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ABSTRACT In this paper, we demonstrate a perceptual-based 3D skeleton motion data refinement method
based on a bidirectional recurrent autoencoder, called BRA-P. Three main technical contributions are made
by the proposed network. First, the proposed BRA-P can address noisy data with different noise types
and amplitudes using one network, and this attribute makes the approach more suitable for raw motion
data with heterogeneous mixed noise. Second, due to the usage of perceptual loss, which measures the
difference in high-level features extracted by a pretrained perceptual autoencoder, BRA-P improves the
perceptual similarity between refined motion data and clean motion data, especially for the case where the
noisy data and target clean data have different topologies. Third, BRA-P further improves the bone-length
consistency and smoothness of the refined motion using the perceptual autoencoder as a postprocessing
network. Ablation experiments verify the effect of the three technical contributions of our approach. The
results of the experiments on synthetic noise data and raw motion data captured by Kinect demonstrate that
our method outperforms several state-of-the-art methods in the cleaning of mixed-noise data by one network.

INDEX TERMS 3D skeleton motion data refinement, noise-agnostic, perceptual constraint, motion autoen-
coder, Kinect.

I. INTRODUCTION
Human motion data are widely used in virtual reality, human-
computer interactions, computer games, sports and medical
applications [1]–[4]. Human motion capture is a prevalent
technique that aims to supply highly precise human motion
data. Professional motion capture sensors such as Vicon [5]
and Xsens [6] can offer motion data with high precision but
are too expensive for home use. Furthermore, these mocap
systems are not convenient to wear because users must wear
capture suits. In recent decades, certain low-cost motion cap-
ture technologies, such as depth sensor-based and camera-
based technologies, have been developed and can serve as
alternatives for capturing human motion. However, the raw
3D skeleton motion data captured by these low-cost sensors
are often noisy, occluded or incomplete for several reasons,
such as calibration error, sensor noise, poor sensor resolution,
and occlusion due to body parts or clothing. Therefore, raw

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonghoon Kim .

mocap data should be refined, i.e., missing data should be
filled in and denoising should be performed, before the data
are used [7]–[10].

With the rapid development of deep learning, the advan-
tages of this method have been demonstrated in motion
data refinement. However, motion data refinement based on
deep learning is still an open problem. For example, if the
optimization target of the algorithms is only the minimiza-
tion of the mean square error (MSE) of the joint position
between the refined motion and the label motion, i.e., the
reproduction error [10], the kinematic information of the
motion data is not fully exploited by the network, which
causes the refined motion to lack perceptual similarity with
the clean data. Mall et al. [11] noted that the result of
encoder-bidirectional-decoder (EBD), which is only trained
by reproduction error, is still somewhat noisy. Thus, these
researchers trained an encoder-bidirectional-filter (EBF) net-
work to postprocess EBD results. Holden [12] also used a
smoothing step to filter jittery movements, but postprocess-
ing steps are time-consuming and not suitable for real-time
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FIGURE 1. Examples of skeleton motion data captured by Kinect and the refined result of our proposed
BRA-P. The first and second rows have the same background but different poses. The first and third rows
have different backgrounds but the same pose. Obviously, the three different poses captured by Kinect
indicate that different orientations and backgrounds can generate different types of noise in the motion
data. Therefore, the human skeleton data captured by Kinect are mixed-noise data. (a) Original captured
color images. (b) Pose captured by Kinect. (c) Pose captured by NOITOM Mocap. The skeletons in (b) and (c)
have different skeleton topologies. (d) Pose refined by BRA [13] in which malformed or unnatural parts are
squared. (e) Pose refined by the proposed BRA-P. The results show that BRA-P can improve the problems
that BRA has when optimizing raw data captured by Kinect.

motion data acquisition systems. Li et al. [13] proposed
a bidirectional recurrent autoencoder that can improve the
kinematic information expression ability of the network by
imposing smoothness and bone-length constraints. However,
unfortunately, smoothness and bone-length constraints can-
not satisfactorily maintain the kinematic information, and
the noisy data and target clean data have different skeleton
topologies. As shown in Fig. 1, the data captured by Kinect
and the poses captured by Mocap have different skeleton
topologies, and the BRA results have malformed or unnatural
components. Furthermore, the raw mocap data, such as the
skeleton motion data captured by Kinect, often contain mixed
noise with different noise types and noise amplitudes due to
changes in background or human posture orientation during
capture. Fig. 1 shows that the raw data captured by Kinect
contain different types of noise when the background or the
body orientation changes. Hence, the refinement approach
for raw mocap data should have the ability to remove the
heterogeneous mix of noise through one network, i.e., the
network should be noise-agnostic. Therefore, in summary,
the objectives of this paper are to propose a network that is
noise-agnostic and to further improve the kinematic informa-
tion expression ability of the network.

In line with [13], we also use the bidirectional long short-
term memory recurrent neural network (B-LSTM-RNN)
architecture [14], [15] to refine noisy motion data. Our pre-
vious work in [13] noted that the refinement network based
on the B-LSTM-RNN architecture does not require noise
amplitude as a priori knowledge. In this paper, we found that
the B-LSTM-RNN architecture network also does not require
the noise type as prior knowledge. As a result, the network
can be noise-agnostic. At the same time, we improve the
kinematic information expression ability of the network by
imposing perceptual constraint based on a pretrained percep-
tual autoencoder. Perceptual loss functions, which are based
on high-level features extracted from pretrained networks,
are widely used in generative adversarial networks [16]–[21]
to synthesize high-quality images or textures. Those works
can generate high-quality images due to perceptual losses
that measure image similarities more robustly than per-pixel
losses [16]. Inspired by this idea, our strategy is to pretrain
a perceptual autoencoder using clean motion data. Subse-
quently, we train a denoising autoencoder for refinement
tasks using the perceptual loss, which is defined based on this
perceptual motion autoencoder. As shown in Fig. 2, HR =
Ep (XR), which is the hidden unit of XR calculated by the
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FIGURE 2. Pipeline of our approach. Our strategy is to train a denoising
autoencoder consisting of Ed and Dd by noisy-clean motion pairs XN and
XC based on a pretrained perceptual autoencoder trained by clean motion
data and consisting of Ep and Dp. The loss function for the perceptual
autoencoder consists of three elements, i.e., reproduction loss, smooth
loss and bone-length loss, which are the same as the losses used in [13].
In contrast, the loss function for training the denoising autoencoder
consists of four elements: perceptual loss, reproduction loss, smooth loss
and bone-length loss. At training time, we optimize the output of the
denoising network XR by the loss function. At runtime, the output of the
perceptual autoencoder YR is used as the final refined result.

perceptual autoencoder, has a close distance with the hidden
units of the ground truth XC due to the use of perceptual
loss. The similarity in the hidden unit space of the clean data
and refined data can help the denoising autoencoder learn
additional kinematic information from noisy-clean motion
pairs. On the other hand, Holden et al. [22] reported that
the projection from the hidden unit space to motion space
can generate a smooth and natural motion. Inspired by this
idea and to further improve the quality of the refined motion,
we use the perceptual autoencoder to postprocess XR, i.e., we
use YR = Dp (HR) as the final refined result. The experi-
ment also shows that this postprocessing step is effective in
improving bone-length consistency and smoothness. In pre-
vious work, the pretrained classification networks are only
used for calculating perceptual loss, but in our approach,
the pretrained network is an end-to-end autoencoder used to
return a perceptual loss and to further postprocess the refined
result. Fig. 2 shows the pipeline of our BRA-P approach.

We demonstrate the performance of our approach by train-
ing and testing it on a synthetic mixed-noise dataset generated
by the CMU human motion dataset [23] and a raw skeleton
dataset captured by Kinect. The experiments on the synthetic
dataset can explain why the B-LSTM-RNN architecture is
more suitable for mixed-noise data. On the raw motion
dataset captured by Kinect, we validate each component of
our approach via an ablation study and show the superior
performance of our approach in the removal of mixed noise
by comparing our approach with the state-of-the-art baseline.

In summary, our contributions are three-fold and are
described as follows:

1) Our approach is noise-agnostic. The experiment on a
synthetic mixed-noise dataset shows that our approach
can address noisy data with different noise types and
amplitudes using one network. This attribute makes our
approach more suitable for rawmotion data with mixed
noise, as verified by experiments on the Kinect motion
dataset.

2) Our approach improves the perceptual similarity
between the refined motion data and clean motion
data. By imposing perceptual loss during training, our
network can better maintain the motion characteris-
tics, especially for noisy and clean data with different
topologies.

3) Our approach further improves the bone-length con-
sistency and smoothness of the refined motion via the
postprocessing step using the perceptual autoencoder.

The remainder of this paper is organized as follows.
Section II gives a review of the related work and positions the
proposed approach with respect to earlier work. Section III
discusses the details of our proposed approach. The exper-
imental results are presented and discussed in Section IV.
Finally, in Section V, the conclusions of this work are pre-
sented and future research directions are discussed.

II. RELATED WORK
Many studies have been devoted to the refinement of cor-
rupted motion data and have yielded encouraging results. Our
approach is data-driven, and consequently, we mainly give a
categorized overview of the related data-driven methods in
this section.

A. FILTER-BASED METHODS
Standard signal denoising filters are the typical non-data-
driven methods used in early research [13], but those
non-data-driven filters [24]–[30] cannot preserve the spatial-
temporal information embedded in human motion because
these methods process each degree of freedom sepa-
rately [31]. The groundbreaking work of data-driven fil-
ters was proposed by Lou and Chai [31] and can maintain
the spatial-temporal patterns in human motion data. Their
method can automatically train a series of spatial-temporal
filter bases from prerecorded human motion data and use
them along with robust statistical techniques to filter noisy
motion data. However, this method cannot recover certain
motion details because this method uses the Singular Value
Decomposition (SVD) technique to choose only a set of
orthogonal filter bases for filtering noisy motions. Another
famous work by Akhter et al. [32] proposed a bilinear model
that factors the basis into spatial and temporal variations
and unifies the coefficients; hence, the model simultaneously
exploits spatial and temporal regularity. This method cannot
handle many different types of motion and noise altogether
because the number of basis vectors should be determined
based on the motion type before the denoising procedure.

B. SPARSE-REPRESENTATION-BASED METHODS
Sparse representation has become a hot research topic in the
past decade and has been used to solve the problem of motion
refinement. In 2011, Xiao et al. [33] proposed the prediction
of missing markers in terms of finding an l1-sparse represen-
tation for the existing data of an incomplete pose. In 2015,
Xiao et al. [34] and Feng et al. [35] divided each human
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pose into five partitions and presented five dictionaries for
those partitions to obtain a fine-grained pose representation,
but this approach abandons the relationships between these
partitions. In 2016, Xia et al. [36] point out that sparse coding
and low-rank matrix completion only take the basic statistical
properties of human motion into consideration, so the authors
recover incomplete motions using sparse representations with
smoothness and bone-length constraints, which includes the
kinematic information in the recovery process. However, all
of the above data-driven methods are action specific or noise
specific; that is, each action type or noise type requires a
separate refinement model.

C. DIMENSIONALITY-REDUCTION-BASED METHODS
Dimensional reduction can be used to eliminate noisy com-
ponents of data and can be realized via principal component
analysis (PCA) [37]. In 2006, Liu and McMillan [38] first
modeled the motion sequences of a training set via principal
component analysis and recovered a new sequence by finding
the least squares solutions based on the available marker posi-
tions and the principal components of the associated model.
In the same year, Tangkuampien and Suter [39] showed that
the greedy KPCA (kernel PCA) algorithm can be applied
to filter exemplar poses and build a reduced training set
that optimally describes the entire sequence. Therefore, this
approach has superior denoising qualities and lower evalua-
tion costs compared with PCA. In 2007, Günter et al. [40]
proposed a rapid iterative KPCA method that improved the
convergence speed for denoising human motion capture data.
However, dimensionality-reduction-based methods discard
the temporal or spatial correlations of data, which leads to an
overparameterization of the data [32], changing the structures
in the original motion data.

D. REFINEMENT NEURAL NETWORKS
Recently, neural networks have displayed remarkable advan-
tages in many machine learning tasks such as computer
vision, image processing, pattern recognition, and natural
language processing. Increasingly, neural networks have also
been exploited for motion data refinement and have achieved
state-of-the-art results. In 2007, Taylor et al. [41] used a
restricted Boltzmann machine (RBM) to model the prob-
ability distribution of the observation vector at each time
frame, and after training, the model could perform online
filling of missing data during motion capture. In 2015,
Fragkiadaki et al. [42] proposed an encoder-recurrent-
decoder (ERD) model for predicting the mocap vector in
the next frame from the past motion sequence. In 2017,
Butepage et al. [43] proposed a fully connected network
that could predict missing data of latter sequence from past
information in the motion sequence. Mall et al. [11] trained
a set of filters using a deep, bidirectional, recurrent frame-
work for clean, noisy and incomplete mocap data. In 2019,
Cui et al. [44] proposed a bidirectional attention network
for missing data recovery, and their embedded attention
mechanism can decide where to borrow information from

and use this information to recover corrupted frames. The
above deep-learning-based methods are action agnostic but
noise specific, i.e., these methods can be trained by large-
scale data with a specified type of noise (such as Gaussian
noise or missing data) and a heterogeneous mix of action
types, and the network can refine any action with that noise
type. In fact, the raw data captured by low-cost mocap sen-
sors are often datasets with heterogeneous mixes of action
types, noise types and noise amplitudes. As a result, the more
suitable the approach is for mixed-noise data, the more suit-
able the approach is for raw data. For raw data refinement,
in 2015, Holden et al. [10] used a convolutional autoen-
coder for denoising motion captured by Kinect. In 2018,
Holden [12] used a deep residual network for mapping raw
optical motion capture data to skeleton data. In the same
year, Huang et al. [45] proposed a bidirectional recurrent
framework for reconstruction of full body poses in real time
from data captured by 6 IMUs. However, the results of these
methods are still somewhat jittery, and [12] requires postpro-
cessing to refine the results. In computer vision, certain works
have addressed the problem of motion refinement. In 2018,
Fieraru et al. [7] noted that even state-of-the-art models of
human pose estimation from images or videos fail to correctly
localize all the body joints, thus these researchers proposed
a pose refinement network that takes both the image and a
given pose estimate as input and learns to directly predict
a refined pose by joint reasoning of the input-output space.
Moon et al. [8] presented a model-agnostic pose refinement
method to estimate a refined pose from a tuple of an input
image and a pose. These two state-of-the-art works for pose
refinement both require an image as clean information to
refine the pose. In 2019, Li et al. [13] proposed an autoen-
coder based onB-LSTM-RNN for 3Dmotion data refinement
and displayed its advantages regarding the visual quality of
the refinedmotion. In this paper, we improve the performance
of BRA using a perceptual constraint. The use of the percep-
tual constraint allows the network output to better maintain
the motion characteristics, and during the runtime, the output
of the perceptual autoencoder is used as the final refined
result. Based on the two advantages of our approach men-
tioned above, we demonstrate its advantages over a variety
of baselines via extensive experiments on both a synthetic
mixed-noise dataset and a raw skeleton dataset captured by
Kinect.

III. PROPOSED METHOD
A. DATA FORMULATION
Two datasets are used in this paper. The first is a synthetic
dataset generated by the CMU human motion database [23],
and the second is a raw motion dataset synchronously cap-
tured by Kinect and the NOITOM mocap system [46].

1) SYNTHETIC DATASET
We perform selected preprocessing steps on the CMU
human motion database, similar to those in [22], including
subsampling of all motion in the database to 60 frames
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FIGURE 3. Data in the synthetic dataset based on the CMU human motion database. (a) T-pose of the CMU
human motion data, containing 21 joints. (b)-(d) Three examples of synthetic noise data with
high-amplitude Gaussian noise, low-amplitude Gaussian noise and randomly missing noise. (e) Clean data
in the CMU motion database. The noisy and clean data have the same skeleton topology.

FIGURE 4. Data in the raw motion dataset. (a) T-pose of skeleton captured by Kinect. (b) T-pose of
skeleton captured by NOITOM Mocap. (c) Noisy pose captured by Kinect. (d) Corresponding clean pose
of (c) captured by NOITOM Mocap. The noisy and clean data in DSraw have different skeleton
topologies.

per second, conversion of the data from the joint angle rep-
resentation in the original dataset to the 3D joint position
format, and the transformation of the all joint positions to
the local coordinate system, the origin of which is located
on the ground and onto which the root position is projected.
Only 21 of the most important joints are preserved, and thus
the dimension of each posture is 63 (21 × 3 = 63), where
3 is the number of channels of each joint (each joint contains
three channels: X,Y,and Z). The mean pose is subtracted from
the data and, and then the data are divided by the standard
deviation to normalize the scale of the skeleton. However,
the rotational velocity of the body around the vertical axis
does not need to be removed from each frame because this
preprocessing step is time-consuming and is not suitable for
real-time use. The entire CMU database is separated into
NCMU overlapping clips of f frames (overlapped by f /2
frames), and all of these motion clips consist of DSCMU .
No fixed motion clip length is recommended, and we set
f = 120. Let XCMU = [p1, p2, · · · , p120]T ∈ DSCMU denote
a motion chip, where pt =

[
xt,1, yt,1, zt,1, · · · , xt,J , yt,j, zt,J

]
represents the t-th frame, J = 21 is the number of skeleton
joints, 120 is the length of the motion clip, and X ′CMU is used
to represent the noisemotion clip synthetized byXCMU . All of
the noisy-clean motion pairs consist of a synthetic dataset
DSsyn =

{[
X ′CMU ,XCMU

]}
.

2) RAW MOTION DATASET
The raw motion datasets consist of many daily actions,
similar to the CMU motion dataset (i.e., walking, jump-
ing, dancing, basketball, box, etc.). Similar to the Carnegie
Mellon University Multimodal Activity (CMU-MMAC)
Database [47], the data captured by two different sensorswere
synchronized using the network time protocol. The skeleton
data captured by Kinect do not need preprocess. But the data
in the bvh format captured by the NOITOM mocap system
are converted to 3d joint position format using the actor
skeleton, which has a height of 175 centimeters in a neutral
pose. All the activity in the dataset is executed by one actor,
and hence, the bone length of all the poses is treated as a
constant.

The joint number of Kinect is 25, and hence, the dimension
of each Kinect posture is 75 (25 × 3 = 75). The number of
skeleton joints in the NOITOM Mocap data is 59, including
40 hand joints, and hence, the dimension of each NOITOM
Mocap posture is 177 (59 × 3 = 177). The mean pose is
subtracted from the data and then the data are divided by
the standard deviation to normalize the scale of the skeleton.
The Kinect skeleton data are treated as noisy data, and the
NOITOM Mocap data are treated as clean data. Let XKinect
and XMocap represent synchronal pairs, and all of these pairs
consist of raw motion dataset DSraw =

{[
XKinect,XMocap

]}
.
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FIGURE 5. Architecture of motion autoencoder.

The dataset and the bone length information are provided
publicly on GitHub.1

B. NETWORK ARCHITECTURE
Our network is composed of two motion autoencoders, a per-
ceptual autoencoder and a denoising autoencoder. In this
paper, the two motion autoencoders share the same architec-
ture. The network architecture is the same as that used in [13].
As shown in Fig. 5, the autoencoder has two components,
the encoder and the decoder. The encoder receives the input
motion chipX and outputs the encoded valuesH in the hidden
unit space. The encoder operation is as follows:

H = E(X )

= BiLSTM1 (W3 (W2 (W1(X )+ b1)+ b2)+ b3) , (1)

where W1 ∈ Rm×128, b1 ∈ R128, W2 ∈ R128×256, b2 ∈
R256, W3 ∈ R256×512, b3 ∈ R512. The decoder receives the
hidden unitH , and outputs the reproduced motion clip Y . The
decoder operation is as follows:

Y = D(X )

= W6 (W5 (W4 (BiLSTM2(H ))+ b4)+ b5)+ b6, (2)

where W4 ∈ R512×256, b4 ∈ R256, W5 ∈ R256×128, b5 ∈
R128, W6 ∈ R128×n, b6 ∈ Rn. In this work, BiLSTM1 and
BiLSTM2 are bidirectional LSTM cells that both input and
output sequences of size 120 × 512. For X ′CMU and XCMU
training pairs, m = n = 63. ForXKinect and XMocap training
pairs, m = 75 and n = 177.

C. LOSS FUNCTIONS
For convenience, we uniformly use XC to present the clean
data and XN to present the noisy data in the two training
datasetsDSsyn andDSraw. Four loss functions are used during
the training time.

1) REPRODUCTION LOSS
The autoencoder receives the input motion clip and outputs
the reproduced motion clip, thus we expect that the output
of the autoencoder is the clean ground-truth motion sequence.
A joint-position wise loss function such as the mean square

1https://github.com/vcc-zhu/BRA-P-Kinect2Mocap-

loss (MSE) is the most commonly used loss function and
guarantees that the reproduced motion has the minimum
Euclidean distance with the clean motion clip. We define the
reproduction loss by

LR(Y ,X ) =
1

f × d
‖Y − X‖2, (3)

where ‖·‖2 denotes the l2-norm, f is the frame number of the
motion clip, and d is the dimension of each posture.

2) PERCEPTUAL LOSS
Although the reproduction loss guaranteeing the reproduced
motion has the minimum Euclidean distance with the clean
motion clip, the solution of the MSE optimization problems
often lacks smoothness and bone length, which results in
perceptually unsatisfying solutions. We use a perceptual loss
function to obtain perceptually satisfying solutions. Based
on the aforementioned perceptual autoencoder, the percep-
tual loss of a reproduced motion clip XR is defined as the
Euclidean distance between the hidden units of itself and its
corresponding clean data XC :

LP (XC ,XR) =
1

f × 512

∥∥Ep (XR)− Ep (XC )∥∥2 . (4)

3) SMOOTHNESS LOSS
Smoothness loss has been used in many studies, such as
data-driven menthod [36] and non-data-driven method [48],
to yield natural motion sequences. These studies note that
natural human motion should be smooth in the temporal
direction. In addition to reproduction loss and perceptual
loss, we also add spatial coherence regularizations to encour-
age neighboring frames to have continuity. The studies in
[13], [36], [45] enforce C2 continuity on each feature dimen-
sion of themotion clip via a smoothness penalty term. Repeat-
ing the border elements of X yields X ′: X ′1,i = X ′2,i = X1,i and
X ′n+1,i = X ′n,i = Xn,i, where 1 ≤ i ≤ d. Let O be a symmetric
matrix:

O =


−1 1 0
1 −2 1
. . .

... 1
1 −1


(f+2)×(f+2)

. (5)
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Given an input motion clip X , we define the smoothness
loss as:

LS (X ) =
1

(f + 2)× d

∥∥OX′∥∥2 . (6)

4) BONE-LENGTH LOSS
The skeleton of the character is a kinematic model composed
of several bones and joints [29], [49]. A bone is a segment
of a fixed length, and a joint is the end point of a bone.
The bone length of such a kinematic model should maintain
consistency among all the frames. We used similar bone-
length loss in [13]. Let lb denotes the bone length of b-th bone
of skeleton. Given an input motion clip X , the cost in terms
of a penalty for bone length can be written as follows:

LB(X ) =
1

f × (J − 1)

f∑
i=1

J−1∑
b=1

|

∥∥∥pi,1b (X )− pi,2b (X )
∥∥∥
2
− lb|,

(7)

where pi,1b (X ) and pi,2b (X ) are the 3D positions of the two end
joints of the b-th bone of frame i which is recorded in X , and
J is the joint number of skeleton..

D. TRAINING DETAILS
The entire training procedure can be divided into two sub-
procedures. The first training task is to train an encoder Ep :
XC → HC and a decoder Dp : HC → X ′C which consist of
the perceptual autoencoder. The loss function for training is
as follows:

Lp = λp1LR
(
XC ,X ′C

)
+ λp2LS

(
X ′C
)
+ λp3LB

(
X ′C
)
, (8)

where the weights λp1, λp2 and λp3 balance the importance
of each loss, XC and X ′C are clean and reproduced data,
respectively. Adding the smoothness loss and bone-length
loss can improve the quality of the output motion clip. The
choices for the three weights are not crucial. We set λp1 = 1
and find that retaining the three losses at the same magnitude
serves the purpose. In this paper, we use λp2 = 0.0001 and
λp3 = 0.0001.

Second, we train Ed andDd which consist of the denoising
autoencoder. We let XR = Dd (Ed (XN )), and the denoising
autoencoder minimizes the following:

Ld = λd1LR (XC ,XR)+ λd2LS (XR)

+ λd3LB (XR)+ λd4LP (XC ,XR) . (9)

As noted in [13], the smoothness constraint causes the
reproduced motion to become static, and hence, the smooth-
ness constraint keeps the reproduction error from decreasing.
However, due to perceptual loss, we can slightly increase the
weights of the smoothness loss and bone-length loss. In this
paper, we set λd1 = 1,λd2 = 0.001, λd3 = 0.001 and
λd4 = 10.
The implementation of our work is based on TensorFlow

using a single GTX Tesla P100 GPU. Adam [50] is used
to minimize the loss function of two networks. The mini-
batch size is set to 16. Dropout wrapper is used on Bi-LSTM

layer and dropout rate is set to 0.2. The learning rate is set to
0.00001 when training the perceptual autoencoder and set to
0.001 when training the denoising autoencoder. Each of the
two networks is trained by 300 epochs.

IV. EXPERIMENT AND ANALYSIS
Our experiment consists of two components. The experiments
on the synthetic dataset are used to compare the performance
of BRA-P with that of selected state-of-the-art baselines
and analyze why the networks based on RNN architecture
are suitable for noisy data with different noise types and
amplitudes. Additionally, compared with BRA [13], BRA-P
only has obvious superiority for the case in which the noisy
data and target clean data have different topologies. Hence,
we perform the ablation study only on the raw motion dataset
to verify the effect of the three proposed characteristics of
BRA-P.

A. EXPERIMENTS ON SYNTHETIC NOISE DATASET
The synthetic dataset DSsyn contains four types of noisy
data: (a) Gaussian noise data: where 100% of the joint data
are corrupted by Gaussian noise (SNR = 1 dB, 5 dB);
(b) randomly missing data with Gaussian noise: where 30%
and 40% of the joint data are randomly set to zero in every
frame, and 100% of the reversed part data are corrupted by
Gaussian noise (15 dB SNR). To improve the generalization
ability of our network, each type of noisy data only contains
NCMU/2 motion clips, which are randomly selected from
DSCMU . As a result, the total number of noisy-clean pairs
in DSsyn is 2 × NCMU . All the data in DSsyn are used as the
training dataset.

We use four quantitative measurements to quantify the
refinement results of BRA-P and the baselines: the repro-
duction error (R), perceptual error (P), smoothness error (S)
and bone-length error (B). The four errors are calculated via
Eq. 3, Eq. 4, Eq. 6 and Eq. 7, respectively. All the repro-
duction errors are stored in centimeters. For ease of com-
parison of the precision with that of the experiments on raw
data set, the CMU skeleton is also regularized with a height
of 175 centimeters in neutral pose.

We compare the performance of our BRA-P on a synthetic
dataset with those of four state-of-the-art baselines, including
(1) the method proposed by Holden et al. [10] in 2015 SIG-
Graph Asia, which is denoted CNN; (2) the method pro-
posed by Holden et al. in 2016 SIGGraph [22], which can
be used to optimize the results of CNN and is denoted
CNN+Constrain; (3) an encoder-bidirectional-filter (EBF)
model similar to [11], which is modified to the fit motion data
represented by the joint position and denoted EBF; (4) the
same network with EBF but with the addition of a bone-
length constraint during training, which is denoted EBF+B.
Because the key idea of EBF is to train a set of smooth filters
to clean the noise, this method does not consider the bone-
length constraint. Hence, we add the bone-length constraint
while training EBF to make a fair comparison. Among these
four baselines, EBF and EBF+B are both based on the RNN
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FIGURE 6. Comparisons between performances of BRA-P and four baselines on the testing dataset including 1000 motion clips randomly selected from
DSCMU using box plots.

architecture, and CNN and CNN+Constrain are based on the
CNN architecture.

For testing, we randomly selected 1000 motion clips from
DSCMU and resynthesized four types of noisy data, including
Gaussian noise data (SNR = 1 dB, 20 dB) and randomly
missing data with Gaussian noise (missing ratio= 10%, 40%,
Gaussian SNR = 15 dB) to compare the performance of five
approaches. The Gaussian noise data (SNR = 20 dB) and
randomly missing data (missing ratio = 10%) are not seen
during training.

From Fig. 6, we conclude the following:
(1) BRA-P vs. EBF and EBF +B: The position error of

EBF is slightly smaller than that of BRA-P because position
loss is the sole optimization objective of EBF. However,
the bone-length error of BRA-P is much better than that of
EBF. Even when the bone-length constraint is used during
the training of EBF+B, the bone-length error of EBF+B is
still larger than that of BRA-P. EBF and EBF+B can produce
a small smooth loss for the noisy data encountered in the
training data, but their smooth losses become notably large
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TABLE 1. Average values of four quantitative measurements obtained by the six approaches on the entire testing dataset, including the reproduction
error (R, cm/channel), bone-length error (B, cm/bone), smoothness error (S) and perceptual error (P). BRA is the only approach that can maintain the four
errors at less than 2.

FIGURE 7. Subset of parameters of four autoencoders based on two architectures for two missing noise ratios. The first row represents the weights
of the networks trained by randomly missing data (missing ratio = 40%). The second row represents the network trained by randomly missing data
(missing ratio = 10%). The third row gives the relative error of two weights shown in the first row and second row. The relative error is calculated by∥∥w1 −w2

∥∥
2 /

∥∥w1
∥∥

2, where w1 and w2 are the weights in the first and second rows respectively, and ‖ · ‖2 is the L2 norm. We visualize four weight
pairs that have the top four relative errors for two types of autoencoders. Obviously, the relative errors of the weights of the network based on CNN
are much larger than those of the network based on B-LSTM-RNN. (a) Four weight pairs from the two autoencoders based on CNN. (b) Four weight
pairs from the two autoencoders based on B-LSTM-RNN.

TABLE 2. Different approaches used in the ablation study.

for the noisy data not seen in the training data. BRA-P shows
a stable smoothness loss for all types of noise including those
seen or not seen in the training data.

(2) BRA-P vs. CNN and CNN+Constrain: The perfor-
mance of BRA-P on four types of noise is better than
that of CNN and CNN+Constrain, which means that the
autoencoder based on the B-LSTM-RNN architecture is
more suitable for mixed noise than the CNN architecture.
CNN+Constrain can decrease the bone-length error and
smoothness error of CNN but increase the position loss and
perceptual loss at the same time.

We also display the average values of the four errors for
the six approaches on the total testing dataset, which contains
four types of noise. As reported in Table 1, BRA-P is the
only approach that can maintain the four quantitative mea-
surements at values smaller than 2.

To explain why autoencoders based on the B-LSTM-RNN
architecture are more suitable for mixed noise than the CNN
architecture, we use two types of randomly missing data
(missing ratio = 10% and 40%) to train four denoising
autoencoders based on two network architectures and com-
pare the weights of these four networks. We visualize a por-
tion of the parameters of the four networks, as shown in Fig. 7.
Obviously, the two networks based on the B-LSTM-RNN
architecture have more similar parameters when trained by
the two missing-ratio noise data. The relative errors of the
parameter pairs based onCNNaremuch larger than that of the
network based on RNN. Hence, although the network based
on B-LSTM-RNN is trained by mixed-noise data, its param-
eters converge more easily than those of the network based
on CNN, which can explain why BRA-P is more suitable for
mixed-noise data.
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TABLE 3. Average values of four quantitative measurements obtained by the seven approaches on the entire Kinect testing dataset, including the
reproduction error (R, cm/channel), bone-length error (B, cm/bone), smoothness error (S) and perceptual error (P). The minimum value of each error is
highlighted. The proposed BRA-P(512) yields the lowest kinematic errors.

FIGURE 8. Bone-length variant curves for two bones in a walking motion sequence via different approaches. (a) Bone length variant curve for the
left arm. (b) Bone length variant curve for the left leg. The bone-length variant curves of the networks based on B-LSTM-RNN are much smoother
than those of the CNN.

FIGURE 9. Moving trajectories of a finger joint in a walking motion sequence. The finger joint is marked with red in the last row of Fig. 10. All four
subfigures show that the trajectories refined by BRA-P(512) are smoother than those of its competitors. (a) Effect of network architecture on
smoothness. (b) Effect of the perceptual constraint on smoothness. (c) Effect of postprocessing by the perceptual autoencoder on smoothness.
(d) Effect of the dimension of the hidden units on smoothness.

B. EXPERIMENTS ON RAW DATASET
Unlike synthetic noise, the noise type and amplitude of
each motion clip captured by Kinect cannot be known in
advance. The experiment on the synthetic dataset allows us
to clearly examine the ability of each approach in work-
ing with noise of different types and amplitudes. However,
only experiments on raw motion data can verify the abil-
ity of the different approaches in addressing mixed-noise
data.

Among the baselines mentioned in the experiments on the
synthetic dataset, CNN+Constrain requires precise informa-
tion such as the footstep in the original data, and thus, this
method cannot be used on raw data. The key idea of EBF
is to train a set of smooth filters and subsequently use the
trained filters to multiply the noise data to obtain the refined
data; thus, this method is not applicable to the case in which
the target refined data and noisy data are heterogeneous.
As a result, we only compare BRA-P with CNN on the raw
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FIGURE 10. Key frame sequence of the refinement results obtained via various approaches. The hand of each refined pose is circled
and magnified for a clear comparison. The hand skeleton in raw data captured by Kinect is indistinct but should be clear in the
refined pose, and the joint numbers of the two spines are also different. The results show that the spine and hand components of
the results of BRA-P are more natural than its variants. CNN can produce a good skeleton topology, but the result is jittery. Readers
can refer to the supplementary video for additional information.

motion dataset. We also perform ablation studies to verify
each component of our approach on DSraw. The different
networks for the ablation studies are shown in Table 2.
To distinguish the various methods in the ablation experi-
ments, the proposed BRA-P is labeled BRA-P(512) in this
section. We still use four quantitative measurements to quan-
tify the refinement results of the BRA-P and the baselines: the

reproduction error (R), perceptual error (P), smoothness
error (S) and bone-length error (B), in which P, S and B
are denoted the kinematic errors. In addition to quantitative
comparison, we also give qualitative analysis through, bone-
length variant curves in Fig. 8, the moving trajectory of a joint
in Fig. 9 and key frame sequences in Fig. 10. More compar-
isons of motion are shown in the supplementary video.
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The effect of the B-LSTM-RNN architecture. In Table 3,
the reproduction errors of all the networks based on
B-LSTM-RNN are much better than those of the CNN.
All three kinematic errors of the networks based on
B-LSTM-RNN are smaller than those of the CNN, except that
the bone length error of EBD(512) is slightly larger than that
of CNN. In Fig. 8, two bones of a walking motion sequence
are selected, and their bone-length variant curves are plotted.
Obviously, the bone-length variant curves of the networks
based on B-LSTM-RNN are smoother than those of the
CNN. Specifically, we plot the moving trajectory examples of
BRA-P(512) and the CNN in Fig. 9(a), and the trajectory of
BRA-P(512) exhibits a smoother performance. These results
indicate that the network based on the B-LSTM-RNN is more
suitable for mixed noise, which is in line with the conclusion
from the experiments on the synthetic dataset.

The effect of perceptual constraint. Among the different
approaches in Table 2, the differences between the EBD(512)
and EBD-P(512), BRA(512) and BRA-P(512) experimental
pairs are only whether the perceptual constraint is used.
As shown in Table 3, after adding the perceptual constraint,
EBD-P(512) and BRA-P(512) perform better than EBD(512)
and BRA(512) in three of the kinematic errors, respectively.
We also find that the reproduction error is slightly increased,
while the three kinematic errors decrease; perhaps some
reproduction accuracy is lost to improve the quality of the
motion. In Fig. 9(b), the moving trajectory of BRA-P(512)
is smoother than that of BRA(512), and the trajectory of
EBD-P(512) is also smoother than that of EBD(512). There-
fore, we can conclude that the perceptual constraint can
improve the kinematic expression ability of the network but
with little sacrifice in the reproduction error.

The effect of the postprocessing step. We compare
BRA-P(512) and BRA-P-D(512) in Table 2 because the only
difference between these two methods is whether the per-
ceptual autoencoder is used for postprocessing. In Table 3,
the three kinematic errors of BRA-P(512) are better than
those of BRA-P-D(512), which illustrates that the postpro-
cessing step improves the kinematic information expression
ability of the network. In Fig. 9(c), the moving trajectory
of BRA-P(512) is smoother than that of BRA-P-D(512).
Similarly, the reproduction error is also slightly increased
while the three kinematic errors decrease, but the proposed
BRA-P(512) achieves the best refinement performance.More
clear comparisons are shown in Fig. 10 and the supplemen-
tary video.

The effect of the bone length and smoothness con-
straints. The comparisons of EBD(512) and BRA(512),
EBD-P(512) and BRA-P(512) show that all four quantita-
tive measurements decrease after imposing bone length and
smoothness constraints during training. This result indicates
that bone length and smoothness constraints can help improve
the quality of reproduced motion even though perceptual
constraints are used.

The effect of the dimension of the hidden units.
As shown in Fig. 5, if the proposed BRA-P(512) has three

FC layers, the dimension of the hidden units is 120 plus 512.
If only 2 FC layers are used, the dimension of the hidden units
is 120 plus 256. Comparing BRA-P(256) and BRA-P(512)
helps us to determine the effect of the dimension of the
hidden units. We find that the four quantitative measurements
can be improved by increasing the dimension of the hidden
units. Furthermore, in Fig. 9(d), the moving trajectory of
BRA-P(512) is smoother than that of BRA-P(256). Hence,
we choose to increase the dimension of the data by three FC
layers.

Fig. 10 summarize the difference of various approaches by
the key frame sequences. We specifically compare the hand
and spine of two skeletons, which are heterogeneous parts of
the two different skeletons. The refinement results in Fig. 10
show that BRA-P(512) can yield best skeleton topology for
those heterogeneous parts.

V. CONCLUSION
Refinement of rawmotion data captured by a mocap device is
an indispensable preprocessing step before the data are used,
especially for low-cost yet noisy motion capture devices.
In this paper, we propose a new refinement network based
on a bidirectional RNN. The proposed BRA-P has the ability
to remove noise of different types and amplitudes with one
network because networks based on bidirectional RNN are
more suitable for mixed noise than a network based on CNN.
BRA-P also improves the kinematic information expression
ability via the perceptual constraint, especially if the noisy
data and target clean data have different skeleton topologies.
Furthermore, because of the postprocessing step based on
the perceptual autoencoder, the smoothness and bone-length
consistency of the refined motion are further improved.

However, the proposed approach can be further improved.
The reproduction accuracy is not improved, while the three
kinematic errors decrease. Poor reproduction can also cause
a refined motion that is still somewhat noisy. In the future,
we plan to adjust the network and constraints to improve
the reproduction accuracy. One possible improvement is the
use of a residual network. Additionally, because Kinect can
only detect a limited range of movement, we plan to extend
the approach to a variety of motion capture systems, such
as RGB cameras and inertia-based sensors. We also believe
that motion refinement methods for those low-cost yet novel
mocap systems will play a key role in emerging interactive
technologies such as VR and AR.
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