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ABSTRACT Vessel Monitoring Systems (VMS) are extensively used in the world to provide information on
the vessel’s spatiotemporal distribution, monitor the fishing activities ofmarine fishery andmanage the safety
of vessel navigation. In the traditional VMS, there are some deficiencies in the interaction and real-time
communication between the land system and marine vessel. We present an edge computing-based adaptable
trajectory transmission policy (EC-ATT) for VMS to improve the communication efficiency in this paper.
Firstly, a novel VMS framework named EC-VMS is proposed which composed of four layers. Each vessel
has an edge computing intelligent node to collect data, process and transmit data. Meanwhile, the edge
computing server is set up to enhance collaborative computing between the cloud and the edge, that transmits
data through the Beidou navigation satellite system. Secondly, the EC-ATT utilizes the computing power of
edge nodes to establish an adaptive data transmission mechanism, which reduces redundant data and satellite
communication frequency. Besides, the packet loss feedback mechanism and error checking strategy are
used to ensure the reliability of data transmission. The experimental results show that EC-ATT has better
performance in typical cases, which not only reduces the average communication time but also strengthens
the real-time availability of the VMS.

INDEX TERMS Vessels monitoring systems, edge computing, marine communication, vessel trajectory.

I. INTRODUCTION
Vessel Monitoring Systems (VMS) enable fishery managers
to control and monitor fishing activities, which are widely
used in many countries over the world. In a typical VMS,
the electronic module installed onboard vessels automatically
sends data to the land monitoring center through satellite
communication. The fishery monitoring center receives and
processes the transmitted data to obtain navigation data and
relevant information. Utilizing the information of the vessel
locations along with the vessel movement characteristics in
near-real-time offers many benefits. For examples, it will
improve the quality of logbooks for recovery, facilitate esti-
mation of fishery-independent fishing efforts, improve the
ability of vessel safety protection, enable effective regional
management with an improved understanding of individual
vessel behavior and fleet dynamics, and prompt catch/effort
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reporting [1]. One of the most common, large, and valuable
data in VMS is trajectory data. The collection, tracking, esti-
mation, anomaly detection and prediction of marine vessel
trajectory are fundamental functions for navigation systems
as well as the VMS to improve safety, security, and surviv-
ability in marine navigation.

Nevertheless, there are still some deficiencies in the exist-
ing VMS, especially in real-time performance and maritime
communication, which leads to the inefficient of the system,
and the value of vessel trajectory data cannot be mined out
to meet some advanced application needs. The existing VMS
adopts the centralized computing model, which transmits all
the data of fishing vessels to the monitoring center, and then
processes and analyzes the data. However, due to the lack of
marine communication resources, the data collected by the
terminal equipment cannot be all transmitted to the moni-
toring center, and the communication delay is high, which
cannot meet the needs of high real-time applications. For
instances:
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(1) The advancement of marine communication falls
behind that on land. The traditional marine communication
system provides limited essential services (e.g. ship
identification, speed, tonnage, destination, heading, course,
location, and positioning, etc.) using VHF radio frequencies
such as AIS (Automatic Identification System). It is much
more expensive to use inter-ship satellite communication
than traditional wireless communication. Therefore, for most
small and medium-sized vessels, it is unaffordable [2]. Sen-
sors on vessels will produce a lot of trajectory-dependent
data, however, these data cannot be well utilized by cloud
centers because of the restrictions on transmission.

(2) To detect vessels in the commission of plausible
infringements, fishing activities need to be monitored. This
requires near real-time trajectory data acquisition and trans-
mission so that such data can be processed in the cloud
immediately to identify suspected infringements in time [3].

To address the aforementioned problems, this paper
proposes an edge computing-based adaptable trajectory
transmission policy (EC-ATT) for marine fishery vessel
monitoring systems.

Firstly, a system framework of intelligent VMS based on
edge computing (EC-VMS) is introduced. Each vessel is
equipped with an intelligent node to collect data from the var-
ious vessel terminals. It can send the data to the server or pro-
cess data in real-time. EC-VMS uses the BeiDou navigation
satellite system (BDS), which has been developed by China,
for communication via short messages. Besides, a local edge
computing server is set up on some vessels to process the
data from nearby vessels. This helps in responding quickly to
anomalies at the edge. Meanwhile, the onshore managers can
schedule jobs and find anomalies through these edge servers.

Based on the EC-VMS framework, EC-ATT can not only
improve the efficiency of vessel trajectory data transmission
but also improve the quality of these data received in the
cloud. EC-ATT utilizes the computing and communication
capabilities of edge nodes to establish a unified adaptive
trajectory transmission mechanism in the edge layer and
cloud layer. Relevant algorithms are used to reduce redundant
data and the number of satellite communications. Packet loss
feedback mechanism and error checking strategy are used to
ensure the reliability of data transmission.

Finally, an experimental system is set up based on the pro-
posed policy and framework, which proves its effectiveness.

The following three points are the contributions of this
paper:

(1) To design a new VMS framework based on edge
computing (EC-VMS) to improve the system flexibility and
communication efficiency of traditional VMS.

(2) To propose a novel edge computing-based adaptable
trajectory transmission policy (EC-ATT) to improve the VMS
capability in real-time trajectory data transition and analytics
in the context of limited communication.

(3) Achievement of the better performance of EC-ATT in
comparison to current ones.

II. RELATED WORK
VMS can provide detailed information on the spatiotem-
poral distribution and activities of managed vessels. Some
countries have mandatory regulations on the use of VMS.
In Europe, fishing activities are subject to strict monitoring
by law, and vessels over 15 meters in length must provide
location information every two hours or less to compare the
data transmitted from remote animal sensing [1].

Data transmission delay is an obvious disadvantage of the
existing VMS. The sensors on the vessel generate plenty
of data, but it is impossible to transmit all the data to the
shore in time. So, most previous studies regarding VMS
are limited to post data analytics, for examples, to improve
fishing efficiency [4], to identify and characterize trips [5],
to calculate indices of fishery abundance [6], to detect fishing
behavior [7], and to differentiate the type of fishing gear
used [8]. Another research topic is the assimilation of vari-
ous data sources (e.g. vessel detection system data, satellite
AIS tracking data, and space-borne high-resolution remote
sensing satellite data) from to improve the uniformity of
VMS data [9]. These previous works have limitations in
the calculation and processing of the shipborne terminal.
The performance of VMS, in using satellite communication,
remains the challenge due to the limitation of real-time data
communication capabilities.

The recent progress of low-bandwidth communication in
satellite communication and satellite positioning [10] has
shed light on addressing the challenges. For example, BDS,
developed by China, possesses the capabilities of time ser-
vices, short message communication, and high precision
positioning, etc. Because communication via short message is
relatively cheap, BDS is widely used formarine fishing vessel
monitoring in China [11]. Although there are many methods
to be used in marine communication, However, the real-
time performance and flexibility of the marine information
systems still have defects, which lags behind the systems on-
shore [11]–[14].

Therefore, it is a new method to transfer computing from
cloud to edge. This new computing mode is called edge
computing [15]. It performs some intelligent processing on
the edge of the network, and the calculation takes place near
the data source. Therefore, compared with cloud comput-
ing, it has some advantages in response time, privacy, data
security, bandwidth cost and energy consumption [16]. Some
research results have proved the advantages of edge comput-
ing [17]–[21]. So, in our EC-VMS, the new technology of
edge computing is introduced, which can help us reduce the
traffic and speed up the response.

The advances of the shipborne positioning systems have
generated a lot of spatiotemporal trajectory data, which repre-
sent the moving characteristics of vessels [22]. Many studies
for processing [23]–[25], managing [26]–[28], and analy-
sis [29]–[31] trajectory data have been proposed recently,
which has promoted the wide application of trajectory
data [32]–[36]. Trajectory compression can reduce the data
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FIGURE 1. The EC-VMS architecture.

traffic of VMS. One trajectory compression strategy is offline
compression, which compresses the trajectory after com-
pletely obtained. Another strategy is online compression, that
is to compress the data immediately when the object moves,
to determine whether the newly acquired point should remain
in the trajectory [22]. Online trajectory compression consid-
ers some key factors such as speed and directions, which is
important in our solution. But none of these previous studies
used edge computing to improve the utilization of these data
in VMS.

In this paper, we propose the EC-ATT strategy and
EC-VMS framework, using the latest edge computing and
related technologies, making the VMS more intelligent and
real-time [38].

III. SYSTEM ARCHITECTURE
A. ARCHITECTURE OVERVIEW
As shown in Figure 1, we designed a four layers architecture
of EC-VMS.

1) PERCEPTION LAYER
This layer covers the sensors with their operation systems on
board. The vessels have many heterogeneous sensors, some
of which have high acquisition frequency and can produce
numerous data. The perception layer collects the data of
vessel’s state, trajectory and ocean environment through these
sensors.

2) AGGREGATED LAYER
This layer integrates the data acquired by the perception
layer, transforms, preprocesses and centrally stores the
data. It is connected with nodes of the perception layer
through wired or wireless and adapts to different data
providers.

3) EDGE COMPUTING LAYER
This layer establishes an intelligent computing layer on the
vessels. It can not only run on a single vessel, but also in
the marine ad hoc network. It determines whether the data
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TABLE 1. The data collected in the perception layer.

received by the aggregation layer is processed locally or
forwarded to the cloud.

4) CLOUD LAYER
An onshore management system is deployed in the cloud
center, which is defined as cloud layer. It is used to manage
all received vessel data form the edge computing layer. All
the vessels will be tracked in real-time. It is also used for aid
decision making and emergency response.

B. PERCEPTION LAYER
Table 1 lists the data from different sensors and devices in
the perception layer. It mainly includes the data of fish-
ery production, marine environment, equipment conditions,
video surveillance, and navigation. Various types of sensors
can actively perceive data, and their associated back-end has
certain data conversion and processing capabilities, but the
functions are relatively weak, the platforms cannot commu-
nicate with each other, the data standards are not unified, and
data integration is difficult. Besides, the RFID technology
is used to report the states of the monitored objects with its
capability of self-perception.

C. AGGREGATION LAYER
The aggregation layer is a data channel, which gathers all the
perception layer data and connects the sensors data through
the adapter. It can be used for local network management,
data caching, data transmission, node initialization and sensor
configuration. In modern vessel, sensor data can be shared
through Ethernet network. Data can also be sent through
various wireless protocols such as UWB, ZigBee, Bluetooth
and Wi-Fi.

The aggregation layer provides the caching, which is used
for the temporary storage of data and distributed communica-
tion optimization with the perception layer. The aggregated
caching receives, processes, and stores the raw sample data
from the sensor, and then forwards it when a data request
is received. Some other basic vessel data, such as fishery
facilities data, marine GIS data, logbook data, crew data
and other data, can also be accessed into the aggregation
layer if allowed. Besides, the multi-source heterogeneous
data (such as structured points from GPS, unstructured data
from video monitoring, etc.) processing scheme is estab-
lished. Data can be exchanged and shared among aggrega-
tion layers of different vessels, which provides flexible data
support.

FIGURE 2. The network of the system.

D. EDGE COMPUTING LAYER
A series of onboard devices with computing resources,
storage resources, and communication resources make up the
edge computing layer, which can be seen as a big virtual com-
puter. Based on the aggregation layer, the edge computing
layer makes nodes more autonomous and intelligent. Aggre-
gation layer and edge computing layer can coexist in a single
vessel or vessels network, and they can have functional over-
lap, so they can easily establish a connection through the local
network. In the EC-VMS, the edge computing layer stores,
processes, resamples, calculates and analyzes the received
data, and then gives a fast feedback to the aggregation layer.

A Vessels Edge Computing Server (VECS) is designed as
the larger edge computing layer, it can specify one vessel as
the primary node in the local network, and then manage the
other edge computing nodes in the network. It interacts with
the edge computing layer of each vessel and performs some
advanced tasks. Under the coordination of VECS, vessels can
exchange information with each other and perform specific
computing tasks cooperatively [38]. VECS is responsible for
the determination of the tasks going to the cloud center or the
local vessel.

In the EC-VMS (see Figure 2), only a small amount of
raw sensor data is transmitted to the land directly. To increase
system availability, the edge computing layer relies more on
local data processing and analytics. When the vessel encoun-
ters an emergency and the cloud center is unable to make the
abnormal judgment, danger warning and action instruction in
time, the edge layer can assist decision support and replace
part of the work of the cloud center.

E. CLOUD LAYER
A cloud layer is used for central processing with the advan-
tage of low cost in computing power and storage. However,
the delay caused by inefficient processing and communica-
tion links cannot be ignored as the cloud computing systems
are deployed onshore. A local server is set up specifically to
run the management system to speed up the responses with a
reduction in communication delay [39].

When the edge node is abnormal, the cloud layer should
respond in time, which is a very important management task.
For example, when the vessel makes operations contrary
to the normal, or the communication equipment is invalid,
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the cloud layer can detect and send an alarm in time through
the anomaly detection mechanism.

A GIS is used to visualize the spatiotemporal distribution
of all vessels in the EC-VMS, as well as corresponding
properties including the name, status, location, unique ID, etc.
Bright colors are used to indicate that the vessel may be in an
abnormal state so that the system manager can quickly find
the unusual vessel. Also, the vessel status is updated in time.
When a vessel is lost contact within a specified period, it will
be highlighted in the GIS showing it’s out of touch status. It is
similar for a vessel sailing into the fishing prohibited areas,
it will be blinked synchronously on the map the warning
message will be reported to relevant staff.

IV. EDGE COMPUTING-BASED ADAPTABLE TRAJECTORY
TRANSMISSION POLICY (EC-ATT)
Based on EC-VMS architecture, we adopt a transmission
policy, named Edge Computing-based Adaptable Trajectory
Transmission Policy (EC-ATT) to establish a VMS com-
munication mechanism, which combines the SQUISH (Spa-
tial Quality Simplification Heuristic) trajectory compression
algorithm [40], LDR (Linear Dead Reckoning) algorithm
[41] and reliable transmission strategy.
Definition 1 (Trajectory Point): The trajectory point P

consists of longitude, latitude, and timestamp denoted as P =
(x, y, t).
Definition 2 (Observation Trajectory): The Observation

trajectory TR = {P1,P2, . . . ,Pi, . . . ,Pn−1,Pn} 1 ≤ i ≤ n
represents the collection of points in chronological order.
Definition 3 (Approximate Trajectory): The approximate

trajectory TR′ =
{
Pc1 ,Pc2 , . . . ,Pcm−1 ,Pcm

}
,1 ≤ c1 <

c2 < . . . < cm ≤ n represents the trajectory sequence after
simplification. It is a subset of the observed trajectory TR.
Definition 4 (Euclidean Distance (ED): Euclidean distance

between points P1 and P2 is calculated using Equation 1,
as following:

ED (P1,P2)=
√
(P1 � y− P2 � y)2 + (P1 � x − P2 � x)2 (1)

Definition 5 (Synchronous Euclidean Distance (SED)): B′

represents the same time mapping point of B on trajectory
vector AC, as shown in Figure 3, SED is the Euclidean dis-
tance between B and B′, which is calculated using Equation 2:

SED(B,
−→
AC) = ED

(
B,B′

)
B′ � x = A � x +

B � t − A � t
C � t − A � t

(C � x − A � x)

B′ � y = A � y+
B � t − A � t
C � t − A � t

(C � y− A � y)

(2)

SQUISH is an online space quality heuristic trajectory
compression algorithm [40]. Different from error-based tra-
jectory compression algorithms such as Sliding Window [42]
and Threshold-Guided Sampling [43], SQUISH is based on
satisfying compression ratio to keep tracking feature infor-
mation as much as possible.

SQUISH select the optimal subset tracking points using
the strategy of local optimization, and delete redundant ones

FIGURE 3. Synchronized euclidean distance.

FIGURE 4. The compression process of the SQUISH algorithm.

from the track [40]. Figure 4 demonstrates the compression
process (t0 ∼ t2) in using the SQUISH algorithm. The
dotted line box indicates the tracking points under process-
ing, with a figure showing the priority of the corresponding
point. To determine the priority, every two adjacent points are
connected to form line segments. The SED from the point
to the segment is then calculated, for example, the priority
of P2 equals to SED(P2,

−−→
P1P3). The smaller the priority,

the smaller the SED error caused by deleting the point. The
priority of the endpoint is set to infinity to avoid deletion
when executing the algorithm. EC-ATT uses the SQUISH to
compress the trajectory, because SQUISH can limit the length
of the simplified trajectory by setting the buffer size and has
good performance.

The LDR algorithm is a kind of navigation technology
that can predict the future time position coordinates accord-
ing to the current time position coordinates, heading, speed
and time of the moving object [41]. It is widely adopted in
location-based related services such as vehicles, pedestrians,
and ships. The dead reckoning can effectively reduce the
communication between the mobile object and the server,
thereby save communication resources.

The pseudocode of the algorithm about EC-ATT in the
edge computing cloud layer is shown in Algorithm 1.
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Algorithm 1 EC-ATT (Edge)
Input:

observation trajectory point P t
error threshold θd

Function:
send messages

Begin
1: initial sending queue;
2: initial uncompressed queue;
3: while (received data)
4: if received a retransmit signal then
5: adding missing messages to the sending queue

based on message number;
6: if received the observation trajectory points then
7: if the uncompressed queue is empty then
8: estimate trajectory points by LDR;
9: if estimated value greater than threshold then
10: add observation point to uncompressed

queue;
11: else add observation point to compressed queue;
12: if it’s time window for data transmission then
13: if sending queue is not empty then
14: send message;
15: else if uncompressed queue is not empty then
16: compress trajectory by SQUISH;
17: generate message into sending queue;
18: send message [37];
End

The edge computing layer of EC-ATT consists of three
modules: trajectory simplification, position tracking, and data
retransmission. The position tracking and trajectory simplifi-
cation are carried out synchronously, to ensure the processed
data can be sent in time [44]. The fishing vessel operation
has certain randomness. The crew will change the fishing
route according to their own experience and the surrounding
environment. Therefore, the Gaussian Regression Process,
Neural Networks, and other machine learning algorithms
are not applicable in the current scene. LDR algorithm can
predict the trajectory only according to the base point and
velocity vector, which is simple and efficient. It is used in the
edge computing layer to predict the fishing vessel positions,
written as:

−→
l (t) : t→ lb �

−→p + (t− lb � t)
−→
lV (3)

where
−→
lV is the velocity vector, lb is the prediction base

point [45]. Suppose Pt is the prediction point and P′t is the
observation point, as long as their distance does not exceed
the given error threshold θd , denoted as ED

(
Pt ,P′t

)
< θd ,

no update message will be generated in the edge layer. The
monitoring center on-shore uses the predicted trajectories
to replace the observed ones. The system does not transmit
any data through the satellite meanwhile. Otherwise, it is
considered that the prediction is wrong and the velocity vector
and prediction base point will be revised.

To deal with transmission failure or data distortion caused
by the potential unreliability of Beidou satellite transmission,
the edge layer is required to verify the communication receipt
from the monitoring center. In case of failure, the edge layer
will retransmit the lost packet according to the sent message
sequence number and that in the communication receipt as
well. If the number of the message in the communication
receipt is k, and the number of the transmitted message is i
(i >= k), the lost messages k, k+1, . . . , iwill be retransmit-
ted. The system adopts the FIFO strategy to queue up themes-
sages under retransmission. When the time window for send-
ing messages appears (i.e. the time has passed a minimum
communication interval), the message is taken out from the
queue and transmission. If the communication receipt is not
received (i.e. the aforementioned situation does not occur) the
recent generated update message will be transmitted directly.

When the observation trajectory TR changes frequently,
the SQUISH is used to extract a sub-trajectory TR’ from TR,
and the length of TR’ should match the BDS packet. The
update message along with the TR’ will be transmitted to the
cloud layer when the transmission condition is satisfied.

The pseudocode of the algorithm about EC-ATT in the
cloud layer is shown in Algorithm 2.

Algorithm 2 EC-ATT (Cloud)
Input:
message m

Function:
correction trajectory

Begin:
1: if message distortion then
2: send a receipt
3: else message decoding
4: if network packet loss then
5: send a receipt
6: else
7: correction trajectory
8: update (lb,

−→
lV )

End

The cloud layer mainly adopts both error checking strategy
and packet loss feedback mechanism to ensure the reliability
of Beidou satellite communication.

(1) Error check strategy: When the message is received,
the cloud layer will firstly run XOR processing on all bytes
except for the check digit, and then compare it with the
check code. If they are the same, the transmission is fidelity.
Otherwise, the transmission is discarded and the edge layer
will be notified to retransmit the message.

(2) Packet loss feedback mechanism: For transmitting the
fidelity data, the cloud layer compares the received message
sequence number with the current expected one. If they are
the same, it is considered that there is no packet loss. Other-
wise, the edge layer will be notified to retransmit the data.

The number of satellite communications will be reduced
to save satellite communication resources. The cloud layer
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FIGURE 5. The cloud layer storage content.

FIGURE 6. Prediction trajectory simplification.

will check the occurrence of the above transmission abnormal
situations. If anyone occurs, the sequence number of the mes-
sage that is currently expected to be received will be sent to
the edge, so the message will be re-sent. Otherwise, the cloud
layer will correct the stored trajectory data according to the
content of the message. As shown in Figure 5, the simplified
trajectory stored in the cloud layer consists of three parts,
as follows:

(1) The predicted base point lb and the velocity vector
−→
lV

constitute the first portion of the stored content. The cloud
layer needs to update lb and

−→
lV according to the received

message, and perform trajectory prediction based on the latest
lb and

−→
lV .

(2) The approximate trajectory TR′ composed
of {P1,P2 . . . ,Pi, . . . ,Pn} constitutes the second part of
the stored content. Specifically, TR′ represents a set
of approximate trajectory points arranged chronologi-
cally (Pi � t ≥ Pi−1 � t) since the fishing vessel was in
operation. The black dots indicate the trajectory points com-
pressed by the SQUISH algorithm in the edge computing
layer, and the black square is trajectory point calculated by
the LDR algorithm in the cloud layer. Different from the
predicted trajectory points of the third part, these trajectory
points are corrected, that is, the prediction error is assumed
to be less than the specified threshold θd . At the same time,
since the continuous predicted trajectory points are calculated
according to the same lb and

−→
lV , only the first and last

trajectory points are stored to reduce the redundant infor-
mation and improve the query speed. The deleted trajectory
points are possible to be restored according to the first and
last trajectory points and time without any loss of precision
(see Figure 6).

(3) The predicted trajectory S composed of
{U1,U2 . . . ,Ui, . . . ,Un} constitutes the third portion of the
stored content. Ui is a trajectory sequence calculated based
on the latest predicted base point lb and velocity vector
−→
lV . and. As shown in Figure 7, it is necessary to correct
S according to the content of the message sent from the
edge layer considering the cloud layer cannot guarantee the
accuracy of Ui.

FIGURE 7. Prediction trajectory correction process.

A real-time query function of the trajectory is developed to
better supervise the fishing vessels. The cloud layer can query
the position of all the fishing vessels at any time t . According
to the predicted base time Pn �t and the query time t , the query
can be performed in the following two ways:

(1) t ≤ Pn � t: obtained by linear interpolation of trajectory
points Pi and Pi+1, where Pi � t ≤ t ≤ Pi+1 � t .

(2) t ≤ Pn � t: obtained according to LDR prediction.

V. RESULTS ANALYSIS
A. EXPERIMENTAL SETUP
The experimental data comes from the trajectories of fish-
ing vessels near the East China Sea collected in a VMS,
which manages more than 5000 vessels and is deployed in
Zhoushan City, Zhejiang Province, China. The sampling time
of the trajectory data is 30 seconds, which is generated by
the shipboard BDS intelligent terminal. The data transmis-
sion frequency limit of BDS is 60 seconds. The trajectory
mainly contains information on latitude, longitude, time, and
device number. In this VMS, we installed edge computing
nodes on four vessels and collected the trajectories data from
Mar. to May. 2018, a total of 1,018,412 points. From fig-
ure 8, we can see the distribution characteristics of the four
trajectories data.

Because of the instability of the shipborne positioning
system in the marine environment, there may be abnormal
points in the trajectory data. In our experiment, the mean
speed of the fishing vessels is obtained by calculating the
distance between adjacent trajectory points, and the trajec-
tory points whose mean speed is greater than 20 knots are
deleted. At the same time, due to the unexpected factors in the
transmission and storage system, the trajectory data set will
contain duplicate data, and these duplicate trajectory points
will also be deleted in our experiment.

This experiment verifies the EC-ATT algorithm through
the Beidou simulator (BDSim), which simulates the restric-
tions on minimum transmission interval and message length
of Beidou protocol. When the length of data to be sent over-
steps the protocol, some data will be discarded. Meanwhile,
messages are not allowed to be sent when the minimum
transmission interval is not reached. EC-ATT uses an error
checking strategy and packet loss feedback mechanism to
ensure the reliable transmission of data. For the possible
abnormal situations, our experiment simulates data distortion
and packet loss respectively.
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FIGURE 8. Spatial distribution of four vessels’ trajectory.

B. EXPERIMENTAL RESULTS
Figure 9 shows the process of applying EC-ATT to correct
the trajectory data when an abnormal transmission occurs.
The blue line indicates the complete trajectory data collected
by the shipborne terminal equipment. The green line indi-
cates the trajectory data stored by the cloud layer under
normal communication conditions. The red line indicates the
trajectory data stored under the abnormal communication
condition. Our experiment simulates data distortion during
the second transmission and simulates packet loss during the
fourth transmission. It is obvious that due to an abnormality in
the transmission process, the edge layer cannot transmit the
correct update information in time. Hence, the cloud layer
continues to perform trajectory prediction based on invalid
parameters, thereby causing the red trajectory to deviate from
the correct one. As communication is gradually becoming
a normal state, the edge layer retransmits the lost data, and
finally, the red trajectory gradually approaches the blue tra-
jectory. In the case of normal communication, since the cloud
center can update the data in time, the green track always
approximates the blue one.

The experiment analyzes the trajectory data from three
aspects: trajectory quality, transmission times and real-time
performance. The traditional Fixed-interval Trajectory Trans-
mission Policy (FITT) of VMS transmits data at fixed time
intervals. The comparison of EC-ATT transmission time with
FITT is shown in Figure 10 under the conditions of 30, 50, and
70 meters threshold. The threshold refers to θd in the above
algorithm 1. The vertical axis is communications number,
and the horizontal axis is minimum communication intervals.
With the increasing in communication intervals, the commu-
nication number of FITT and EC-ATT will decrease.

When the communication interval increases, the
probability of EC-ATT to accurately predict all observation
trajectory points will be reduced. Therefore, when reaching
the communication window, EC-ATT needs to transmission,
so the number of communications will close to that of
FITT. If the ED from prediction point to observation one
is within a given error threshold, the prediction is success-
ful, therefore the prediction success rate goes up with the
increasing error threshold, and the number of communi-
cations will decrease. Under different error thresholds and
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FIGURE 9. Transmission exception correction process.

FIGURE 10. Comparison of transmission times.

communication intervals, EC-ATT has fewer communication
times than FITT. It shows EC-ATT is superior to FITT in
saving communication resources. Especially in the case of
commonly used 50-meter threshold and 60-second trans-
mission interval, the communication traffic is decreased by
45.22%.

We also compare EC-VMS with FITT in real-time perfor-
mance. Take trajectory query as an example, FITT transmits
data at regular intervals. If the cloud layer receives data at
time t1, it needs to receive data at time t1+1 before querying
the trajectory points within the two transmission intervals.
Therefore, the minimum delay time of FITT query is 0 sec-
ond, the maximum delay time is the transmission time inter-
val1t, and the average delay time is1t/2 seconds. EC-VMS
adopts a different operation mechanism, which can be used
for real-time queries. The disadvantage is that when the cloud
layer received the update packet, the predicted trajectory will
be corrected, resulting in different query results before and
after, but this error is acceptable.

FIGURE 11. Comparison of real-time performance.

To further illustrate the real-time performance of EC-VMS,
we make statistics on the correction delay time. From
Figure 11, the delay time of EC-ATT enlarges with the
increasing of the minimum communication time interval.
This is because when the interval is large, EC-ATT cannot
send update packet in time, resulting in the longer delay.
Under the same communication condition, if the error thresh-
old is set higher, the real-time performance will be better,
because the trajectory points that need to be corrected will
be reduced. Considering the correction time of EC-ATT is
significantly shorter than FITT. It can be concluded that the
EC-ATT is better than FITT in real-time performance.

To compare the EC-ATT and FITT in data quality,
the Average of Pairs Distance (APD) is used. Given tra-
jectories A {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, APD
represents the mean ED of corresponding points belonging
to the two trajectories as following:

APD (A,B) =
1
n
×

n∑
i=1

ED(a1, b1) (4)

50692 VOLUME 8, 2020



J. Huang et al.: EC-ATT for VMS of Marine Fishery

FIGURE 12. Comparison of trajectory quality.

FIGURE 13. Comparison of quality between predicted and compressed
track segments under EC-ATT_30.

In our experiment, A is the original observation trajectories
and B is the trajectories queried in VMS.

We compared EC-ATT with FITT when the error
thresholds were set to 30 meters, 50 meters, and 70 meters.

As shown in Figure 12, the APD of FITT enlarges grad-
ually with the increase of minimum communication interval.
This is because FIFM transmits data at a fixed communication
interval, and the larger the interval, the fewer trajectory points
are transmitted. TheADP of EC-ATT shows the characteristic
of decreasing first and then increases gradually. The initial
falling trend owing to lots of points are transmitted incorrectly
when the communication interval is small, which requires to
be corrected delaying the response. Therefore, in this stage,
the frequency of LDR is much higher than that of SQUISH,
which makes the error of LDR much greater than that of
SQUISH.

As shown in Figure 13 and Figure 14, when the communi-
cation interval raises, the number of points produced by LDR
goes down, which makes APD decrease.When the increasing
of interval continued, the points generated by SQUISH goes
up, and the ADP increase due to the error generated by com-
pression goes up. Also, the error threshold of EC-ATT will
affect the query error. The experiments show that when the
error threshold is 30 meters, EC-ATT is significantly better
than FITT in trajectory quality.

Figure 15 shows the comparison of normalized EC-ATT
query error, number of communications, and delay time for
different thresholds. The number of communications and
delay times are negatively correlated with the increase of
distance thresholds. It implies that the greater the threshold,
the better the real-time performance and the more commu-
nication resources are saved. However, the query error and

FIGURE 14. Comparison of the proportion of predicted and compressed
track segments under EC-ATT_30.

FIGURE 15. The comprehensive situation of EC-ATT under different
thresholds.

the distance threshold have a positive correlation, that is,
the smaller the threshold, the higher the trajectory quality.

VI. CONCLUSION
To improve the real-time performance and increase the
marine communication efficiency of traditional VMS,
an edge computing-based adaptable trajectory transmission
policy EC-ATT is proposed. Firstly, a new VMS frame-
work based on edge computing named EC-VMS is designed.
EC-VMS establishes an intelligent node on each vessel to
collect data, process and transmit data in real-time. Then,
a VECS is established to process the data of all nodes in the
jurisdiction in real-time, including the state value and position
of the vessels. Hence, VECS enables faster collaborative
computing between the cloud and the edge. Secondly, the
EC-ATT is designed based on the SQUISH algorithm, LDR
algorithm, and reliability transmission strategy, according to
the characteristics of Beidou satellite transmission. We have
installed some experimental equipment on an existing VMS,
which runs in Zhoushan City, China. The experimental results
demonstrate the EC-ATT is better than the original trajectory
transmission policy of VMS in terms of real-time, usability,
and efficiency. We will optimize the EC-VMS framework in
more detail and explore more advanced analytics methods of
vessel data in future work.
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