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ABSTRACT Accurate real-time knowledge of the wave excitation force affecting a wave energy converter
(WEC) – either through measurement or by estimation – is crucial for implementing effective control
strategies that ensure optimum power absorption, system reliability, and durability. The estimation of the
excitation force using other readily available measurements is deemed a cost-effective solution given the
technical difficulties associated with directly measuring the excitation force on theWEC’s floater hull. In this
study, an electrical-based extended Kalman filter (E-EKF) estimator for estimating the wave excitation force,
floater’s heave displacement, and velocity is proposed. The estimator is derived using a holistic nonlinear
wave-to-wire model of a direct-drive heaving WEC. A continuous and differentiable approximation of the
well-known Tustin friction model is utilized to incorporate the friction force model into the estimator.
The proposed E-EKF estimator requires only the measurement of the three-phase permanent magnet linear
generator stator currents using current transducers. A practical approach is provided to overcome the need for
measuring the wave surface elevation and velocity. Simulations are conducted to assess the goodness of the
proposed E-EKF under various sea-state conditions, modeling mismatches, and electric loading scenarios.
For the sake of comparison, the performance of the E-EKF estimator is measured against mechanical-based
extended Kalman filter and linearized mechanical Kalman filter estimators. The E-EKF estimator exhibits
superior performance in terms of nearly all performance metrics, with an excitation energy percentage error
score not exceeding 9 %, while being immune to measurement noise.

INDEX TERMS Excitation force, extended Kalman filter, nonlinear model, permanent magnet linear
generator, point absorber, state estimator, wave energy converter, wave-to-wire model.

I. INTRODUCTION
The wave excitation force is a function of incoming wave
characteristics (i.e., wave amplitude, frequency, and direc-
tion) and the intercepting body geometry. The excitation
force is made of two components: the Froude–Krylov force,
which is defined as the dynamic pressure field exerted by the
undisturbed waves integrated over the wetted surface area
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of the intercepting body (i.e., floater), and the diffraction
force, which is defined as the pressure field resulting from
diffracted waves integrated over the wetted surface area [1].
If the wave energy converter (WEC) floater is small in
size compared to the wavelength of the incoming wave, the
Froude–Krylov force component dominates the wave excita-
tion force. To implement real-time control strategies to con-
trol WECs, the wave excitation force needs to be estimated or
measured at every time instant. For the excitation force esti-
mation, the linear and causal relationship between the wave
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elevation and the wave excitation force is approximated by
frequency response functions (FRFs) [2]. Numerical tools are
used to solve the wave excitation problem for various wave
frequencies, and frequency-domain regression techniques are
deployed to determine the FRFs [3]. Furthermore, in this
method, it is assumed that the wave propagation in space
and time is a linear system (i.e., linear wave theory) and
the originally noncausal relation between the wave excitation
force and the incoming wave elevation is also causalized.
Therefore, any real-time calculation of the excitation force
using the wave elevation time series is only an approximation
of what is actually experienced by the floater [4]. One more
issue in this method is the need to conduct the wave elevation
measurement upstream of the location of the WEC as the
wave elevation measurement is not easily attainable in the
vicinity of the WEC – especially for multidirectional sea
waves – which makes implementing this method in real time
even more complex. Another method to obtain the excitation
force values in real time is to measure the hydrodynamic
pressure applied at the wetted surface area of the floater [1].

Recently, several wave excitation force estimation tech-
niques have been reported in the literature. A linear state
observer to estimate the wave excitation torque of theWaveS-
tar WEC is presented in [5]. The linear observer is part of an
overall servo-tracking control problem in which the floater
velocity is manipulated to track a predetermined reference
velocity using the estimated excitation torque. Although the
control strategy has been tested experimentally, a simpli-
fied WEC model has been used to construct the observer,
i.e., nonlinear dynamics is not involved. In [6], an extended
Kalman filter is used to estimate the wave excitation forces
using measurements of the hydrodynamic pressure at various
points of the floater wetted surface along with the floater’s
position. No control force is applied, i.e., the floater is freely
oscillating. The proposed estimator requires numerous pres-
sure transducers, which might exacerbate the computational
complexity of the estimator. An estimation technique based
on floater hull pressure measurements along with the floater’s
heave displacement and acceleration measurements is intro-
duced in [7]. The reported method lacks an explicit mech-
anism to handle measurement noise. A linear Kalman filter
estimator coupled with a random walk model is discussed
in [8]. The Kalman filter is based on a linear WEC model,
in which the floater motion states (i.e., position and velocity)
along with the power take-off (PTO) control force measure-
ment via a load cell is fed to the estimator. The estimator
goodness is verified experimentally. The same authors dis-
cussed a receding horizon estimator using the same set of
measurement signals. A slightly different wave excitation
force estimator that utilizes a linear Kalman filter with a
harmonic oscillator model synthesizing the excitation force
is reported in [9]. A similar approach was extended to collec-
tively estimate the wave excitation force affecting each single
WEC device in an array of WECs [10]. An unknown input
observer (UIO) is proposed in [11] to estimate the excitation
force and the floater velocity using measurements of the

displacement and PTO current. The method utilizes a sim-
plified linear model of the WEC with frequency-independent
hydrodynamic functions. The observer gain is determined
using an H∞ optimization technique. The method generally
produced satisfactory results in nominal condition; however,
the performance deteriorated significantly when parameter
perturbations were applied. Another UIO technique, in which
only the position measurement is required, has been reported
in [7]. The method uses a linearized model of the WEC,
and a linear matrix inequality (LMI) formulation of the H∞
optimization technique – previously deployed in [11] – is
used in an attempt to minimize the effect of the derivative
operator on the estimation accuracy. The method performs
well for sea states with large amplitudes and low frequencies,
whereas it has produced significantly higher estimation errors
for waves with low amplitudes and high frequencies.

In this work, a nonlinear state estimator based on an
extended Kalman filtering approach to estimate the wave
excitation force, the floater’s heave displacement, and veloc-
ity is proposed. A comprehensive nonlinear wave-to-wire
model of the WEC is deployed that includes the viscous drag
force and the friction force. The proposed estimator requires
only the real-time measurement of the PTO three-phase sta-
tor currents, which makes the technique easy to implement.
Moreover, the absence of mechanical sensors improves the
implementability of the proposed estimation technique. Also,
owing to their confined physical footprint, absence of moving
parts, and relatively low cost, electric transducers are more
suitable for hardware redundancy, which further enhances the
system reliability. The introduced estimation technique inher-
ently and effectively handles measurement noise associated
with current transducers (CTs). The highly nonlinear friction
force that might result from the movement of the system
parts against each other is modeled using a continuous and
differentiable version of the well-known Coulomb friction
model with viscous and Stribeck components. Similar to the
method in [8], the wave excitation force is modeled as a
random walk process with a drift. The viscous drag force
is modeled using Morison’s equation, in which the real-time
water surface velocity is computed without the need for wave
elevation measurement. The goodness of the state estimators
under investigation has been assessed through simulations as
part of a holistic wave-to-wire WEC system. That includes
analyzing the effect of sea wave characteristics, parametric
uncertainties, measurement noise, and electric loading sce-
narios. The paper is organized as follows: Section II discusses
the wave-to-wire model of the point absorberWEC. The state
estimators are derived in Section III. The proposed estimators
are assessed via computer simulations in Section IV. Finally,
conclusions are drawn in Section V.

II. POINT ABSORBER WEC MODEL
In this study, a direct-drive-based semi-submerged point
absorber WEC is investigated, as shown in Fig. 1. The forces
acting on the point absorber oscillating body (floater) in the
heave degree of freedom of motion can be expressed using
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FIGURE 1. Point absorber WEC system schematic.

Newton’s second law of motion [12] as

fh(t)+ fpto(t) = ma(t), (1)

where fh(t), fpto(t), and a(t) are the hydrodynamic force,
PTO force, and heave acceleration of the oscillating body,
respectively. The parameter m represents the total mass of
the floater, the permanent magnet linear generator (PMLG)
translator, and the interconnecting tether.

A. WAVE-FLOATER HYDRODYNAMIC MODEL
The hydrodynamic force is composed of the following forces:

fh(t) = fex(t)+ fr (t)+ fb(t)+ fd (t), (2)

where fex(t), fr (t), fb(t), and fd (t) are the wave excitation,
radiation, buoyancy, and drag forces, respectively. The wave
excitation force is modeled in the time domain as the convo-
lution of the excitation kernel function kex(t) and the wave
surface elevation ξ (t),

fex(t) = kex(t) ∗ ξ (t) =
∫ t
0 kex(τ )ξ (t − τ )dτ. (3)

The frequency-domain counterpart of (3) can be represented
as

Fex(iω) = Kex(iω)4(iω), (4)

where Fex(iω) and 4(iω) are the Fourier transform of
the wave excitation force and wave elevation, respec-
tively. The function Kex(iω) is the wave-to-excitation force
FRF. The boundary element method (BEM) numerical tool

WAMIT is used to compute Kex(iω) for the range of wave
frequencies under study. The numerical solution obtained
from WAMIT is fitted to a proper transfer function, such
as [2], [3]

Fex(s) = Kex(s)4(s),

=
bmsm + bm−1sm−1 + . . .+ b0
ansn + an−1sn−1 + . . .+ a0

4(s), (5)

where bm, bm, an−1, an−1, . . . , a0, b0 represent the transfer
function parameters, in which m and n are the order of the
transfer function numerator and denominator, respectively.
The variable s is the Laplace complex variable. Similarly,
the radiation force is modeled as

fr (t) = −m∞a(t)−
∫ t

0
kr (τ )v(t − τ )dτ. (6)

Here, m∞ and kr (t) are the added mass resulting from the
water–floater interaction and the radiation kernel function,
respectively. The radiation integral is approximated by∫ t

0
kr (τ )v(t − τ )dτ ≈ Crγ r (t),

γ̇ r (t) = Arγ r (t)+ Brv(t), (7)

where γ r (t) is the radiation auxiliary state vector, and Ar ,
Br , and Cr are the radiation force state matrices. The buoy-
ancy force fb(t) is modeled as a function of heave displace-
ment z(t), where the buoyancy stiffness coefficient Sb is the
constant of proportionality,

fb(t) = −Sbz(t). (8)

VOLUME 8, 2020 49825



M. Jama et al.: Wave Excitation Force Estimation Using an Electrical-Based Extended Kalman Filter for Point Absorber WECs

According to Morison’s equation, the viscous drag force
fd (t) of a floating body is modeled as a quadratic function
of the relative velocity between the floater and the water
surface [13],

fd (t) = −0.5ρAwCd |v(t)− vf (t)|
(
v(t)− vf (t)

)
, (9)

where ρ, Aw, Cd , and vf (t) are sea water density, floater
submerged surface area, viscous drag coefficient, and water
surface heave velocity, respectively. Figure 2(a) depicts the
viscous drag force as a function of the floater–wave relative
velocity.

FIGURE 2. System nonlinear forces: (a) viscous drag force;
(b) discontinuous and continuous PTO friction forces.

B. DIRECT-DRIVE PTO MODEL
The floater is tethered to a direct-drive PTO system placed on
the sea floor. The PTO system consists of a surface-mounted
PMLG and a restoring spring module, as shown in Fig. 1. The
PMLG is responsible for converting the reciprocating heave
motion of the floater to electrical power and simultaneously
controlling the motion of the floater for optimum power
absorption [14]. If one assumes that the permanent mag-
nets are placed in the machine translator, which reciprocates
linearly with respect to the stationary stator coils, the flux
linkage ψs(t) at the stator can be modeled as a function of
the floater heave displacement z(t),

ψs(t) = ψm cos
(
π
pw
z(t)

)
, (10)

where ψm and pw are the flux linkage amplitude and the
machine pole pitch, respectively. According to Faraday’s law,
the electromotive force (emf) e(t) induced at the stator is
given by

e(t) = −
dψs(t)
dt

. (11)

By substituting (10) in (11), the instantaneous three-phase
emf voltages are derived as functions of z(t) and v(t) [14]:

ea(t) =
πψm

pw
sin
(
π

pw
z(t)

)
v(t), (12)

eb(t) =
πψm

pw
sin
(
π

pw
z(t)−

2π
3

)
v(t), (13)

ec(t) =
πψm

pw
sin
(
π

pw
z(t)+

2π
3

)
v(t). (14)

The three-phase stator terminal voltage can be written in
vector form as

vs,abc(t) = eabc(t)− Zs(t)is,abc(t), (15)

where eabc(t) is three-phase emf voltage vector, iabc(t) is the
stator three-phase current vector, andZs(t) is the PMLG stator
synchronous impedance. The surface-mounted PMLGmodel
in the synchronous reference frame is given by [15]

disd (t)
dt
= −

vsd (t)
Ls
−
Rs
Ls
isd (t)+

π

pw
v(t)isq(t), (16)

disq(t)
dt
= −

vsq(t)
Ls
−
Rs
Ls
isq(t)−

π

pw
v(t)isd (t)−

πψPM

pw
v(t),

(17)

where isd (t) and isq(t) are the direct and quadrature compo-
nents of the stator current, respectively. Similarly, vsd (t) and
vsq(t) are the direct and quadrature components of the sta-
tor terminal voltage. The parameters Rs, Ls, and ψPM rep-
resent the stator resistance, inductance, and the fixed flux
linkage resulting from the permanent magnets, respectively.
The d–q components of the stator current and voltage are
obtained using the Park–Clarke transformation [16], e.g.,

is,dq(t) = T (t)>is,abc(t), (18)

vs,dq(t) = T (t)>vs,abc(t), (19)

where

T (t) =
2
3


cos(

π

pw
z(t)) − sin(

π

pw
z(t))

cos(
π

pw
z(t)−

2π
3
) − sin( πpw z(t)−

2π
3
)

cos(
π

pw
z(t)+

2π
3
) − sin( πpw z(t)+

2π
3
)

 .
(20)

The PMLG electromagnetic force fem(t) is evaluated as a
function of the quadrature stator current as

fem(t) =
3πψPM
2pw

isq(t). (21)

By controlling the stator quadrature current isq(t) using power
converter modules, the electromagnetic force fem(t) can be
manipulated, resulting in adjusting the motion of the floater
to be in resonance with the wave excitation. Depending
on the capabilities of the deployed power converter circuit
and the sophistication of the associated control strategy,
a near-optimum operation of the WEC can be achieved.
As shown in Fig. 1, three types of loading scenarios are
implemented in this study: three-phase resistive loading,
three-phase diode rectifier loading, and three-phase boost
rectifier loading. All three loading schemes produce electro-
magnetic force fem(t) with a damping effect; thus, fem(t) is in
phase with the floater velocity v(t) [14], [17]. The restoring
spring force frs(t), along with the gravitational force, supports
the downward movement of the floater at wave troughs.
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Also, it keeps the tether connecting the floater and the
PMLG’s translator well stretched, preventing unsynchronized
movement between the two oscillating parts of theWEC [12].
The restoring force frs(t) is modeled as a spring force with a
restoring spring coefficient Srs:

frs(t) = −Srsz(t). (22)

The friction force between the moving parts of the WEC
can be modeled using the well-known Tustin model, which
combines the Coulomb friction model with viscous and
Stribeck effects [18], i.e.,

ff (t) = −Fnµd sgn
(
v(t)

)
− µv|v(t)| sgn

(
v(t)

)
−Fn(µs − µd )e

−( |v(t)|vs
)2 sgn

(
v(t)

)
, (23)

where Fn, µd , µv, µs, and vs are the normal force,
the dynamic coefficient of friction, the viscous coefficient
of friction, the static coefficient of friction, and the Stribeck
velocity, respectively. The friction force model in (23) is
nondifferentiable because of the discontinuity present in the
Coulomb friction component (i.e., at v(t) = 0). Therefore,
a continuous and differentiable approximation of the Tustin
friction force model is needed. In [19], the following contin-
uous velocity-dependent friction model is proposed:

ff (t) ≈ −Fnµd tanh
(
αv(t)

)
− µvv(t)

−Fn(µs − µd )e
−( |v(t)|vs

)2 tanh
(
αv(t)

)
. (24)

The tuning parameter α determines the rate of increase of
the friction force from zero to the value of static friction.
Dynamic models of the friction force described in (23)
and (24) are shown in Fig. 2(b). The summation of the PMLG
electromagnetic force fem(t), the restoring force frs(t), and the
friction force ff (t) make up the force contributed by the PTO
system, fpto(t), depicted in (1).

C. WAVE-TO-WIRE WEC MODEL
The overall wave-to-wire nonlinear model of the system in
continuous state space form can be expressed as

ẋ1(t) = x2(t), (25)

ẋ2(t) =
1

m+ m∞

[
fex(t)− Crx3(t)− (Sb + Srs)x1(t)

−0.5ρAwCd |x2(t)− vf (t)|
(
x2(t)− vf (t)

)
−µv|x2(t)| sgn

(
x2(t)

)
− Fnµd sgn

(
x2(t)

)
−Fn(µs−µd )e

−( |x2(t)|vs
)2 sgn

(
x2(t)

)
+
3πψPM
2pw

x5(t)
]
,

(26)

ẋ3(t)=Arx3(t)+ Brx2(t), (27)

ẋ4(t) = −
u1(t)
Ls
−
Rs
Ls
x4(t)+

π

pw
x2(t))x5(t), (28)

ẋ5(t) = −
u2(t)
Ls
−
Rs
Ls
x5(t)−

π

pw
x2(t)x4(t)−

πψPM

pw
x2(t),

(29)

y(t) = x(t), (30)

where the state vector is x(t) = [x1(t), x2(t), x3(t), x4(t),
x5(t)] = [z(t), v(t), γ r (t), isd (t), isq(t)], the system input
vectors are u1(t) = vsd (t) and u2(t) = vsq(t), and the
output vector is y(t) = [x1(t), x2(t), x3(t), x4(t), x5(t)]. The
wave radiation effect is modeled using the fourth-order linear
model γ r (t) ∈ R4×1. Therefore, the state and output vectors
are x(t), y(t) ∈ R8×1.

III. DERIVATION OF KALMAN-FILTER-
BASED ESTIMATORS
In this section, three state estimators are derived: the proposed
electrical-based extended Kalman filter (E-EKF) estimator,
a mechanical-based extended Kalman filter (M-EKF) estima-
tor, and a linearized version of theM-EKF estimator. All three
estimators are designed to primarily estimate the floater’s
heave displacement, velocity, and wave excitation force.

A. DISCRETIZATION OF THE WEC MODEL
The system can be represented by the following generic
discrete nonlinear model:

xk = f k−1(xk−1,uk−1,wk−1), (31)

yk = gk (xk , σ k ), (32)

wk ∼ (0,Qk ), (33)

σ k ∼ (0,Rk ). (34)

The functions f k−1 and gk are nonlinear state and measure-
ment functions at time instants k − 1 and k , respectively.
The state function estimates the system states at k using the
state vector xk−1, the input vector uk−1, and the process noise
vector wk−1 evaluated at k − 1. The process noise vector wk
and the measurement noise vector σ k are modeled as white
noise with zero mean and known process noise and measure-
ment noise covariance matrices of Qk and Rk , respectively.
Because the wave excitation force is meant to be estimated
using other measured variables, the excitation force at k is
modeled as a simple random walk process with drift [8], i.e.,

fex,k = fex,k−1 + Tsεk−1, (35)

where Ts is the process sampling time and εk−1 is the random
walk drift at k − 1, and it is modeled as a Gaussian noise
process with zero mean. By updating the state equations
in (25)–(30) to incorporate fex,k , the modified state vector
evaluated at k is represented as xk = [x1,k , x2,k , x3,k , x4,k ,
x5,k , x6,k ] = [zk , vk , γ r,k , fex,k , isd,k , isq,k ] ∈ R9×1. The pro-
cess noise vector wk = [w1,k ,w2,k ,w3,k ,w4,k ,w5,k ,w6,k ] ∈
R9×1. By using the backward Euler method, the set of differ-
ential equations in (25)–(30) are transformed to the following
difference equations:

x1,k = x1,k−1 + Tsx2,k−1 + Tsw1,k−1, (36)

x2,k = x2,k−1 +
Ts

m+ m∞

[
x4,k−1 − Crx3,k−1

−(Sb + Srs)x1,k−1

−0.5ρAwCd (x2,k−1 − vf ,k−1)|x2,k−1 − vf ,k−1|
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−Fnµd tanh (αx2,k−1)

−Fn(µs − µd )e
−(
|x2,k−1|

vs
)2 tanh (αx2,k−1)

−µvx2,k−1 +
3πψPM
2pw

x6,k−1
]
+ Tsw2,k−1, (37)

x3,k = x3,k−1 + Ts
[
Arx3,k−1 + Brx2,k−1

]
+Tsw3,k−1, (38)

x4,k = x4,k−1 + Tsw4,k−1, (39)

x5,k = x5,k−1 +
Ts
Ls

[
− u1,k−1 − Rsx5,k−1

+
πLs
pw

x2,k−1x6,k−1
]
+ Tsw5,k−1, (40)

x6,k = x6,k−1 +
Ts
Ls

[
− u2,k−1 − Rsx6,k−1

−
πLs
pw

x2,k−1x5,k−1
πψPM

pw
x2,k−1

]
+ Tsw6,k−1, (41)

y1,k = x5,k + σ1,k , (42)

y2,k = x6,k + σ2,k . (43)

The excitation force random walk drift εk−1 in (35) is

FIGURE 3. State estimator block diagrams: (a) E-EKF estimator; (b) M-EKF
estimator.

replaced with the system noise variable w4,k−1 in (39). More-
over, the discretized version of the continuous friction model
depicted in (24) is used instead of (23).

B. PROPOSED E-EKF ESTIMATOR
The nonlinear systemmodel described in (36)–(43) is utilized
to derive the E-EKF estimator. The E-EKF estimator is fed
with the measured three-phase stator currents (using CTs)
after transforming them to their d–q counterparts (ĩsd,k and
ĩsq,k ) using (18) and the stator voltages in the d–q reference

frame (vsd,k and vsq,k ) computed by the adopted PTO control
strategy, as shown in Fig. 3(a). The Jacobian matrix of the
state function f k−1 is computed with respect to the state
vector xk−1 as follows:

Fk−1 =
∂f k−1
∂xk−1

=



∂f1,k−1
∂x1,k−1

∂f1,k−1
∂x2,k−1

∂f1,k−1
∂x3,k−1

. . .
∂f1,k−1
∂x6,k−1

∂f2,k−1
∂x1,k−1

∂f2,k−1
∂x2,k−1

. . .
. . .

∂f2,k−1
∂x6,k−1

∂f 3,k−1
∂x1,k−1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

∂f6,k−1
∂x1,k−1

∂f6,k−1
∂x2,k−1

∂f6,k−1
∂x3,k−1

. . .
∂f6,k−1
∂x6,k−1



,

(44)

where the Jacobian matrixFk−1 ∈ R9×9 entries are evaluated
as follows:

∂f1,k−1
∂x1,k−1

= 1,
∂f1,k−1
∂x2,k−1

=Ts,
∂f1,k−1
∂x3,k−1

=01×4,
∂f1,k−1
∂x4,k−1

=0,

∂f1,k−1
∂x5,k−1

=
∂f1,k−1
∂x6,k−1

= 0,
∂f2,k−1
∂x1,k−1

=
Ts(Sb + Srs)
m+ m∞

,

∂f2,k−1
∂x2,k−1

= 1+
Ts

m+ m∞

[
− ρAwCd (x2,k−1 − vf ,k−1)

−αFnµd sech2(αx2,k−1)− µv

−Fn(µs − µd )αe
−(
|x2,k−1|

vs
)2 sech2 (αx2,k−1)

−
2Fn(µs − µd )x2,k−1

v2s

× e−(
|x2,k−1|

vs
)2 tanh (αx2,k−1)

]
,

∂f2,k−1
∂x3,k−1

=
−TsCr

m+ m∞
,
∂f2,k−1
∂x4,k−1

=
Ts

m+ m∞
,
∂f2,k−1
∂x5,k−1

= 0,

∂f2,k−1
∂x6,k−1

=
3πψPMTs

2pw(m+ m∞)
,
∂f 3,k−1
∂x1,k−1

= 04×1,

∂f 3,k−1
∂x2,k−1

= TsBr ,
∂f 3,k−1
∂x3,k−1

= I + TsAr ,
∂f 3,k−1
∂x4,k−1

= 04×1,

∂f 3,k−1
∂x5,k−1

=
∂f 3,k−1
∂x6,k−1

= 04×1,

∂f4,k−1
∂x1,k−1

=
∂f4,k−1
∂x2,k−1

= 0,
∂f4,k−1
∂x3,k−1

= 01×4,
∂f4,k−1
∂x4,k−1

= 1.

∂f4,k−1
∂x5,k−1

=
∂f4,k−1
∂x6,k−1

= 0,
∂f5,k−1
∂x1,k−1

= 0,
∂f5,k−1
∂x2,k−1

=
πTs
pw

x6,k−1,

∂f5,k−1
∂x3,k−1

= 01×4,
∂f5,k−1
∂x4,k−1

= 0,
∂f5,k−1
∂x5,k−1

= 1−
RsTs
Ls

,
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∂f5,k−1
∂x6,k−1

=
πTs
pw

x2,k−1,
∂f6,k−1
∂x1,k−1

= 0,

∂f6,k−1
∂x2,k−1

= −
πTs
pw

x5,k−1 −
πψPMTs
pwLs

,
∂f6,k−1
∂x3,k−1

= 01×4,

∂f6,k−1
∂x4,k−1

= 0,
∂f6,k−1
∂x5,k−1

= −
πTs
pw

x2,k−1,

∂f6,k−1
∂x6,k−1

= 1−
RsTs
Ls

.

The state Jacobian matrix Fk−1 ∈ R9×9 is evaluated at the
posteriori state vector x̂+k−1. The posteriori state vector x̂

+

k−1
and the posteriori estimation error covariance matrix P+k−1
are initiated as x̂+0 = 09×1 and P+0 = 09×9, respectively. The
time update (prediction) equations of the E-EKF estimator are
given by [20]

P−k = Fk−1P+k−1F
>

k−1 +W k−1Qe,k−1W
>

k−1, (45)

x̂−k = f k−1(x̂
+

k−1, uk−1,0), (46)

where P−k is the priori estimation error covariance matrix
and x̂−k is the priori estimated state vector. The process noise
Jacobian matrixW k−1 is computed as

W k−1 =
∂f k−1
∂wk−1

= TsI9×9 ∈ R9×9. (47)

The square matrix I9×9 is an identity matrix and Qe,k−1 ∈
R9×9 is the process noise covariance matrix. The measure-
ment update (correction) equations are

Kk = P−k H
>
k
(
HkP−k H

>
k + DkRe,kD

>
k
)−1

, (48)

x̂+k = x̂−k + Kk
[
yk − gk (x̂

−

k ,0)
]
, (49)

P+k =
(
I − KkHk

)
P−k , (50)

where Kk and Re,k ∈ R9×9 are the Kalman filter gain and
the measurement noise covariance matrices at time instant k ,
respectively. The measurement equation Jacobian matrices
Hk and Dk are defined as

Hk =
∂gk
∂xk
=

(
0 0 01×4 0 1 0
0 0 01×4 0 0 1

)
∈ R2×9, (51)

Dk =
∂gk
∂σ k
=

(
0 0 01×4 0 1 0
0 0 01×4 0 0 1

)
∈ R2×9. (52)

The E-EKF estimator requires real-time information about
the water surface velocity to evaluate the viscous drag force
in (26). Therefore, a one-sample delayed estimate of the
excitation force f̂ex,k−1 is fed back and the wave elevation
ξ̂k−1 is estimated using the reciprocal of the wave-to-force
transfer function 1/Kex(s) described in (5). By differenti-
ating ξ̂k−1, the water surface velocity v̂f ,k−1 is estimated,
as shown in Fig. 3(a). Despite the modeling inaccuracies
associated with Kex(s), this approach is a low-cost alternative
to installing equipment specifically dedicated to measure ξk
and/or vf ,k in real time. Furthermore, the drag force fd,k is sig-
nificantly smaller in magnitude than other dominating hydro-
dynamic forces (e.g., fex,k and fb,k ); therefore, a trade-off
between modeling fidelity and cost is tolerable. Similarly,
the measured three-phase stator currents are transformed to

their d–q counterparts via feeding back the estimated heave
displacement ẑk−1 to be used by the Park–Clarke transform.

C. M-EKF ESTIMATOR
TheM-EKF estimator receives measured heave displacement
readings using a linear position transducer and the computed
PMLG electromagnetic force fem(t), as depicted in Fig. 3(b).
The state equations in (36)–(43) are modified to be only con-
fined to the system’s mechanical dynamics through omitting
the PMLG state equations described in (40) and (41). As a
result, the state equation in (37) is adjusted accordingly to
include the PMLG electromechanical force fem,k denoted as
the system input uk :

x1,k = x1,k−1 + Tsx2,k−1 + Tsw1,k−1, (53)

x2,k = x2,k−1 +
Ts

m+ m∞

[
x4,k−1 − Crx3,k−1

−(Sb + Srs)x1,k−1
−0.5ρAwCd (x2,k−1 − vf ,k−1)|x2,k−1 − vf ,k−1|

−Fnµd tanh (αx2,k−1)

−Fn(µs − µd )e
−(
|x2,k−1|

vs
)2 tanh (αx2,k−1)

−µvx2,k−1 + uk−1
]
+ Tsw2,k−1, (54)

x3,k = x3,k−1 + Ts
[
Arx3,k−1 + Brx2,k−1

]
+Tsw3,k−1, (55)

x4,k = x4,k−1 + Tsw4,k−1, (56)

yk = x1,k + σ1,k . (57)

The corresponding Jacobian matrix for the M-EKF
estimator is

Fk−1 =
∂f k−1
∂xk−1

=



∂f1,k−1
∂x1,k−1

∂f1,k−1
∂x2,k−1

∂f1,k−1
∂x3,k−1

∂f1,k−1
∂x4,k−1

∂f2,k−1
∂x1,k−1

∂f2,k−1
∂x2,k−1

∂f2,k−1
∂x3,k−1

∂f2,k−1
∂x4,k−1

∂f 3,k−1
∂x1,k−1

∂f 3,k−1
∂x2,k−1

∂f 3,k−1
∂x3,k−1

∂f 3,k−1
∂x4,k−1

∂f4,k−1
∂x1,k−1

∂f4,k−1
∂x2,k−1

∂f4,k−1
∂x3,k−1

∂f4,k−1
∂x4,k−1


.

(58)

Similar to the E-EKF estimator derived in Section III-B,
the estimated state vector and the estimation error covariance
matrix are initiated as x̂+0 = 07×1 and P+0 = 07×7. The
M-EKF estimator covariance matrices Qm,k−1 ∈ R7×7 and
Rm,k ∈ R7×7 are adequately tailored. The estimator’s mea-
surement Jacobian matrices are

Hk = Dk =
(
1 0 01×4 0

)
∈ R1×7. (59)
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D. LINEAR KALMAN FILTER ESTIMATOR
The linear Kalman filter (KF) estimator shares the same
input signals as the M-EKF. It is derived by linearizing
the system state-space model in (53)–(57). By omitting the
drag force and friction force dynamics, the resultant linear
time-invariant (LTI) model is

xk = Alxk−1 + Bluk−1 + wk−1, (60)

yk = C l lk + σk , (61)

where

Al =
(
Ad Bd
01×6 1

)
, Bl =

(
Bd
0

)
, C l =

(
Cd 0

)
.

The state matrices Ad , Bd , and Cd are the discrete versions
of the following continuous state matrices:

A =

 0 1 01×4

−
Sb + Srs
m+ m∞

0 −
Cr

m+ m∞
04×1 Br Ar

 ∈ R6×6,

B =

 0
1

m+m∞
04×1

 ∈ R6×1, C =
(
1 0 0 0 0 0

)
∈ R1×6.

By initializing the posteriori estimate of the state vector as
x̂+o = 07×1 and the posteriori estimation error covariance
matrix as P+o = 07×7, the state estimate (x̂+k ) is computed
at every sampling instant using the following equations [20]:

P−k = AlP+k−1A
>
l + Qml,k−1, (62)

Kk = P−k C
>
l (C lP−k C

>
l + Rml,k )

−1, (63)

x̂−k = Al x̂
+

k−1 + Bluk−1, (64)

x̂+k = x̂−k + Kk (yk − C l x̂
−

k ), (65)

P+k = (I − KkC l)P−k , (66)

where P−k , P
+

k , and Kk are the priori error covariance matrix
at k , posteriori error covariance matrix at k , and the KF
gain at k , respectively. The matrices Qml,k−1 ∈ R7×7 and
Rml,k ∈ R7×7 are the process and measurement noise covari-
ance matrices of the linearized KF, respectively.

IV. RESULTS AND DISCUSSION
A. SIMULATION SETUP AND PERFORMANCE METRICS
The performance of the developed state estimators is ana-
lyzed through simulations performed in Simulink/MATLAB.
A point absorber WEC with a single-body cylindrical floater
is implemented. The design parameters of the investigated
WEC system are listed in Appendix A.

Different performance metrics are deployed to assess
the goodness of the developed state estimators. The first
is the normalized mean square error (NMSE), which mea-
sures the discrepancy between the true and estimated states.
Here, the true excitation force fex,k is the one actually expe-
rienced by the floater in the WEC plant, and it is computed
using the model described in (5), whereas the floater’s true
velocity is computed using the WEC wave-to-wire model

depicted in (25)–(30). The root mean squared error (RMSE)
is also used to measure the estimator accuracy along with the
estimation error deviation from zero. To check whether the
developed estimators produce unbiased estimates, estimation
bias (EB) is deployed. A newmetric is proposed in this study:
the excitation energy percentage error (EEPE). This metric is
introduced to assess how much wave excitation energy is lost
as a result of the estimation technique compared to the true
available excitation energy. The EEPE is calculated as

EEPE(%) =
Eex − Êex

Eex
× 100, (67)

where Eex and Êex are the true and estimated excitation
energies, respectively. The true excitation energy is computed
as Eex = Ts

∑m
k=1 fex,kvk , whereas the estimated incident

energy is Êex = Ts
∑m

k=1 f̂ex,k v̂k . The EEPE metric gives a
compound measure of the estimation accuracy for both the
excitation force and the floater’s heave velocity. The upper
limit of the summation m is the simulation run time duration.

FIGURE 4. Performance of the E-EKF, M-EKF, and KF estimators under an
irregular sea state of Hs = 3.5 m and Tp = 15 s and a linear (resistive)
load: (a) excitation force estimates; (b) estimation error.

B. EFFECT OF SEA ENVIRONMENT CHARACTERISTICS
The developed estimators are tested under various irregular
sea states with different significant heights Hs and peak
periods Tp. The irregular sea states are generated using the
JONSWAP spectrum. Initially, the PMLG is connected to a
three-phase resistive load (linear load) with per phase resis-
tance of Rl = 5 �. An irregular sea state of Hs = 3.5 m and
Tp = 15 s is applied and the state estimator performances are
examined. As shown in Fig. 4, all three estimators managed
to estimate the wave excitation force adequately, although
the linearized KF estimator produced a higher (by almost
a factor of 2) estimation error, as shown in Fig. 4(b). The
enlarged portion of Fig. 4(a) showcases the performance of
the estimators at the instant when the friction force reaches
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TABLE 1. Applied irregular sea states (SS) generated using the JONSWAP spectrum.

FIGURE 5. Performance of the E-EKF, M-EKF, and KF estimators under an
irregular sea state of Hs = 3.5 m and Tp = 15 s and a linear (resistive)
load: (a) heave velocity estimates; (b) estimation error.

its maximum value – in the vicinity of zero floater velocity
(v(t) ≈ 0 m/s). The E-EKF estimator outperformed the
other two estimators in terms of the excitation force esti-
mation accuracy, producing an NMSE value of 0.95 com-
pared to 0.92 and 0.83 for the M-EKF and linearized KF,
respectively. In terms of velocity, all three estimators pro-
duced accurate estimates (as shown in Fig. 5) with a slight
advantage for the E-EKF estimator with an NMSE score
of 0.99, compared to scores of 0.98 and 0.96 for the M-EKF
and KF estimators, respectively. As depicted in Fig. 5(b),
the E-EKF estimator generated a significantly less noisy
estimate (dashed line) compared to the other estimators.
As a result of its superior performance in estimating the
wave excitation force and floater’s heave velocity, the E-EKF
estimator produced a low EEPE score of 3.85%, whereas
the M-EKF and KF estimators scored 6.28% and 31.08%,
respectively.

To further analyze the developed estimators, various poly-
chromatic sea states with varying significant height Hs and
peak period Tp values are applied. Table 1 summarizes the
characteristics of the deployed sea states. In Fig. 6, the per-
formance of the three estimators in estimating the wave
excitation force is compared using four different performance
metrics, namely, NMSE, EB, RMSE, and EEPE. The E-EKF

FIGURE 6. State estimator performance in estimating the wave excitation
force under various sea-state conditions.

estimator outperformed the other two estimators with a min-
imum NMSE score of 0.79 and a maximum score of 0.95,
as shown in Fig. 6(a). The estimation error of the proposed
E-EKF characterized by the NMSE is influenced by the
sea-state power level Jw, where the estimator scores higher
NMSE for energetic sea states (e.g., SS3, SS7, and SS8). All
three estimators proved to be unbiased, as shown in Fig. 6(b).
Both E-EKF and M-EKF estimators managed to gener-
ate estimates with relatively low estimation error variance
(i.e., RMSE < 15 kN) compared to the linearized KF esti-
mator (i.e., RMSE > 25 kN), as depicted in Fig. 6(c). More-
over, the RMSE scores show that the E-EKF and M-EKF
estimators are independent of the sea-state characteristics.
As shown in Fig. 6(d), the E-EKF estimator exhibited supe-
rior performance in terms of the EEPE metric with a mini-
mum score of 3.85% and maximum score of 8.73%. Lower
EEPE values are attributed not only to higher NMSE scores
for the wave excitation force estimates but also to higher
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FIGURE 7. State estimator performance in estimating the WEC heave
velocity under various sea-state conditions.

NMSE scores (i.e., NMSE > 0.99) for the floater velocity
estimates, as shown in Fig. 7(a). Furthermore, the E-EKF
estimator proved to be less prone to measurement noise.
This is particularly evident in its RMSE scores (i.e., RMSE
< 1×10−3 m/s) compared to the other two estimators shown
in Fig. 7(c).

C. SENSITIVITY TO MODELING MISMATCHES
Modeling inaccuracies and mismatches are a common prob-
lem in complex nonlinear systems – and WECs are no dif-
ferent. The proposed state estimator is further tested against
linear and nonlinear perturbations in a system plant model
in (25)–(30). The viscous drag force is perturbed linearly by
varying the drag coefficient Cd by ±15% from its nominal
value Cd = 1, as shown in Fig. 8(a). The friction dynam-
ics are set to zero in both the plant and estimator models.
A relatively slow sea state of Hs = 2.2 m and Tp = 14 s
is applied and the performance of the three developed esti-
mators is examined using EEPE as a metric. The E-EKF
estimator outperformed the other two estimators with EEPE
≤ 2%, as shown in Fig. 8(b). However, the rate of change
of EEPE over the perturbation range for the E-EKF estimator
is greater than that of both the M-EKF and KF estimators.
Hence, the E-EKF estimator is more sensitive to the linear
perturbation in the drag force, which is beneficial when Cd
decreases. The opposite is true for higher frequency sea states
(i.e., Hs = 2.2 m and Ts = 9 s), in which the E-EKF
estimator is less sensitive to linear variations in the drag
force, as shown in Fig. 8(c). Similarly, the friction force is

FIGURE 8. E-EKF, M-EKF and KF estimator performances under linear
perturbations: (a) ±15% perturbations in fd (t); (b) EEPE score for a slow
sea state under perturbations in fd (t); (c) EEPE score for a fast sea state
under perturbations in fd (t); (d) ±15% perturbations in ff (t); (e) EEPE
score for a slow sea state under perturbations in ff (t); (f) EEPE score for a
fast sea state under perturbations in ff (t).

perturbed linearly by ±15% while keeping a nominal drag
force setting and the estimator performances were compared,
as depicted in Fig. 8(d). By applying both slow and fast
traveling sea states, the E-EKF estimator exhibited more sen-
sitivity to variations in the friction force compared to the other
estimators, although scoring lower EEPE values, as shown
in Figs. 8(e) and 8(f).
Subsequently, nonlinear perturbations were applied on the

plant’s friction force model, particularly, the friction Stribeck
effect component. As shown in Fig. 9(a), by varying the
Stribeck velocity vs, the level of nonlinearity at low velocity
values can be varied. For an irregular sea state of Hs =
2.2 m and Tp = 14 s, all three estimators maintained almost
a fixed EEPE value for vs > 1 m/s, where the E-EKF
estimator produced superior performance compared to the
M-EKF estimator, as shown in Fig. 9(b). The value of EEPE
of the E-EKF and M-EKF estimators gradually drops for
vs < 1 m/s. For the more rapid sea state (Hs = 2.2 m
and Ts = 9 s), the E-EKF and M-EKF estimators are
less sensitive to changes in vs. Nevertheless, both estima-
tors suffer from a sharp drop in EEPE for vs < 0.5 m/s
(Fig. 9(c)).

D. SENSITIVITY TO MEASUREMENT NOISE
Having concise knowledge of the characteristics of the noise
associated with measured quantities that describe the current
state of the physical phenomena is one of the most important
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FIGURE 9. E-EKF, M-EKF and KF estimator performances in estimating
fex,k under nonlinear parametric perturbations in the friction force
Stribeck velocity vs.

aspects of designing state estimators. Unlike process noise,
measurement noise is usually readily characterized in the
information provided by sensor and transducer manufactur-
ers. Precise characterization of the noise that might con-
taminate the measured signals facilitates the process of
tuning the noise covariance matrix Rk . Despite adequate
pre-deployment tuning of Rk , measurement noise could be
induced by external factors such as vibration and electro-
magnetic interference. Here, the E-EKF estimator is fed with
three-phase stator current measurements is,abc(t) using CTs,
as shown in Fig. 3(a). Nominally, the CT measurement noise
is modeled as white noise with zero mean and a variance
of 1 × 10−4 A, indicating low noise contamination. This
is demonstrated in Fig. 10(a), where the measured phase
stator current is plotted with and without measurement noise.
White noise of zero mean and 1 A variance is applied to
the three-phase stator current measurements and the cor-
responding effect on the E-EKF estimator performance is
examined. As shown in Fig. 10(b), both noisy and unnoisy
current measurements resulted in the same EEPE score of
approximately 9%. Logarithmically varying the measure-
ment noise variance of the stator currents has no effect on
the excitation force estimation, as it produced a fixed RMSE
value (i.e., RMSE= 11.7 kN), as demonstrated in Fig. 10(c).
This behavior of the proposed E-EKF estimator is based on
the nature of the abc to dq transformation or Park–Clarke
transformation depicted in (20), which not only transforms
the three-phase synchronous current signals to a couple of
low-frequency signals but also acts like a low-pass filter

FIGURE 10. E-EKF estimator performance under varying CT measurement
noise variance: (a) Noisy and unnoisy stator phase current;
(b) accumulated excitation energy for true E-EKF estimate (noisy) and
E-EKF estimate (unnoisy); (c) RMSE of the E-EKF wave excitation
estimates under varying current measurement noise.

FIGURE 11. M-EKF and KF estimator performance under increasing
displacement measurement noise variance: (a) RMSE of the excitation
force estimate; (b) RMSE of the heave velocity estimate.

for signals with frequencies much higher than the rotating
reference frame frequency. Therefore, regardless of the mea-
surement noise characteristics, the noise will be filtered out
by the d–q transformation, rendering the E-EKF estimator to
be immune to measurement noise.

Unlike the E-EKF estimator, the mechanical-based estima-
tors (i.e., M-EKF and KF) are prone to noise contained in
heave displacement measurements. A translational position
sensor is utilized to measure the floater heave displacement.
The underlying nominal measurement noise is modeled as
white noise with zero mean and a variance of 1 × 10−6 m,
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TABLE 2. E-EKF, M-EKF, and KF estimator performances in estimating the wave excitation force under three different loading scenarios.

FIGURE 12. E-EKF estimator performance under different loading
scenarios: (a) PTO electromagnetic force; (b) excitation force estimates;
(c) estimation error.

indicating low noise contamination. The performance of both
M-EKF and KF estimators under varying measurement noise
variance is investigated and the results are shown in Fig. 11.
It is clear that, as the noise variance increases, the M-EKF
estimator performance in estimating the excitation force dete-
riorates, as shown in Fig. 11(a). The linearized KF estimator
exhibited much better performance, being nearly immune to
measurement noise up to variance levels of 1 × 10−4 m.
Both estimators exhibited poor performance in estimating
the floater velocity with increasing noise in the displacement
measurement, as shown in Fig. 11(b).

E. EFFECT OF ELECTRIC LOADING SCENARIOS
To examine the performance of the developed state estimators
under linear and nonlinear loading scenarios, three loading

scenarios are considered: three-phase resistive loading,
three-phase diode rectifier loading, and three-phase boost
rectifier loading, as depicted in Fig. 1. These loading scenar-
ios generate an electromagnetic force with only a damping
effect [14], [17]. A sea state of Hs = 3 m and Ts = 12 s
is applied and the estimator’s goodness is assessed under the
aforementioned loading scenarios. The three-phase resistance
Rl is set to 5 �, whereas the boost rectifier is loaded with
a resistance of Rdc = 50 �. Figure 12(a) showcases the
resultant PTO force for the three adopted loading circuits. The
corresponding excitation force estimate of the E-EKF estima-
tor under different loading scenarios is plotted in Fig. 12(b).
The E-EKF estimator produced accurate estimates of the
excitation force with NMSE> 0.92 for all loading scenarios.
The performance of the E-EKF estimator along with the other
M-EKF and linearized KF estimators subject to different
loading scenarios is summarized in Table 2.

V. CONCLUSION
An E-EKF estimator capable of estimating the wave excita-
tion force and the floater’s heave displacement and velocity
is proposed in this work. A holistic nonlinear wave-to-wire
dynamic model was utilized to embed the possible nonlin-
ear dynamics resulting from drag and friction force– in the
framework of the estimator. The estimator offers a good bal-
ance between estimation accuracy and ease of implementa-
tion, only requiring real-time measurement of the three-phase
PMLG stator currents. Using a one-sample delayed estimate
of the floater displacement, the three-phase currents are trans-
formed to the more noise-immune synchronous reference
frame. Also, the excitation force estimate can be used to
estimate the water surface velocity needed for computing
the viscous drag force in real time. All the aforementioned
measures assist in avoiding to need to use dedicated wave
elevation measuring techniques, which helps in reducing the
system’s costs. Another benefit of using electrical transducers
(e.g., CTs) is the fact that they are more suitable for hardware
redundancy, which in turn can be used in fault diagnosis
and tolerance applications. One drawback of the proposed
technique is that the quality of the measured current signals
depends not only on the quality of the transducers used
but also on the goodness of the designed estimator. More
work needs to be done to further evaluate the effectiveness
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of the proposed estimation technique, e.g., using it with
sub-optimal amplitude and phase control strategies, in which
much more aggressive linear and nonlinear dynamics are
encountered.

APPENDIX I. WEC DESIGN PARAMETERS
A. HYDRODYNAMIC PARAMETERS
Ts = 1 × 10−5 s, m = 30189 kg, ρ = 1025 kg/m3,
Aw = 19.64 m2, m∞ = 28518 kg, Sb = 197370 N/m,

Cd = 1. Ar =


−3.2914 −7.9461 −7.7067 −4.2272

1 0 0 0
0 1 0 0
0 0 0 1

,

Br =
(
1 0 0 0

)>,
Cr =

(
14745 52918 41145 0

)
.

a0 = 0.1271, a1 = 1.631, a2 = 7.566, a3 = 9.093, a4 =
20.21, a5 = 12.4, a6 = 18.81, a7 = 6.233, a8 =
7.279, a9 = 1.046, a10 = 1.
b0 = −1.03 × 10−12, b1 = 4.537 × 105, b2 = 7.712 ×
105, b3 = 1.465 × 106, b4 = 1.624 × 106, b5 =
1.48 × 106, b6 = 1.182 × 106, b7 = 5.935 × 105, b8 =
3.549× 105, b9 = 8.216× 104, b10 = 3.711× 104.

B. POWER TAKE-OFF (PTO) SYSTEM PARAMETERS
Srs = 60000 N/m, Fn = 12000 N, µd = 1, µv = 2, µs = 2,
vs = 1 m/s, α = 10, Rs = 2 �, Ls = 25 mH, ψPM =
19.8 Wb, pw = 45 mm, Rl = 5 �, Rdc = 50 �.

C. ESTIMATORS DESIGN PARAMETERS
Qe = q′e ∗ qe,
qe = [1 × 10−10, 1 × 10−10, 1 × 10−10, 1 × 10−10, 1 ×
10−10, 1× 10−10, 2× 104, 1× 10−2, 1× 10−2],
Re = diag(re),
re = [1×10−3, 1×10−3, 1×10−3, 1×10−3, 1×10−3, 1×
10−3, 1× 10−3, 1× 10−1, 1× 10−2],
Qm = q′m ∗ qm,
qm = [1×10−5, 1×10−5, 1×10−9, 1×10−9, 1×10−9, 1×
10−9, 1× 1010],
Rm = diag(rm),
rm = [100, 1 × 10−9, 1 × 10−9, 1 × 10−9, 1 × 10−9, 1 ×
10−9, 1× 10−9],
Qml = q′ml ∗ qml,
qml = [1×10−5, 1×10−5, 1×10−9, 1×10−9, 1×10−9, 1×
10−9, 5× 105],
Rml = 200,
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