as shown in (17),
it could not use the same value of the fraction (b̄kj/θ ) for
both types of rows; (row = k) and (row 6= k). Consequently,
we decided to continue using the original ordering of opera-
tions, as shown in (16).

ELE-WSIE-MOD-BU required space in global memory
for only one m × m matrix (B−1N ) and a vector having m
number of elements (b̄k ). While implementing this technique,
we observed that storage of matrix B−1 in CM order resulted
in access to noncontiguous memory locations while copying
its k th row to the vector b̄k . On the other hand, its storage in
RM order led to a coalesced memory-access pattern. There-
fore, we implemented ELE-WISE-MOD-BU, along with the
implementation discussed in the next subsection, for matrices
stored in RM order. A version of the baseline solver, having
ELE-WISE-MOD-BU as its BU technique, is referred to as
ELE-WISE-MOD-SOL in the rest of this paper.

Before concluding this subsection, it is important to men-
tion that we also applied the method discussed in this sub-
section, used for removing restriction on the order in which
elements could be updated, to COL-WISE-ORIG-BU. Unfor-
tunately, it had a slightly negative effect on the perfor-
mance, since matrix B−1 was already being updated in place
using coalescedmemory accesses by COL-WISE-ORIG-BU.
Therefore, there was no advantage to be gained from an
additional vector-copy operation. However, we noticed that
the removal of this restriction from an implementation of

COL-WISE-ORIG-BU for matrices stored in CM order
led to some improvement in its performance. Unfortu-
nately, the improvement in performance was not enough to
counter the negative effects caused by non-coalesced mem-
ory accesses in it. Hence, we persisted with the unmodified
implementation of COL-WISE-ORIG-BU formatrices stored
in RM order.

F. PROPOSED ELEMENT-WISE TECHNIQUE
In this subsection, we present our proposed BU technique,
which was developed by further adapting ELE-WISE-MOD-
BU. As explained in the previous subsection, each thread in
Step 2 of ELE-WISE-MOD-BU was required to evaluate a
condition to determine the row index of its corresponding
element. We discovered that the need to evaluate this condi-
tion could be eliminated, if we used ideas fromMPFI-BU and
COL-WISE-ORIG-BU. In the following paragraphs, we dis-
cuss evolution of the new technique.

Equation (16), representing the operations performed by
each thread in ELE-WISE-MOD-BU, can be rewritten in
terms of ω as follows.

bij =

{
0+ b̄kjωi, i = k
bij + b̄kjωi, i 6= k

(18)

This equation shows that the product Pij = b̄kjωi is used to
compute every element, whether it belongs to the k th row or
not. The only difference in the process of updating different
elements is as follows. For updating elements belonging to the
k th row, nothing (zero) is added to the product Pij. Remaining
elements are updated by adding their respective current values
to the productPij. To exploit this symmetry, we decided to use
a method discussed earlier for Step 3 of MPFI-BU. Using the
same method, we set all the elements belonging to the k th row
equal to zero. This row operation enables us to rewrite (18)
in the following simplified form.

bij = bij + b̄kjωi (19)

This equation shows that if vector ω has been precomputed,
in addition to setting the elements belonging to the k th row to
zero, then elements of the matrix B−1 can be updated without
evaluating any condition. Furthermore, one less FLOP (divi-
sion) is performedwhile updating elements that do not belong
to the k th row.

Fig. 7 shows our implementation of the proposed BU
technique, which is referred to as ELE-WISE-PRO-BU in the
rest of this paper. In Step 1, ELE-WISE-PRO-BU spawnedm
number of threads. These threads performed three operations.
Firstly, they copied the k th row of matrix B−1 to the vector
b̄k . Second, they set elements belonging to the k th row equal
to zero. Finally, they computed vector ω using the method
discussed earlier for COL-WISE-ORIG-BU. In Step 2, ELE-
WISE-PRO-BU spawned m2 number of threads to update
the matrix using (19). Since matrix B−1 was updated in
place, this technique required space in global memory for
one m × m matrix (B−1N ). In addition, space for two vectors
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FIGURE 7. ELE-WISE-PRO-BU implemented for matrices stored in RM
order.

(ω and b̄k ), having m number of elements each, was also
required. In Section V, we show that the reduced number of
operations performed in Step 2, enabled ELE-WISE-PRO-
BU to outperform all the other techniques. A version of
the baseline solver, having ELE-WISE-PRO-BU as its BU
technique, is referred to as ELE-WISE-PRO-SOL in the rest
of this paper.

G. GLPK-BASED IMPLEMENTATION
We initially implemented all the BU techniques in the base-
line solver. Unfortunately, the algorithm implemented in
it suffered from the following three shortcomings. Firstly,
it only provided the so-called second phase of RSM, which
assumes prior availability of a feasible solution. Second,
it did not allow the inclusion of surplus or artificial variables
in constraints. Finally, it lacked any mechanism to handle
arbitrary bounds on any variable. These shortcomings pre-
vented the baseline solver from successfully solving real
LP problems available in the well-known Netlib problem
set [30], except for some small problems. In order to rapidly
develop a test GPU implementation able to solve a wide range
of well-known problems, we decided to modify the RSM
implementation present in GLPK. We began by modifying

configuration files of GLPK, which enabled us to compile
it using the CUDA compiler (NVCC) [4]. Subsequently,
we undertook the relatively simple task of developing GPU
versions of vector operations used in GLPK’s original imple-
mentation of RSM. Afterwards, we proceeded with the task
of replacing GLPK’s original CPU-based method of updat-
ing the basis matrix with our GPU implementations of BU
techniques.

Instead of using explicit inverse of the matrix B to
perform FTRAN and BTRAN, GLPK maintains a varia-
tion of sparse LU factorization of this matrix. By default,
GLPK computes a fresh LU factorization of the matrix B
after every 100 iterations. During the intervening iterations,
it updates the LU factorization using the so-called Forrest-
Tomlin method [31]. This method leads to a highly efficient
CPU implementation of RSM for solving sparse problems.
We replaced GLPK’s sparse LU factorization with the six
GPU-based BU techniques discussed in the preceding sub-
sections. We also replaced the original implementations of
FTRAN and BTRAN with appropriate calls to the function
cublasDegemv() to perform the required matrix-vector mul-
tiplications on GPU. We must emphasize that our purpose
was only to develop a solver through which we could test
the performance of BU techniques for well-known problems.
We also adapted appropriate source code files of GLPK so
that it could be compiled with any of the six BU techniques
by defining appropriate macros at the command line.

A summary of all the BU techniques discussed in this
section is available in Table 2. In Section V, we report on
a detailed performance comparison of all the techniques by
using both the solvers; baseline solver and GLPK.

IV. EXPERIMENTAL SETUP
In order to test the performance of BU techniques imple-
mented in the baseline solver, we generated random LP prob-
lems using a modified version of Spampinato and Elster’s
problem generating utility [7]. Their original utility generated
only non-negative coefficients for the constraint matrix. This
resulted in trivial problems, whose solution process generally
concluded in a few (less than 100) iterations. We modified
their utility so that one-third of the coefficients generated
were negative, which ensured a higher degree of variation
among coefficients. This resulted in nontrivial problems,
which required the baseline solver to execute at least in the
order of hundreds of iterations to solve them. We generated
twelve such problems, having equal number of constraints
(m) and variables (n), excluding slack variables. The prob-
lems varied in size from m = 500 in the smallest problem
to m = 6000 in the largest problem. We have also made
the source code of the modified problem-generating utility
publicly available [29].

To make our results reproducible, we also provide perfor-
mance comparison of BU techniques implemented in GLPK
using problems available in the Netlib problem set. Most of
the problems in this problem set are relatively small, which
diminishes their utility for any meaningful performance
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TABLE 2. Summary of BU techniques.

TABLE 3. Properties of Netlib problems used.

comparison in our case. Therefore, we selected only its six
largest problems in terms of m. Table 3 shows properties
of these six problems. These properties belong to the so-
called working problems. A working problem is created by
the simplex routine in GLPK after adding appropriate slack,
surplus and artificial variables to the original problem.

In terms of hardware, we used a system containing an Intel
Core i3-3220 CPU having 3MB of level-3 cache and a clock-
speed of 3.30 GHz. RAM installed in the system had a capac-
ity of 16 GB. An NVIDIA GeForce GTX 960 GPU, having a
total of 1024 cores, distributed among its eight multiproces-
sors, was also available in the system. The GPU had 4GB of
global memory. Each of its eight multiprocessors had 64KB
of shared memory, of which only 48KB could be allocated
to a single block. In terms of software, we installed CUDA
toolkit v. 9.0 on Ubuntu 17.04 to execute GPU-end code.
We used CUBLAS library v. 9.0 to implement various linear
algebra operations, whereas Thrust library v. 1.9 was used
to implement minimum-element search operations. GLPK v.
4.65 was modified as explained previously in Section III-G.

To compare the performance of BU techniques, we solved
randomly generated problems five times using versions of
the baseline solver, whereas GLPK-based solver was used
to solve the selected Netlib problems five times. For each
run of these solvers, we measured execution time of all the

major tasks using the CPU clock. We ensured proper syn-
chronization wasmaintained between CPU andGPU routines
while taking timing measurements. All the measurements
were averaged across the five runs of each solver’s attempt
to solve a problem. In addition, BU time was also averaged
within each run (over hundreds or thousands of iterations).
To gauge performance of individual steps of each technique,
we used the CUDA profiler; NVPROF [32].We obtained exe-
cution time of each step, which was averaged over 25 samples
(5 samples in the case of PFI because of its lack of perfor-
mance). We ensured that the overall execution time measured
earlier using CPU clock agreed with the aggregated mea-
surements obtained using NVPROF. In addition to measuring
execution times, we also used NVPROF to obtain metrics for
each step related to its utilization of GPU’s resources. In the
next section, we mainly consider four metrics; occupancy
achieved, multiprocessor activity, instructions per warp and
peak-FLOP efficiency [32].

The final consideration before proceedingwith experiments
was to select appropriate BS values for different kernels
implemented in each BU technique. In this regard, selecting
BS for the kernel implemented in Step 1 of MPFI-BU was
straightforward. It required number of threads to be equal
to the total number of GPU cores. Therefore, we spawned
1024 threads and divided them into eight blocks of BS =
128 threads each. This ensured that each of our GPU’s eight
multiprocessors was engaged. For other kernels, we began by
calculating theoretical maximum occupancy for each kernel
by using CUDA’s occupancy calculator [33]. It turned out that
all the remaining kernels, except for one, could theoretically
achieve 100% occupancy per multiprocessor for a range of
BS values from 64 to 1024. Consequently, as also suggested
in occupancy calculator’s help, we followed an experimental
approach towards selecting a final value of BS for each
kernel. We determined average execution time of each kernel
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FIGURE 8. Effect of using different values of BS on the execution time of
COL-WISE-ORIG-BU’s Step 2.

using NVPROF for each of the twelve randomly generated
problems. Interestingly, our experiments revealed that we
could use anyBS value suggested by the occupancy calculator
without any noticeable effect on performance. Nevertheless,
we decided to use BS = 256 for vector operations and BS =
512 for matrix operation in each solver, owing to a very slight
improvement in performance as a result of using these values
for problems having m ≥ 2000.
In contrast to other kernels, performance of the kernel used

in Step 2 of COL-WISE-ORIG-BU varied significantly for
different values of BS. The occupancy calculator showed that
100% (theoretical) occupancy could be achieved only for
problems having m ≤ 4000. These problems had a shared
memory requirement of less than 32KB; 8 bytes per element
of vector ω. The maximum shared memory available per
multiprocessor was 64KB. Hence each multiprocessor could
potentially service the shared memory requirement of at least
two blocks for these relatively small problems (m ≤ 4000).
The occupancy calculator provided S = {128, 256, 384,
512, 672, 1024} as a set of values for which 100% occu-
pancy could be achieved, depending on the shared memory
requirement of each problem. However, for problems having
m > 4000, the occupancy calculator showed 1024 as the
only value of BS for which a maximum occupancy of only
50% could be achieved. We must emphasize that occupancy,
which provides localized efficiency of a single multiproces-
sor, is not sufficient to reflect the combined efficiency of all
the multiprocessors available in a GPU [32]. Consequently,
we decided to compare the performance of the kernel for each
of the twelve randomly generated problems using the set S.
Values in the set S do not constitute an exhaustive set of all
possible BS values. However, they represent a range broad
enough to select a value of BS for each problem approaching
the best value for that problem. Fig. 8 shows the results
of the performance comparison conducted using values of
the set S. It is evident that no single value could be used
across the whole range of problems, without compromising
on performance for some problem. Therefore, we proceeded
to use different values of BS for solving different problems,

TABLE 4. BS values used in step 2 of COL-WISE-ORIG-BU.

as shown in Table 4. These values ofBS cannot be generalized
for other GPUs. We provide these values because COL-
WISE-ORIG-BU turned out to be the closest competitor to
our proposed technique. We wanted to ensure that COL-
WISE-ORIG-BU was not at an undue disadvantage due to an
unreasonably poor choice of BS, when we calculated ELE-
WSIE-PRO-BU’s speed-up over it.

V. RESULTS
We begin this section by comparing performance of dif-
ferent versions of the baseline solver for twelve randomly
generated problems. We initially consider only the number
of iterations, BU time and total solution time. Due to a
high degree of variation in timing measurements, we have
tabulated them in Table 5. Speed-up achieved by different
BU techniques over PFI-BU is shown in Fig. 9a, whereas the
overall speed-up achieved by each solver is shown in Fig. 9b.

Table 5 shows that each problem was solved in the same
number of iterations by each solver. This is because of our use
of double-precision FLOPs. During our preliminary experi-
ments, when we used single-precision FLOPs, there was a
significant degree of variation in the number of iterations
performed by each solver. Another consequence of using
double-precision arithmetic is that each solver showed an
insignificant average percentage error of 2.02 × 10−15 %
with respect to results returned by the original (CPU) imple-
mentation of RSM present in GLPK.

It is obvious from Fig. 9a that the relatively high time
complexity of PFI-BU (O(n3)) translated to its lack of per-
formance as compared to all the other techniques. Table 6
shows that Step 3 of PFI-BU, in which matrix-matrix mul-
tiplication was performed, contributed primarily towards the
execution time of this technique. Fig. 9a shows that the sec-
ond worst-performing technique was ELE-WISE-ORIG-BU.
The reason for its lack of performance was that it was the
only technique, apart from PFI-BU, which did not update
the matrix B−1 in place. As shown in Table 6, the matrix-
copy operation performed in Step 2 of ELE-WISE-ORIG-BU
consumed more than 30% of its overall time.

In terms of a performance comparison between MPFI-BU
and ELE-WISE-MOD-BU, the former was slightly more effi-
cient. When we profiled Step 2 and Step 4 of MPFI-BU, we
observed that functions cublasDgemm() and cublasDgeam()
called in these steps were both using shared memory, which
can be at least partly attributed as the reason for performance
gains achieved by MPFI-BU.

If we consider the T -thread method used by MPFI-BU to
compute vector ω in Step 1 against them-thread method used
in the corresponding step of COL-WISE-ORIG-BU, it turns
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TABLE 5. Performance of different versions of the baseline solver for randomly generated problems.

FIGURE 9. Speed-up, expressed in percentage, achieved by different versions of the baseline solver over PFI-SOL for randomly
generated problems. (a) Speed-up achieved by different BU techniques with respect to PFI-BU. (b) Overall solution-time speed-up
achieved by different versions of the solver with respect to PFI-SOL.

TABLE 6. Step-wise time complexity and average execution time of each BU technique.

out that the later provided better performance, as shown
in Table 6. This is because of its superior occupancy, mul-
tiprocessor activity and peak-FLOP efficiency, as shown
in Table 7. However, the share of execution time of both
techniques’ Step 1 in their total execution timewas negligible.

If we consider the mutual performance comparison of the
two adaptations of the element-wise technique, ELE-WISE-
MOD-BU and ELE-WISE-PRO-BU, we observe that Step
1 in the later is slightly more expensive because of the two
additional vector operations performed in it. However, this
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TABLE 7. Average of GPU-based performance metrics for individual steps of each BU technique.

small cost paid in Step 1, allowed ELE-WISE-PRO-BU to
update the matrix B−1 using fewer floating-point and control
flow operations. This reduction in the number of operations
per thread performed in Step 2 enabled ELE-WISE-PRO-
BU to gain performance over ELE-WISE-MOD-BU. Table 7
also confirms that Step 2 of ELE-WISE-PRO-BU executed
around 35% fewer instructions per warp. The reduction in
peak-FLOP efficiency suffered by Step 2 of ELE-WISE-
PRO-BUwas a consequence of the reduced number of FLOPs
required to be performed; not indicative of any flaws in our
implementation.

It is evident from Fig. 9a and Fig. 9b that COL-WISE-
ORIG-BU was closest to ELE-WISE-PRO-BU in terms
of performance. Before comparing these two techniques,
we consider the cause of variation in the speed-up curve
of COL-WISE-ORIG-BU for problems having m > 4000,
which is apparent in Fig. 9a. These variations were caused
by different rates at which execution time of Step 2 varied
between different pairs of problems, as shown in Fig. 8. For
instance, the slackening of speed-up while moving from m =
4000 tom = 4500 was caused by a relatively steep increase in
execution time of Step 2, which was performed using BS =
256 at m = 4000 and BS = 384 at m = 4500. Similarly,
the lower rate of speed-up growth while moving from m =
5000 to m = 5500 corresponds to the steeper slope of BS =
384 curve in Fig. 8 between these values of m.
We begin the performance comparison of ELE-WISE-

PRO-BU and COL-WISE-ORIG-BU by considering Step 1
of both the techniques. Table 6 shows that the Step 1 of
ELE-WISE-PRO-BUwas slower than the corresponding step
of COL-WISE-ORIG-BU. However, it is important to note
that ELE-WISE-PRO-BU performed three vector operations
in this step. Nevertheless, the cost of Step 1 in both tech-
niques was insignificant in relation to each technique’s over-
all execution time. In terms of a comparison between Step
2 of these techniques, we note that COL-WISE-ORIG-BU
could manage a significantly lower average occupancy as
compared to the 89.05% occupancy achieved by the same
step in ELE-WISE-PRO-BU. As explained previously in

Section IV, the lower occupancy in Step 2 of COL-WISE-
ORIG-BU was a consequence of its method of storing all
the elements of vector ω in shared memory. Nevertheless,
our effort towards selecting almost-the-best value of BS for
solving each problem ensured that the averagemultiprocessor
activity was more than 94%. However, it was still less than
the average multiprocessor activity achieved by Step 2 of
ELE-WISE-PRO-BU. The high instructions-per-warp count
for Step 2 of COL-WISE-ORIG-BU reflects the fact that
each thread computed m number of elements, as opposed
to the computation of a single element by each thread in
Step 2 of ELE-WISE-PRO-BU. The peak-FLOP efficiency
of ELE-WISE-PRO-BU’s Step 2 was also better than the
corresponding metric for COL-WISE-ORIG-BU’s Step 2.
The cumulative effect, as shown in Table 6, was that ELE-
WISE-PRO-BU’s Step 2 was on average 18.67% faster than
the corresponding step of COL-WISE-ORIG-BU.

An interesting relationship shown in Table 6 further
convinced us regarding the efficacy of our proposed BU
technique. It shows that the execution time of ELE-WISE-
PRO-BU’s Step 2 was almost the same as the time taken
by Step 4 of PFI-BU and Step 2 of ELE-WISE-ORIG-BU.
These steps of PFI-BU and ELE-WISE-ORIG-BU performed
matrix-copy operations using the function cublasDcopy().
In addition, the cost of ELE-WISE-PRO-BU’s Step 1 was
relatively insignificant. Consequently, we feel safe in claim-
ing that the overall cost of our proposed BU technique was
comparable to the cost of copying values of an m×m matrix
within our GPU’s global memory using a highly optimized
routine.

Finally, we compare the performance of GLPK-based
solvers for the selected Netlib problems. We do not consider
PFI-SOL during this comparison, since it is obvious that all
the other solvers were significantly faster than it. Table 8
shows the number of iterations, BU time and solution time
corresponding to each solver’s attempt to solve test prob-
lems. As opposed to our earlier experiment for randomly
generated problems, different solvers took different number
of iterations for solving some of the test problems, despite
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TABLE 8. Performance of different versions of GLPK-based solver for selected Netlib problems.

FIGURE 10. Performance comparison of GLPK-based solvers for selected Netlib problems. Normalized time for each
implementation is obtained by dividing its execution time by execution time of the proposed implementation (ELE-WSIE-PRO-BU
or ELE-WISE-PRO-GLPK). (a) BU time of different techniques as compared to ELE-WISE-PRO-BU. (b) Total solution time of
different solvers as compared to ELE-WISE-PRO-GLPK. In both (a) and (b), bars within each group are sorted by BU time.

the use of double-precision FLOPs. This can be attributed
to a general increase in the number of iterations required
to solve real problems, which in turn increases the prob-
ability of difference in intermediate results produced by
different solvers because of non-associativity of floating-
point arithmetic. Fig. 10a and Fig. 10b show the perfor-
mance comparison of these solvers in terms of BU time and
overall solution time, respectively. ELE-WISE-MOD-GLPK
and ELE-WISE-PRO-GLPK successfully solved the greatest
number of problems. Therefore, we use BU technique imple-
mented in one of these solvers, ELE-WISE-PRO-BU, as a
benchmark in Fig. 10a. Similarly, we use ELE-WISE-PRO-
GLPK as a benchmark in Fig. 10b.

ELE-WSIE-MOD-GLPK and ELE-WISE-PRO-GLPK
were able to solve the largest Netlib problem; STOCFOR3
(m = 16675). They also concluded the solution of all the
other problems within the limit of 100000 iterations set
by us, except for QAP15. It is important to mention that
even the original RSM routine present in GLPK could not
solve QAP15 within 100000 iterations. Furthermore, COL-
WISE-ORIG-BU could not even start the process of solv-
ing QAP15 and STOCFOR3. We subsequently calculated

that COL-WISE-ORIG-BU could not have solved STOC-
FOR3 even if our GPU had an upper limit as high as 96KB
on the allocation of shared memory per block. On the other
hand, ELE-WISE-PRO-BU’s only memory requirement was
in terms of global memory (m2

+ 2m). It is also interesting
to note that ELE-WISE-PRO-BU and COL-WISE-ORIG-BU
took the same number of iterations to solve each of the four
problems solved by the later.

We also computed average percentage error in solutions
returned by each version of the GLPK-based solver with
respect to solutions published by Netlib [34]. These error
values for different solvers varied from 2.98 × 10−8 % for
ELE-WISE-MOD-BU and ELE-WISE-ORIG-BU to 3.99×
10−7 % for MPFI-BU. Interestingly, ELE-WISE-PRO-BU
and COL-WISE-ORIG-BU both showed the same average
percentage error of 1.96 × 10−7 %.

Before concluding this section, we aggregate the per-
formance gains achieved by our proposed BU technique
and solvers that implement it. Table 9 presents average
speed-up achieved by ELE-WISE-PRO-SOL over other
solvers, in terms of BU time and total solution time, for
solving randomly generated problems having m ≥ 2000.
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TABLE 9. Speed-up achieved by the proposed technique for randomly
generated problems having 2000 or more constraints.

TABLE 10. Speed-up achieved by the proposed technique for selected
Netlib problems.

It shows that ELE-WISE-PRO-SOL achieved an average
speed-up of 17.4% in terms of BU time and 1.43% in terms
of total solution time over COL-WISE-ORIG-SOL. Table 10
provides speed-up comparison of ELE-WISE-PRO-GLPK
against other GLPK-based solvers for solving selected Netlib
problems. It shows that ELE-WISE-PRO-GLPK achieved an
average speed-up of 13.3% in terms of BU time and 1.56% in
terms of total solution time over COL-WISE-ORIG-GLPK.

In summary, there are three advantages of our proposed
technique. The most obvious advantage is the speed-up it
achieves over other techniques. Second, and probably more
important, advantage is its ability to solve large LP problems.
The final advantage, albeit a minor one, is its consistent
performance for a range of problems using a pair of constant
BS values (one each for matrix and vector operations), which
is not the case with its closest competitor.

VI. CONCLUSION
In this work, we began by conducting a detailed survey
of existing BU techniques used in GPU implementations
of RSM. We implemented all the existing GPU-based BU
techniques using CUDA, and experimentally compared their
performance. It turned out that the most recent technique,
which updated the matrix B−1 in a column-wise manner, out-
performed all the other techniques. However, it was limited
by its inability to handle large problems. This motivated us
to develop a BU technique that was not only efficient but
was also able to update matrix B−1 in large problems. To this
end, we extended a relatively old technique, which followed
an element-wise approach towards updating the matrix B−1,
in two stages. During the first stage, we introduced an obvious
enhancement using CUDA, which significantly saved both
execution time and space required in GPU’s global memory.
However, these savings were not enough to make it more
efficient than the column-wise technique in terms of execu-
tion time. During the second stage, we developed a new BU
technique by further modifying the element-wise technique.
These modifications reduced the amount of computation

required to update the matrix B−1. This reduction in com-
putation enabled the new technique to achieve an average
speed-up of 13.3% in terms of BU time, and 1.56% in terms of
total solution time, over the column-wise technique for six of
the largest Netlib problems. Moreover, it was able to fulfill
memory requirements of all the six test problems. On the
other hand, the column-wise technique could not satisfy the
shared memory requirement of the two largest test problems.
In our opinion, these results merit the use of our proposed BU
technique in dense LP problem solvers implementing RSM.

The most obvious direction for future research that
emerged as a result of our work is the apparent potential of our
proposed technique to gain performance from its multi-GPU
implementation. This assertion is based on the observation
that for updating any element of thematrixB−1, our technique
only requires that element’s current value and two other vec-
tors. In addition, the effects of partial computation of columns
by threads in Step 2 of the column-wise technique also need
further investigation. The performance of our proposed BU
technique in a batch-processing setup may also be considered
in a future work.
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