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ABSTRACT Image recognition in complex scenes is a big challenge in computer vision. Manifold learning
has become one of the most popular tools in the application of data dimensionality reduction and image
recognition due to its efficiency in retrieving the intrinsic geometric features of image data. In this paper,
we propose a new manifold feature extracting model based on the nonnegative matrix factorization (NMF)
for image clustering in various scenes. In this model, Pearson distance with multiple manifold regulation
constraints are adopted as the objective function to derive NMF based learning algorithms for the feature
capturing of high dimensional data. With a variable neighborhood size in the learning, the proposed model
can learn the linear features and at the same time learn the local similarity of images in multi-scale
neighborhoods of a graph space. For different settings of learning parameters λlx and λsx , tests show that
the proposed algorithms can efficiently retrieve low dimensional structures of images. Test results on four
different image datasets demonstrate that the algorithms can achieve the state of art performance on the
clustering of images in different types of scene.

INDEX TERMS NMF, local representation, manifold regularization, multi-scale learning, feature extracting.

I. INTRODUCTION
Neural networks-based feature extracting for images has
been widely applied in pattern recognitions. However, due
to the complexity of different scenes of sample data, pre-
vious networks often have poor solutions [1], [2]. The
performance of algorithms was improved by constructing
multi-layer or graph neural networks-based learning mod-
els [3]–[5]. Dimension reduction of data is an essential
step for feature extraction. By exploiting different models
and their compounding setting of parameters, a wide range
of algorithms were proposed to obtain low dimensional
data features. Nonnegative matrix factorization is one of
the most popular data dimensional reduction methods for
parts-based feature representation [6], [7]. From NMF, many
interesting algorithms have been developed for image clus-
tering and classification [8]–[11], including graph regular-
ized NMF algorithms [26], [27] and deep neural network
based NMF algorithms, which focus on the extraction of low
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dimensional features with intrinsic geometric structures in
sample data [29]–[32]. For these algorithms, investigations
have shown that unsupervised multi-layer and graph regular-
ization techniques can be utilized for image recognitions in
various complex scenes, where the introducing of manifold
approaches were a significant improvement to the efficiency
of the algorithms. In manifold learning, traditional algorithms
include Laplacian Eigenmaps algorithm (LE) [17], Locally
Linear Embedding (LLE) [18], and Isometric Feature Map-
ping (ISOMAP) [19], from which many important learning
methods, such as Hessian-based locally linear embedding
(HLLE) [20], the log Riemannian exponential map expressed
in tangent space algorithm (LOGMAP) [21], and other mani-
fold regularized algorithms [22]–[25] have been derived. All
these algorithms were motivated by the idea of similarity
embedding of graph nodes in a neighborhood. Meanwhile,
by constructing similarity graph or similarity matrix for dif-
ferent views of sample data, multi-view learning has been
proposed recently to improve the existing manifold learn-
ing algorithms, which is becoming a more important type
of methods to recognize complex scene images [40]–[43].
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In general, these models show that incorporating manifold
regularization with different constraints can obtain more effi-
cient representation of sample data.

However, test results show that for the LLE, the size of
neighborhood determines the topological structures of sam-
ple data. If a neighborhood is too small or too big, the mani-
fold features of data cannot be described by the locally linear
embedding. The manifold structures of data in a small neigh-
borhood can only be described by the similarity or invariance
of nearest neighbors, that is, in this neighborhood, any two
nodes will be similar but these nodes may not have the
linear combination relation. On the other hand, when using
manifold learning for classification or clustering, most cur-
rent graph regularized NMF algorithms focused on learning
the local invariance in a small neighborhood, which cannot
completely obtain the intrinsic structures of objects to handle
the complexity of images in different scenes. In this paper,
we propose a multiscale local manifold constrained NMF
(LMNMF) algorithm, which can learn both locally linear
representation and local invariance of images in different
neighborhood scales to capture the low dimensional geomet-
ric architectures of sample data. The main contribution of this
paper is summarized as follows:

1) A novel model called multi-scale local manifold reg-
ularized NMF is proposed. In this model, NMF based mani-
fold learning algorithms for both locally linear representation
and local invariance of image data with different scales of
neighborhoods are developed to extract the low dimensional
geometric architectures of images in different scenes.

2) The convergent properties of the proposed algorithms
are exploited, which show that the best image clustering result
is obtained only if in the learning, the objective function is
non-increase and its corresponding learning algorithms stably
converge. By adjusting the setting of parameters, the conver-
gence of the objective function and the learning algorithms
can be controlled efficiently.

3) Experimental results on four image datasets are pre-
sented to show the efficiency of the proposed algorithms,
which demonstrate that the proposed method can obtain the
best or close to the best performance than several other fea-
ture extracting algorithms in terms of accuracy (ACC) and
normalized mutual information (NMI).

Fig. 1 shows the basic structure of the proposed model.
In this model, NMF learning is on the whole domain to obtain
the parts-based representation, but locally linear embedding
and local invariance feature learning are in different sizes of
neighborhoods to obtain their corresponding feature repre-
sentations. Feature representations are approximated by the
linear combination of different basis images. Thus, a multi-
scale based manifold learning model is constructed.

The rest of this paper is organized as follows: In
Section II, the related algorithms are presented. In section
III, the Pearson distance based objective function is intro-
duced. In Section IV, the framework of learning algorithms is
developed from the proposed objective function. In Section V,
the complexity of the proposed algorithms is analyzed.

In section VI, experimental results are presented. Finally,
in Section VII, the conclusions are provided.

II. RELATED ALGORITHMS
NMF is to decompose an M × N data matrix Y into two
non-negative matrices A and X such that the product of A
and X (Y = AX ) can correctly approximate the original data
matrix Y, where A ∈ RM×K is called the basis matrix and
X ∈ RK×N is called the encoding or representation matrix of
the original data. Assume that aij is the element of matrix A,
ai is a column vector of A, xjk is an element of matrix X, and
xj is a column vector of X. Frobenius norm is one of the most
popular and relatively simple objective functions to obtain the
error of decomposition, which was as follows:

DivF (Y ,AX) =
1
2
||Y − AX ||2 (1)

From the objective function in Eq. (1), Lee and Seung devel-
oped the following learning rules to decompose the data
matrix into factors A and X [6].

aij← aij
[YXT ]ij
[AXXT ]ij

, xjk ← xjk
[ATY ]jk
[ATAX]ij

(2)

where aij(aij ≥ 0, i = 1, 2, . . ., M , j = 1, 2, . . . ,K ) are the
elements of matrix A and xjk (xjk ≥0, j = 1, 2, . . . ,K ,k =
1, 2, . . . ,N ) are the elements of matrix X.
By imposing extra term to the Frobenius norm in Eq. (1),

graph regularized NMF was developed by Cai et al. [30],

DivF+ (Y ,AX) =
1
2
||Y − AX ||2

+
λ

2

∑
ij

||xi − xj||2w̄ij

=
1
2
||Y − AX ||2 + λTr(XLXT ), (3)

where Tr(XLXT ) = 1
2

∑
ij
||xi − xj||2w̄ij,L = D−W̄ is called

graph Laplacian, D is a diagonal matrix with djj =
∑n

k=1 w̄jk
and w̄jk is from the definition in Eq. (16).

Graph regularized NMF (GNMF) derived from Eq. (3)
aims to learn the local invariance of sample data in a neighbor-
hood based on graph theory, which can enhance the efficiency
of algorithms by learning the intrinsic geometric features of
data. Currently graph regularized NMF has been extended
and extensively applied for data representation, including
dual embedding regularized NMF, Lp smooth NMF, graph-
based discriminative NMF, and so on [12]–[16]. This type
of algorithms has the problem of redundant solutions and
scale transfer problem [33] as graph regularization terms
are incorporated into the objective functions for the con-
straint of local invariance. Based on the GNMF, the original
data Y can be separated into different views Y(1), Y(2),. . . ,
Y(mv). Then graph regularized Multiview learning algorithms
can be developed. For the original data Y, its representa-
tion X in feature subspace has the same separation X(1),
X(2),. . . , X(mv). Then, for any view X(v), it follows that
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FIGURE 1. The block diagram of the proposed learning model.

D(v)
jj =

∑
k w̄

(v)
jk , L

(v)
= D(v)

− W̄
(v)

will be the Laplacian
matrix of the v-th view [41], [42]. Since the original dataset
is separated into different views according to some of the
features of images, this type of algorithms can obtain better
performance on image recognition. However, the cost is that
labelling data into different views may take lots of time.
On the other hand, Graph regularized deep neural network is
a significant extension of the original NMF algorithms [27],
which incorporates traditional deep auto-encoders (DAEs)
with the local variance constraint to generate a graph regu-
larized deep neural network to extract geometric structures
of sample data for image clustering. The deep learning
model shows the promising performance of graph preserving
algorithms [26], [28].

However, current graph regularized algorithms only con-
sider the local invariance of sample data, which has effective
test results on datasets such as COIL20, YaleB, MINST,
PIE, ORL. All images in these datasets are with simple
background. To deal with various real-world data feature
extraction with robustness to complex background images,
a general divergence measurement defined by Amari (called
Amari’s α- divergence) [7] can be introduced:

Divα (Y ,AX) =
∑
ik

yik
(yik/[AX]ik )β−1 − 1

β(β − 1)

+

∑
ik

[AX]ik − yik
β

, (4)

where β = (1+α )/2. The α-divergence was defined in [48].
To simplify the expression, β is introduced to replace α, then
it has the result in Eq. (4). The advantage of this divergence
is that both the differences of yik/[AX]ik and yik − [AX]ik are
measured. By adjusting the setting of β, the derived learning
algorithms can obtain a trade-off between robustness and
accuracy.

III. THE PEARSON DISTANCE WITH MULTIPLE LOCAL
MANIFOLD CONSTRAINTS
For the Amari’s α-divergences Divα(Y ,AX) in Eq. (4), stud-
ies have shown that the variation of parameter β in this
function will determine the robustness and efficiency of algo-
rithms for feature retrieving of different types of sample data.
In the case β = (1 + α)/2, α-divergence is also called Per-
son distance. From this divergence, an interesting objective
function can be defined for the development of learning algo-
rithms [7]. We can incorporate the Person distance with some
specific constraint terms such as the first or second ordered
local similarity to extend the original objective function,
from which some improved learning algorithms can be pro-
posed to obtain further sparsity of components. In this paper,
we consider the following optimization problem. Minimize
a specifically extended α-divergence: local invariance and
linear embedding controlled Pearson distance with β = 2,
which is defined as follows.

DivαM (Y ,AX)

= Divα (Y ,AX)+λXDivα
(
xj,xk

)
+λADivα(ai,aj)

=

∑
ik

{
y2ik/[AX]ik−2yik+[AX]ik

2

}
+λXDivα

(
xj,xk

)
+λADivα

(
ai,aj

)
s.t. aij≥ 0, xjk≥ 0, β 6= 0, β 6= 1,

||aj||2 =
M∑
i=1

aij= 1, (5)

where the parameter λX and λA will determine the effect of
regularization on different scenes or noises of sample data.
For the extra terms in Eq. (5), we constrain Divα(xj, xk ) and
Divα(ai, aj) to enforce the local features of the decomposed
factors. The detail definitions of these terms will be given in
Section IV.
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Applying the gradient descent approach to Eq. (5), we have
the following results:

xjk ← xjk − ηjk
∂DivαM (Y ,AX)

∂x jk
(6)

aij ← aij − δij
∂DivαM (Y ,AX)

∂aij
, (7)

where ηkj and δij are called the learning rates or step size
parameters. The partial derivatives of elements in (6) and (7)
can be computed as the follows.

∂DivαM (Y ,AX)
∂x jk

= xjk

√√√√ M∑
i=1

aij
y2ik

[AX]2ik
+
λX

2
∂Divα(xj, xk )

∂xjk
, (8)

∂DivαM (Y ,AX)
∂aij

= aij

√√√√ N∑
k=1

xjk
y2ik

[AX]2ik
+
λA

2
∂Divα(ai, aj)

∂aij
. (9)

Substituting (8) and (9) into (6), (7) respectively, and set-
ting the step size parameters, the learning rules will be
obtained.

IV. THE PROPOSED ALGORITHMS
In Eq. (5), how to define the extra terms Divα(xj, xk ) and
Divα(ai, aj) for more efficient manifold learning is an impor-
tant research topic. LLE is one the most interesting manifold
learning algorithms for dimensionality reduction of linear
data, which was extensively applied to image classification
and clustering, text recognition, and multi-dimensional data
visualization. LLE is constructed with a simple geometric
intuition, that is, in an s-vertex graph, nodes (or data points)
are sampled from some underlying manifold. Assume that
each node and its neighbors are always closely on a locally
linear patch of the manifold [18], then the learned representa-
tion data points of these nodes in the feature subspace are also
locally linear related with the corresponding coefficients in
the sample data space. Manifold learning focuses on retriev-
ing the geometric structures of images for feature recognition.
To apply learning rules developed from Eq. (8) and Eq. (9)
for manifold learning, we can define the regulation functions
Divα(xj, xk) and Divα(ai, aj) with manifold constraints and
impose them to the objective function in Eq. (5). From the
manifold assumption in [18], [20], for the column vector
yj(j = 1, 2, . . . ,N ) in matrix Y, if they are locally linear
related in some neighborhood, then their corresponding low
dimensional representation vectors xj = [xj1, . . . , xjn]T will
also be in some neighborhood and linearly related each other
with the same coefficients wjk in the high dimensional space.
The cost function of the LLE is defined in a neighborhood
with s nearest neighbors, which assumes that the node xj is
linearly related with all the nodes in the neighborhood. If W
is the weight matrix andwjk is the jk-th element of this matrix,

then the following linear reconstructing error was proposed to
be the objective function [18] for LLE:

LE (W ) =
N∑
j=1

||yj−
s∑

k=1

wjkyk ||
2
2, (10)

s.t.
N∑
k=1

wjk = 1. (11)

Objective function (10) satisfying condition (11) has the fol-
lowing optimal solution:

wi =
Z−1i Ik
ITk Z
−1
i Ik

, (12)

where wi = (wi1, wi2, . . . ,wik )T, Ik = (1, 1, . . . , 1)T, and
Zi = (yj − yk )(yj − yk )

T. To reduce the redundant solu-
tions [33], [34], we assume that the node connections are
only in their corresponding neighborhoods, and the sample
space are separated into l1 neighborhoods, then according
to Eq. (10) and (11), the locally linear regularizing term
LE (W )=dlm(xj, xk ) in the low dimensional feature space
can be defined as follows.

LE (W ) =
N−1∑
j=1

(
||xj−

s∑
k=1

xkwjk ||22

)
,

=

l1∑
s=1

s1∑
j=1

||xj− s1−1∑
k=1

xkwjk ||22


s.t.

N∑
k=1

wjk= 1. (13)

where l1 is the number of neighborhoods, s1 is the number of
elements in a neighborhood. If we only have two elements in
a neighborhood, since

∑n
k=1 wjk= 1, then the linear relation-

ship of elements in the neighborhood will have

dlm
(
xj,xk

)
=

N−1∑
j=1

(
||xj−

s∑
k=1

xk ||22wjk

)

=

N−1∑
j=1

||xj−xj+1||22. (14)

Thus, learning the local invariance of elements in a neigh-
borhood is the special case of learning the locally linear
representation of elements in a neighborhood.
However, as we have mentioned above, if the size of

a neighborhood is too small or too big, the locally linear
embedding of elements may not exit in this neighborhood.
Therefore, we cannot define the similarity measurement
and the locally linear relation in the same neighbor-
hood. The locally linear embedding and the local invari-
ance should be considered in two different scales of
neighborhood.
From the divergence in Eq. (13), a robust locally linear

regularization term can be defined as the following to develop
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the new learning algorithms.

dα_lm(xj,xk )

=

l1∑
s=1

s1∑
j=1

|| x2j∑s1
k=1 xkwjk

−2x j +
s1−1∑
k=1

xkwjk ||22


s.t.

N∑
k=1

wjk= 1. (15)

Spectral graph theory and manifold learning theory show
that nearest neighbor graph modelling can be applied to the
extracting of local geometric structures on a high dimensional
sample dataset. For a graph with s vertices, we assume that
each vertex represents a data point. For each data point yj,
we define its p nearest neighbors and connect them with
edges. w̄jk is defined to be the weight of the jk-th edge. For
any two points yj and yk on a nearest neighbor graph, three
different choices can be used to define the weight matrix W̄
on the graph [30], including:

1. 0-1 weighting,

w̄jk =

{
1, if yj and yk connected
0, otherwise,

2. Heat kernel weighting,

w̄jk =

e
−||yj−yk ||

2

σ , if yj and yk connected
0, otherwis,

and
3. Dot-product weighting,

w̄jk =

{
yTj yk , if yj and yk connected
0, otherwis.

On the other hand, the local invariance in the manifold
space assumes that in a sample data space, if two data points
yj and yk are close in the intrinsic geometry of the data
distribution, the representations of these two points xj, xk
in the feature representation subspace are also close to each
other. These points will be defined in a neighborhood and
connected with edges each other [30]. To build the general
local feature extracting model with different scales, we define
a smaller neighborhood in the linear representation subspace
to capture the local similarity of nearest neighbors in the
neighborhood. The similarity measurement dsm in the low
dimensional feature space is defined as the following:

dsm
(
xj, xk

)
=

N∑
j,k=1

(||xj − xk ||22w̄jk )

=

l2∑
s=1

s2∑
j,k=1

(||xj − xk ||22w̄jk ), (16)

where l2 is the number of neighborhoods in the subspace, w̄jk
is the edge of linking two nodes in a graph, which is defined
with s2 nearest neighbors on the graph. The simplest approach

to define the matrix W̄ is the 0-1 weighting. Similar to the
expression in Eq. (15), the robust similarity measurement can
be defined as follows to develop our learning algorithms.

dα_sm(xj,xk ) =
l2∑
s=1

s2∑
j=1

(
||
x2j
|xk |
−2xj + xk ||22w̄jk

)
(17)

Combining Eq. (15) and Eq. (17) with Eq. (5), the multiscale
representation objective function can be defined as:

DivαM (Y ,AX) = Divα (Y ,AX)+λlxdα_lm
(
xj,xk

)
+λsxdα_sm

(
xj,xk

)
+λAdα_sm

(
ai, aj

)
,

(18)

where the definition of divergence dα_sm(ai, aj) is similar
to dα_sm(xj, xk). In Eq. (18), the locally linear embedding
and local invariance measurements are defined in different
scales of neighborhoods. Thus, the local feature extracting
algorithms for multi-scale representations can be derived as
follows:

xjk ← xjk

√√√√ M∑
i=1

aij
y2ik

[AX]2ik
+λlx

∂dα_lm(xj,xk )
∂xjk

+λsx
∂dα_sm(xj,xk )

∂xjk
, (19)

aij ← aij

√√√√ N∑
k=1

xjk
y2ik

[AX]2ik
+λA

∂dα_sm(ai,aj)
∂aij

. (20)

With the variations of neighborhood size p/s and the learning
parameters λlx and λsx , the algorithms in (19) and (20) learn
different scales of manifold features, which is possible to
capture more complex geometric structures of images. In the
following section, we will show the application of the pro-
posed algorithms to dimensionality reduction and clustering
of image data with different scenes.

V. COMPLEXITY ANALYSIS
For the proposed algorithms, to simplify the computing for
complexity, we separate the measurements of local invariance
and locally linear embedding into two parts, one is their
difference, another one is their division. In general, they need
O((K + 1)(p + q)N 2) to construct the k-nearest neighbor
graphs, where p is the neighborhood size of local invariance
and q is the neighborhood size of locally linear embedding.
In the learning, the complexity of non-negative matrix factor-
ization is O(MNK 2) since the computing of [AX]jk needs K
extra times, Assume that t is the iteration numbers, then the
overall complexity for the algorithms isO(t(K+1)(p+q)N 2

+

tMNK 2). As p and q are very small numbers, the proposed
algorithm has almost the same cost to the GNMF algorithm.

VI. EXPERIMENTAL RESULTS
A. COMPARED ALGORITHMS AND DATASETS
To show the efficiency of the proposed algorithms, in the
experiments we compare our algorithms in learning rules (19)
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FIGURE 2. The original photos selected from dataset: Labeled Faces in the Wild. Each person has different poses. The hair styles of Heidi are
various, and there are different people in the background of Carlos, which may degrade the recognition results in the learning.

FIGURE 3. The original photos selected from the Caltech 101 image Objects dataset. The images are with complex background and the size of
target objects are various, which leads the difficulties for the image clustering in this dataset.

FIGURE 4. The original photos selected from the UFI large dataset that contains images extracted from real photographs acquired by
reporters. Facial images are with different scenes. The size and the pose of target images are quite different.

FIGURE 5. The variation curves of Divα(Y , AX) in the learning of clustering the UFI large images with λlx = 95 and λsx = 15, 10, 0.1, 0.001, and
0.00001 (From left to right respectively).

and (20)with the following algorithms: Some early developed
algorithms including Normalized Cut (NCut) [35] and Lee
and Seung’s NMF [6]. Some recently developed methods
including GNMF, a Graph regularized Nonnegative Matrix
Factorization method, LGNMF [36], an algorithm employed
local centroid structured constraint to achieve sparse repre-
sentation X, RSNMF [37], a semi-supervised NMF which
was introduced to obtain the robust discriminative represen-
tation, and MPMNMF [43], a multi-view clustering based
NMF algorithm aimed to seek the manifold measurements
in the decomposed factors. Deep WSF [26], a multi-layer
algorithm to learn a hierarchy of hidden representations so
that the final lower-dimensional representation of the data can
be extracted with higher quality. The drawback of this model
is that the datasets must be with mixed attribute knowledge
such as attributes pose, expression, and identity. GR-DNN
[27], a deep neural network with traditional auto-encoding
to obtain the ability of local geometric structure retrieving
of images. In this model, only the local invariance feature of
images is learnt. The images that we have selected for the

tests include the following four datasets, and each image is
resized to 32× 32 gray scale for the neural network training
and clustering. COIL20 database, which contains 20 differ-
ent sample objects. In this set, each object has 72 images,
which were taken 5 degrees apart with the object rotating
on a turntable [44]. The images in this dataset have only the
target object in a picture. Labeled Faces in the Wild (LFW),
a database of face photographs designed for studying the
unconstrained face recognition. The data set is with more
than 13,000 images of faces collected from the web. 1680 of
the people pictured have two or more distinct photos in the
data set [45]. We select this dataset for image clustering to
show the effectiveness of the proposed algorithms in a com-
plex scene since facial images in this dataset have different
occlusions in the front or different persons and scenes on
the background. Unconstrained Facial Images (UFI) large
database. We only select the training dataset for the tests.
The total number of the subjects in this dataset is 530 and an
average number/person of training images is 8.2. The original
size of images is 384× 384 pixels. The images in this set have
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FIGURE 6. The variation curves of Divα(Y , AX) in the learning of clustering the UFI large images with λlx = 0.00001 and λsx = 10, 1, 0.01, 0.001, and
0.0001 (From left to right respectively).

FIGURE 7. The variation curves of Divα(Y , AX) in the learning of clustering the UFI large images with λsx = 0.01 and λlx = 10, 0.1, 0.01, 0.001, and
0.0001 (From left to right respectively).

complex background, the face size also significantly differs
and the faces are not localized [46]. This dataset is selected to
show the effectiveness of the proposed algorithms in a more
complex scene.

The cropped UFI images is selected from the UFI large
dataset. This dataset contains images of 605 people with an
average of 7.1 images per person in the training set. The
images are cropped to an original size of 128 × 128 pixels
with only the face part of these selected persons. Similar to the
images in the COIL20 dataset, the images in this dataset also
have only the target face in a picture but the pose of facial
images may vary arbitrarily.

Caltech 101 dataset. Pictures of objects belonging to 101
categories. About 40 to 800 images per category. Most cate-
gories have about 50 images. The original size of each image
is roughly 300 × 200 pixels [47].

We select these four datasets to test the efficiency of our
algorithms since they have various scenes. Fig. 2, Fig. 3,
and Fig. 4 show the original images selected from the LFW,
Caltech101, and the UFI large dataset respectively, which
clearly show the complexity of the image data in different
scenes. In Fig. 2, the hair styles of Heidi are various, and
there are different people or objects in the background of
Carlos. In Fig. 3, we can see that the images are with complex
background and the sizes of target objects are various. Some
target images are so blurred even our eyes cannot identify
them clearly. In Fig. 4, each person’s facial images are with
different scenes. The size and the pose of target images are
also quite different.

In the tests, we set the model with three scales training.
The NMF model is used to learn the global feature of sample

data for parts-based representation. The locally linear feature
and the local invariant feature can be learned by set different
scales of neighborhood size. Tests results show that the pro-
posed algorithms can learn the best performance with some
specific settings.

B. CONVERGENCE STUDY
The convergence of objective function and the learning rules
will significantly determine the accuracy of proposed algo-
rithms. Thus, it is very necessary to study the convergent
properties of the new learning algorithms when they are
utilized to cluster data. Since aij is normalized in the learning,
we always have 0 ≤ aij ≤1. Thus, element aij will be
non-divergent. We only discuss the convergent properties of
the model for objective function and components xjk (j =
1, 2, . . . ,K , k = 1, 2, . . . ,N ) in the learning.
Fig. 5, Fig. 6 and Fig. 7 show the variations of objective

function in the clustering of UFI large dataset. From Fig. 5,
we can see that in the cases λsx = 15, 10, 0.1, 0.001, and
0.00001 from left to right respectively, the objective function
DivαM (Y,AX) becomes convergent from divergent, where λlx
is fixed with λlx = 95. These figures show that, the proposed
objective function diverges at the cases of λlx = 95, λsx = 15,
10. Obviously, when λsx is too big, the objective function
will be divergent. Thus, the component xjk converges only
if we have smaller λsx . Fig. 6 shows that in thex cases of
λlx = 0.00001, λsx = 10, 1, 0.01, 0.001, and 0.0001,
all the curves of DivαM (Y, AX) are convergent. Meanwhile,
the convergence will become faster when we have smaller
λ values. From Fig. 7 we can see that when λsx = 0.01,
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FIGURE 8. The variation curves of xjk in the learning of clustering the UFI-large images with λlx = 95, λsx = 10, 0.1, 0.00001 (from left to
right respectively), 6 elements are selected from the encoding matrix to present the convergence of the algorithm.

FIGURE 9. The variation curves of xjk in the learning of clustering the UFI large images with λlx = 1, 0.1, 0.00001 (from left to right
respectively), λsx = 0.00001. 6 elements are selected from the encoding matrix to present the convergence of the algorithm.

FIGURE 10. The clustered images by the proposed method on UFI large dataset with λlx = 95, λsx = 0.00001.

λlx = 10, 0.1, the objective function is divergent. With the
decrease of λlx the objective function begins to converge.
When λsx is fixed, the smaller λlx will lead better conver-
gence of objective function. Test results in Fig. 7 show when
λlx ≥ 0.01, the objective function may diverge. Decreas-
ing λsx, then the learning becomes convergent. In general,

the convergence of objective function and learning updates
may not guarantee the learning to obtain the best clustering
result, but if the objective function and/or learning updates
diverge, the clustering certainly cannot obtain the best cluster-
ing result. Fig. 10 shows that the best clustering result on UFI
set is obtained only when λlx = 95, λsx = 0.00001. In this
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FIGURE 11. The clustered images and the corresponding variations of xjk in the learning of the proposed method on
COIL20 dataset with λlx = λsx = 0.00001.

FIGURE 12. The clustered results when we map the feature data into
two-dimensional data space in the learning of the proposed method on
UFI dataset with λlx = 95, λsx = 0.00001.

case both the objective function and the learning algorithm
are convergent. Thus, the setting of parameters is important
for the clustering.

Fig. 8 and Fig. 9 show the variations of different elements
xjk in the clustering of image data, which indicate that the
proposed algorithms have the case of divergence since the
curves in the first sub-figure of Fig. 8 are always going up
with the increase of the iterations. To study the convergent
properties of this algorithm, all the xjk in X are selected
arbitrarily to present. This figure also shows that with the
decrease of λsx , the learning becomes convergent gradually.
Fig. 9 shows the non-divergence of the algorithms when
we have relatively small λlx and λsx settings. The left sub-
figure in Fig. 9 shows that the learning converges at about the

iteration of 100, but for the right two sub-figures, although the
learning of xjk are not divergent, the curves are not converging
to fixed points. They are with oscillation in the learning. Test
results show that when the variations of elements are with
oscillating or divergence, the algorithm cannot obtain high
clustering accuracy. On the other hand, by comparing the
results in Fig. 6 and Fig. 9, in the case of λlx = λsx =

0.00001, the objective function converges but the variations
of xjk are with oscillating, which indicate that the convergence
of objective function may not guarantee the convergence of
learning algorithms.

C. CLUSTERING RESULTS
The experiments were running on Windows 10 operating
system, Intel(R) Core(TM) i5-7200 CPU with 2.50 GHz,
2.71 GHz, 4.00 GB main memory. For the proposed algo-
rithms, including decomposition and clustering, it takes
about 2.35 minutes to process 100 images. For the
COIL20 images, it totally takes about 35.8 minutes, for the
LFW images, it takes about 315.06 minutes, for the Cal-
tech101 images, it takes about 146.87 minutes, for the UFI
images, it takes about 112.17 minutes, and for the cropped
UFI images, it takes about 110.95 minutes to finish the learn-
ing and image clustering.

Fig. 10 shows one of the clustering results of images on
UFI large dataset. We list the clustered images in a sequence
with 10 images for each row, and we only show the clus-
tering results on 200 facial images of this set. The results
in Fig. 10 indicate that, under the given conditions, the pro-
posed model can learn very good feature representations and
clustering since almost all the images are clustered correctly,
only about 12 facial images are in wrong positions in total
200 facial images (facial images with blue boxes are in wrong
clusters).
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FIGURE 13. The variations of clustering accuracy for different settings of λsx and neighborhood size r1 on three
different datasets with fixed λlx = 95 and similarity neighborhood size r2 = 2.

TABLE 1. The average clustering metric OFACC on different datasets (%).

TABLE 2. The average clustering metric of NMI on different datasets (%).

In Fig. 11, sub-figures (a), (b) show the clustering results
of images (we only select 100 clustered images to show the
test results, 10 images for each object), and sub-figure (c)
shows the variation curves of xjk in the feature extracting

on COIL20 dataset when λlx = λsx = 0.00001. The
results indicate that all the images are clustered correctly.
The right sub-figure shows that all the selected xjk converge
after 30 iteration learning. This figure is provided to show
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the relationship between the convergence and the clustering
results. Comparing with the convergence curves in Fig. 9,
when λlx = λsx = 0.00001, the learning does not diverge
but the curves are oscillating. Test results show that in this
case, the clustering results on UFI large dataset is not the
best result. The best clustering results are obtained when
λlx = 95, λsx = 0.00001 on this dataset. The last sub-
figure in Fig. 8 shows that in this case, all xjk are converging
gradually. Thus, the convergence of learning is significantly
related to the clustering accuracy. Fig. 12 shows the clustered
results of UFI-Large data when the feature data are mapped
in to a two-dimensional space, from which we can see that
in general, most images are clustered to the correct clusters.
But few of them are in wrong clusters. Some images are not
in any clusters, which are the outliers of clustering. Since its
time consuming to label and reduce all the image data for
low dimensional mapping and visualization, we only select
about 600 images, 20 classes to show the test results. In fact,
the results in Fig. 10 are also the visualization of clustered
images on UFI-Large dataset. The only difference is that
we line up the images one cluster by one cluster in one
dimensional space, but not in two-dimensional data space.
From left to right, Fig. 13 shows the relationship of clustering
accuracy with the parameters λsx and neighborhood size r1
(locally linear embedding) on the datasets UFI large, LFW,
and Caltech respectively (Here the neighborhood size indi-
cates the radius of a neighborhood). In this figure, we set fixed
λlx = 95 and neighborhood size r2 = 2 (local invariance).
The sub-figures in the first-row show that when the similar-
ity measurement parameter is fixed, the proposed algorithm
obtains the best performance at the point λsx = 0.00001.
Increase or decrease this parameter will degrade the accuracy
of this algorithm. The sub-figures in the second-row show
that in the case of the similarity neighborhood size r2 = 2,
the best performance is obtained at the point of the linear
relation neighborhood size r1 = 5. Since in the UFI large
dataset, each person has about 8.2 facial images, considering
all the images of each person to be in a locally linear patch
may obtain the best clustering result. Thus, the radius of
the neighborhood r1 = 5 may have all facial images of
one person in the same neighborhood. For other two sets,
since the number of images for each object is the times of
ten. Therefore, they can obtain the best performance in this
case.

Table 1 and Table 2 show the average of clustering accu-
racy (ACC) and the normalized mutual information (NMI)
for ten time running of each algorithm on each dataset. From
the two tables, it is clear that, by comparing with the state
of art algorithms, the proposed algorithms obtain the best
performance in terms of ACC and NMI in complex scenes,
although the MPMNMF and GR-DNN algorithms can learn
close or better to the proposed algorithms on COIL20 and
UFI cropped datasets. Since in these two sets, they do
not have complex backgrounds, our algorithms obviously
have the advantage of robustness in dealing with various
scenes.

VII. CONCLUSION
In this paper, multi-scale manifold constrained NMF algo-
rithms are proposed to exploit the intrinsic geometric features
of images in different scenes, which can learn a state of art
performance in image clustering. The experimental results
confirm the efficiency of the proposed model. Analysis and
the test results also show that the convergence of the objec-
tive function cannot guarantee the convergence of its corre-
sponding learning algorithms. The convergence of objective
function and the derived learning algorithms are significantly
related to the accuracy of image clustering in various scenes.
In the future, it is necessary to explore the deep structures
of manifold learning for different applications. In general,
the new design of manifold learning with flexible scales
of neighborhoods size provides an efficient approach for
extracting intrinsic geometric features of images in complex
scenes.
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