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ABSTRACT High resolution remote sensing systems provide cheaper and fast way of acquiring images of
power lines. However, such images depicting the details of other complex background objects, noises, and
complicated brightness measurements, make separate extraction of the power lines challenging. This paper
addresses the problem of automatic extraction of power lines from high resolution remote sensing images
obtained from different sources. In order to automatically extract the power lines, we proposed an integrated
Multiscale Geometric Analysis (MGA) approach. First, complementary Gabor and matched filters (MF)
were employed over an image to suppress unnecessary background and noises, and initial discrimination
of the power lines. Then, the filtering output was decomposed in to scale and orientation based subband
coefficients using the Fast Discrete Curvelet Transform (FDCT) so as to access and modify different image
features separately. By employing selective modification operations, well-established power line structures
ready for extraction were derived. Finally the powerlines were extracted with hysteresis thresholding. The
approach was successful in extracting power lines from high resolution images captured in any orientation.
It is robust even when the source image is cluttered, and degraded due to noise and brightness effects. Power
lines represented by weak intensities, crossing bright image regions, changing direction, closer power lines
and those crossing each other, disconnected/broken power lines due to noise and occlusions were all inferred
and extracted successfully. The approach was validated using real test images and the performance measures
showed over 90% average accuracy fitting the ground truth.

INDEX TERMS Automatic extraction, high resolution, MGA, remote sensing image, power line.

I. INTRODUCTION
Power lines are important components of our daily lives. They
need regular maintenance and emergency repairs. Conduct-
ing ground surveying for inspection is labor intensive, time
consuming and expensive [1]. Satellites and aerial vehicles
provide cheaper and fast ways of inspecting them. They allow
capturing the images of the power lines remotely [2]. They
provide potentials for automatic extraction of the power lines
so as to derive fast and up-to-date information. Power lines
are too small to be depicted as images remotely [3], [4] and
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thus require high resolution spaceborne or airborne sensors.
However, these fine resolution sensors capture the fine details
of other objects by mixing up with the power lines. They
capture the details of terrain features, both natural and man-
made, at a time by the same sensor with similar scale, energy
and orientation regardless of size or orientation of those
objects. These make power line extraction challenging and
costy.

There have been studies conducted on extracting power
lines from high resolution remotely sensed images. Most of
the existing approaches were employed on aerial images.
Some of these approaches used specific filtering and image
transformation methods. In [5], line and ratio line detectors
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were proposed to detect and extract candidate power line
pixels from images captured onboard helicopter. The Radon
transform and Kalman filter were then employed over the
extracted candidates to derive the power lines. In [6], a specif-
ically designed filter named pulse coupled neural network
filter (PCNF) was proposed. The filter was applied over an
UAV image to discriminate pixels representing the power
lines. Then, the Hough transform was used to extract the
power lines.

A Series of power line detection algorithms named PLineD
detectors were proposed by [7]. First, EDLine detector and
Edge Drawing algorithms were utilized to detect edge lines
and extract segments. Then, Segments Cut and Segment
Covariance algorithms were used to select candidate line
segments followed by selective preserving of segments using
Group Segments algorithm. Finally, the Parallel Segments
algorithm was used to form the power lines. In [8] power line
extraction from UAV images was carried out based on edge
information. First, image gradient was derived and followed
by Otsu based thresholding. Subsequently, the Hough trans-
form was applied to extract straight lines. Finally using the
K-means clustering, the power lines were filtered. The
Kalman filter was employed for tracking the detected power
lines.

Gabor filtering and Hough transform based power lines
extraction was carried out by [9]. First, Gabor filtering was
employed to remove background noises and then the Hough
transform was applied for straight-line fitting and power line
extraction. The extraction of power lines from high resolution
satellite image (the GeoEye-1) and Google Earth imagery has
also been introduced [3]. The authors first employed Curvelet
transform to enhance the power lines and then edge detection
was used. Finally, the powerlines were extracted using an
improved Radon transform.

A number of morphological filtering based approaches
were also proposed to extract power lines from UAV
derived images. In [10] morphological filters were employed
over matched filtering and first order derivative of Gaus-
sian (FDOG). A Clustering and morphological operations
were also established for power line extraction [11]. The
approach involves DaviesBouldin (DB) index based K-means
clustering, morphological skeletonisation, and region grow-
ing operations followed by the application of geometrical
shape and density index application.

A geometric relationship based approach called the Circle
Based Search (CBS) was employed for power line extrac-
tion [12]. It was implemented over the output of Canny edge
detection and steerable filtering.

Photogrammetric approaches were also employed to
extract power lines from UAV images. In [13] epipolar con-
straints based power line automatic measurement and semi
patch matching methods were used in extracting 2D and
3D power lines from epipolar images. A 3D power lines
extraction method from aerial images was also proposed
using photogrammetric parameters, filtering and cubic grid
points [2].

There are some limitations with the existing methods.
Some of them are not sufficient to extract power lines from
low contrast and very bright image regions. Others fail to
detect the power lines enough from complex back ground,
and unable to discriminate them from similar parallel linear
objects. Moreover, most of the proposed approaches were
employed over aerial images obtained from photogrammetric
planned flight missions. This could be due to the image
resolution and power line’s relative finer diameter. In such
cases, the image capturing process is adjusted so as to obtain
optimum illumination of the power lines. Such approaches
may work well only for images obtained from planned flight.
A potential approach is demonstrated in [3] that it is of
great importance to extend and improve automatic power
line extraction from any aerial or space based images taken
in any orientation given that the images render power lines
information.

This paper proposes a MGA method of automatic extrac-
tion of power lines from high resolution images of any source
captured at any orientation. It is an approach in which image
features are accessed at several scales and orientations, and
selectively investigated. The work is part of the efforts to
address the existing problems and provide a novel approach
of extracting power lines automatically. It is robust even in
the presence of background noise, effective over low contrast
image regions and resist brightness effects. The method can
successfully extract connected power lines oriented to differ-
ent directions.

The remaining part of the paper is outlined as follows.
Section II consists of the theoretical background and the
procedures of the methodology. Section III describes the
implementation of the proposedmethod. Section IV describes
the experimental results with discussions. Conclusions of the
work are given in section V.

II. METHODOLOGY
The proposed approach comprises of three steps (Fig. 1).
In the first step, two complementary filters were used to
enhance the power lines and suppress the unnecessary back-
ground. First, a bank ofGabor filters was defined using appro-
priate parameters and followed by convolving with an input
image. Then the Gabor response subbands with optimum
information content were selected and maximally combined.
Consequently, the output was convolved with a defined (MF).

In the second step, the filtering output of the first step was
decomposed in to multiscale and multiorientation Curvelet
coefficients using FDCT. Then, the coefficients representing
image objects were selectively accessed and modified in a
way that the power line representing coefficients are pre-
served and enhanced. Subsequently, the image was recovered
using inverse FDCT. The third step involves the extraction
and refinement of the power lines from the output of the
Curvelet transform. In this step, the hysteresis threshold-
ing was first used to segment the power lines and then
morphological operations were used to refine the extraction.
The whole experiment was conducted using MATLAB.
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FIGURE 1. Schematic view of the proposed approach.

FIGURE 2. Visualization of 2D gabor filter (a) the sinusoidal wave, (b) the gaussian c) the gabor filter.

A. FILTERING WITH GABOR FUNCTION
Remotely sensed high resolution images are commonly asso-
ciated with complex background and noises. Thus, selective
preserving and enhancement of the structures of target fea-
ture/s is a crucial procedure. Gabor filtering is an effective
approach for image objects discrimination and informa-
tion preservation with multiscale and multidirection tun-
able potentials [14]. It has been successfully applied to a
wide range of image processing applications. In [14]–[16],
the Gabor filters were employed for unsupervised image
segmentation. Recent studies show that the Gabor functions
are gaining momentum in processing remote sensing images.
Gabor filters were used to detect buildings ( [17] and land
cover changes [18], and extract roads [19] from high res-
olution optical images. In [20], texture features from radar
images were extracted with Gabor function and the output
was used to identify rain and backscatter regions effectively.

The Gabor function is a Gaussian envelope modu-
lated by sinusoidal plane wave of complex exponential

(cosine or sine) functions at specific frequency and orien-
tation [21]. For simplicity, assuming that the rotation of the
Gaussian and the sinusoidal are the same, a 2D Gabor filter
is presented in Fig. 2.

In [22]–[24], the normalized 2D Gabor function is defined
mathematically in the spatial domain as (1).

ψf ,θ (x, y) =
f 2

πγη
e
−f 2

[(
x′
γ

)2
+

(
y′
η

)2]
ej2π fx

′

(1)

where ψf ,θ (x, y) is the Gaussian modulated by a complex
sinusoid, x and y are the positions in space, f is the central
frequency (cycles/pixel), θ is the rotation angle, γ and η are
the width along the major and minor axis, respectively; x ′ =
x cos θ + y sin θ and y′ = −x sin θ + y cos θ .

Equation (1) produces a specific band pass ellipse shaped
Gabor filter with specific location and orientation centered
at (f , θ) with axis length proportional to a given frequency
bandwidth (FBW) and aspect ratio (AR). However, the
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representation of complex objects in images rather needs
spatial constellations of several multiresolution Gabor filters.

Thus, self-similar several multi-resolution and multidirec-
tion Gabor filters with varying central frequency and orienta-
tions are derived [25], [26] as:

ψmn (x, y) = a−mψ (x̃, ỹ) (2)

where m and n denote filter’s scale and orientation, respec-
tively; m = 0, 1, . . .M − 1, n = 0, 1, . . .N − 1, and M and
N are the total number of scale and orientation, respectively;
x̃ = a−m (xcosθ + ysinθ) and ỹ = a−m (−xsinθ + ycosθ)
represents the dilation of the mother Gabor filter ψ (x, y) by
a scaling factor a−m and rotation by θ = n∇θ .

In constructing a bank of Gabor filters, the possible combi-
nation of the parameters (f , θ, γ and η) determines the total
number of Gabor filters and how the filter captures the target
features properly. The total number of the required Gabor fil-
ters is derived from the product of the preferred total numbers
of orientation (θ) and the frequency (f ).

Multiscale center frequencies are computed from the pos-
sible total number of the center frequencies. The possible
total number of f for a square image of size N × N where
N is a power of 2 is defined in [14] as log2 (N/2). Then,
specific values of f are generated from a given regularly
spacedwavelengths defined in pixels in increasing order. This
is given as

√
2/2λ, where λ denotes a given wavelength.

By fixing the desired highest frequency (fmax) value, each
of the radial frequency values can be drawn [22], [24], [27].
This is given as:

fk = a−k fmax, k = {0, . . .M − 1} (3)

where fk is the k th bin frequency, fmax = f0 is the desired
highest frequency,M is total number of scales; a is frequency
scaling factor and can be 2 for octave spacing and

√
2 for half

octave spacing.
With respect to orientation, it is commonly assumed that

the spacing of the orientations of Gabor filters is isotropic and
takes a dyadic approach to cover the spatial frequency nearly
uniformly [22]. This is determined as:

θk =
kπ
N

for k = 0, . . .N − 1 (4)

where θk is the k th orientation and N is the total number of
orientations in radians

The AR and the FBW parameters control the effective
areas of Gabor filters. The AR is the ratio of the major
axis (γ ) to the minor axis (η) of the Gaussian. The value
specifies the ellepticity of the Gaussian support and can
control sharpness. The value η = γ = 1 represent circular
shape and η < γ represents unequal dimensional objects in
an image. The FBW is the half response spatial frequency
bandwidth of a Gabor filter relating to the ratio of the standard
deviation of Gaussian factor of the Gabor function and the
wavelength of the cosine part of the Gabor filter described in
pixels.

FIGURE 3. Gabor filter spatial kernels at f = 0.88 and θ = 00;
(a) FBW=2.5 and AR=0.2, (b) FBW=1.2 and AR=0.9.

Both the FBW and AR are application dependent parame-
ters. They can optimally be adjusted to encapsulate the event
of interest [23], [28]. Typical values are in the range of
[0.25, 1] for AR and [0.5− 2.5] for FBW [21], [15]. Fig. 3
presents two samples of Gabor filter kernels. Both filters
have the same central frequency (f = 0.88) and the same
orientation

(
θ = 00

)
. While Fig. 3(a) is derived from FBW =

2.5 and AR = 0.2, Fig. 3(b) is derived from FBW = 1.2 and
AR = 0.9.
It is clearly visible that the Gabor filter kernel with lower

AR but higher FBW provide thinner and longer range higher
amplitude Gabor coefficients suitable for linear objects
enhancement.

Once, the required Gabor filter ψf ,θ (s, t) is defined
enough, the input image I (x, y) is convolved by the 2DGabor
to obtain the Gabor response image [27].

rf ,θ (x, y) = ψf ,θ (s, t) ∗ I (x, y) (5)

where rf ,θ (x, y) is the Gabor response, s and t are the filter
mask coordinates at f and θ .

From the generated Gabor image response, one can con-
sider either all or select the optimum subband/s which be able
to distinguish the target object from the other background
objects.

The magnitude of the Gabor response is commonly used to
determine the optimum Gabor image space [29]. The magni-
tude at each scale and orientation of the Gabor image space is
computed automatically as a summation of the absolute value
of each filtered sub-image [26] as:

E(m,n) =
∑
x

∑
y

|Gmn (x, y)| (6)

where m is the scale and n is orientation with m =

0, 1, . . . ,M − 1 and n = 0, 1, . . . ,N − 1
From the obtained outputs, the required optimum subbands

can then be selected and fused maximally.

B. THE MATCHED FILTERING OF THE GABOR IMAGE
SPACE
Although the Gabor filter can reduce the influence of the
background objects and enhance the target objects based on
the defined parameters, it may not be sufficient to explicitly
represent the geometric structures of target features from
high resolution images associated with different ill-posed
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FIGURE 4. Profiles of the cross-section of three sample power lines in an
image.

problems. Moreover, the maximal combination of the differ-
ent oriented filter responses can introduce some unnecessary
noises. Thus, complementary filters that can further suppress
the background noises and amplify the structures of the power
lines are desirable. One of such approaches is to use MF.

TheMFs are templates of discrete functions whose impulse
responses are similar to the shape of a target object in a
signal or image. A MF is derived from the point of view of
maximizing output amplitudes or can arbitrarily be chosen in
correspondence with the details of the object to be detected
or extracted [30].

MF have widely been used in processing 1 − D sig-
nals as in communication systems [31]. Inspired by the
1 − D applications, researchers extended template object
detection to image object manipulations. The applications in
image processing includes texture discriminations and tar-
get object tracking [32], seismic imaging and event detec-
tions [33], [34], medical analysis [35]–[37], and feature
extraction [38].

The Gaussian function is considered as suitable tem-
plate to approximate features in images based on shapes.
In [36]–[38], the Gaussian template was used to approximate
vessel structures in medical images. Such filters are adaptable
to approximate linear features having Gaussian nature in
remotely sensed images. The power lines are of such features.
They possessed properties like higher reflectance than their
background and intensity profile similar to Gaussian shape
(Fig. 4). These properties can be modelled with the Gaussian
template.

The Gaussian MF is the matching of Gaussian template to
an image where the template is a sub-image that contains the
target object’s shape in the image [39].

This is defined in [35], [36] as:

f (x, y) =
1

√
2πσ

exp
(
−

x2

2σ 2

)
− m,

∀ |x| ≤ tσ, |y| ≤ L
/
2 (7)

where L is the length of the structure to be detect, σ defines
the spread of the intensity profile, t is a constant that defines
the position where the Gaussian curve trails will cut. For more
than 99% of the area under the Gaussian curve lies within the
range of [−3σ, 3σ ]), t is usually set to 3 [37]. And m is the
normalizing value so as the filter has zero mean. It is derived
as in (8).

m =

 tσ∫
−tσ

1
√
2πσ

exp
(
−

x2

2σ 2

)
dx

/(2tσ) (8)

For structures appearing at different orientations, the Gaus-
sian kernel is required to rotate to be able to detect all possible
orientations.

The rotation angle (θn) is determined as:

θn = n · (π/M) ∈ [0, π) , where n = 0, . . . ,M − 1 (9)

where θn is the nth orientation and M is the total number of
orientations in degrees

A number of directional filters can be derived by rotating
from one coordinate system (x, y) to another (u, v) using
geometric transformation:

ki = [u v] = [x y]
[
cos θn − sin θn
sin θn cos θn

]
(10)

where ki is the number of directional filters (Fig. 5).
The neighborhood N is defined as:

N =
{
(u, v) , |u| ≤ 3σ, |v| ≤ L

/
2
}

(11)

The filter response is obtained by convolving the oriented
kernels ki with the input image I (x, y) followed by computing
maximum response over all orientations.

C. THE CURVELET TRANSFORM OF THE MF-GABOR
IMAGE SPACE
Due to the complex nature of high resolution images, the fine-
ness of power lines and themaximal combination ofmulti ori-
ented Gabor filters, resistant noises can still exist. Moreover,
some structures of the power line can still left weak due to
image degradations. In order to extract accurate geometrical
information from the Gabor-MF response image, those limits
are required to be selectively fixed. This seeks a method
of approaching the image at series of disjoint scales and
orientations.

A MGA tool called the Curvelet transform decomposes an
image in to different scales and orientations, and represent
an image as Curvelet coefficients. Based on the magnitude
of the coefficients, any of the scales and the correspond-
ing angles are selected, examined and modified to come up
with the required output. The method allows accessing the
structures via their belonging scale and orientation. It opens
a way to choose only those structures of certain length to
be kept and to suppress all the other structures and noises.
It has been applied for seismic data exploration [40], medical
image processing [41], [42], optical image denoising and
edge preservation [43], image enhancements [44], automated
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FIGURE 5. Sample matching filters oriented to three directions
(
θ = 450,900 and 1350

)
at σ = 2; L = 47.

change analysis [45] and object detection [46] from SAR
images.

The Curvelet transform is a frame of wave packet on
L2
(
R2
)
. Its definition begins with the construction of a

mother Curvelet (ϕ). The translation, scaling and rotation
of this mother Curvelet generate the curvelet frame. The
elements of the translated, scaled and rotated Curvelet fam-
ily provide a partitioned 2D plane [47]. The comprehen-
sive mathematical theory is given in [47], [48]. To draw a
basic background for our analysis, a Curvelet is defined in
the continuous domain using spatial variable (x), frequency
variable (ω), the frequency domain polar coordinates (r, θ),
and two none negative real valued windows: the radial (W )
and angular (V ) windows. A polar wedge represented by Uj
supported by the radial {W (r)} and angular {V (r)} windows
can then be generated as a function of scale (j) and orientation
(θ) in the Fourier domain (12).

Uj (r, θ) := 2
−3j/4W

(
2−jr

)
V
((

2bj/2cθ
)/

2π
)
,

r ≥ 0, θ ∈ [0, 2π) , j ∈ N0 (12)

where N0 denotes the number of scales
The spatial domain ϕj (x), (where x = x1, x2), of the basic

Curvelet element is obtained from the Fourier transform of
Uj. By rotation and translation of this basic Curvelet ϕj (x) at
scale 2−j, angle θj,l at position xj,lk , full Curvelet elements of
different scales and orientations are derived (13).

ϕj,l,k (x) = ϕj,0,0
(
Rθj,l

(
x− xj,lk

))
(13)

where j, l and k corresponds to scale, orientation and posi-

tion, respectively. Rθ =
(

cos θ sin θ
− sin θ cos θ

)
denotes the rota-

tion matrix of angle θ .
The inner product of the Curvelet ϕj,l,k and a function f

provide continuous Curvelet coefficients (14).

C (j, l, k) := 〈f , ϕj,l,k 〉 (14)

For discrete 2D digital images, a discrete transform called
the FDCT was introduced [48]. It takes in a 2D image from a
Cartesian array I [m, n], where 0 ≤ m < M , 0 ≤ n < N (M
and N are dimensions of the array) and return a collection of
digital Curvelet Coefficients CD (j, l, k) indexed by scale j,
orientation l and spatial location k = k1, k2 parameters (20).
The approach is the application of a 2D forward Fourier
transform at scale j and orientation l providing a wedge Uj,l .

The result is then wrapped around the origin and trans-
formed with 2D inverse Fourier transform providing discrete
Curvelet coefficients.

For the discrete Curvelet, band pass trapezoidal localized
window

(
UD
j

)
is defined in the frequency domain using two

windows equivalent to the continuous domain: the Cartesian(
WD

)
and angular

(
VD
)
Windows. The WD at scale j is

derived from the difference of two low-pass windows in the
frequency domain (ω)(15).

WD
j (ω) =

√
82
j+1 (ω)−8

2
j (ω), j ≥ j0 (15)

where 8 is the product of separable low-pass 1D window
8j(ω1, ω2) = φ(2−jω1)φ(2−jω2)
The VD

j (ω) is defined as:

VD
j (ω) = VD

j

(
2bj/2c (ω2/ω1)

)
(16)

From these two windows, the basic UD
j with an equi-

spaced slope tan θl := l.2−bj/2c is defined as:

UD
j (ω) = 2−3j/4WD

j (ω)V
D
j (ω)

= 2−3j/4WD
j (ω)V

D
j
(
Sθlω

)
(17)

where Sθ =
[

1 0
− tan θ 1

]
is Cartesian shear matrix

Then, the scaled, sheared and translated trapezoidal
wedges of corresponding cosine and sine Curvelet coeffi-
cients at each scale as reflection to each other and symmetry
with respect to the origin are generated in the frequency
domain (18). The Corresponding spatial domain is deter-
mined from (19).

UD
j,l,k (ω) = UD

j,0,0
(
Sθlω

)
∗ e−i〈x

j,l
k ,ω〉 (18)

ϕDj,l ,k (x) = ϕ
D
j,0,0

(
STθl

(
x− xj,lk

))
(19)

Consequently, a collection of the Curvelet coefficients,
CD (j, l, k) of an image I [m, n] is obtained with the forward
Curvelete transform (20).

CD (j, l, k) =
0≤m<M∑
0≤n<N

I [m, n]ϕD(j,l,k) (m, n) (20)

where superscript D stands for digital and ϕD(j,l,k) is a digital
Curvelet waveform
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FIGURE 6. Digital curvelet tiling of space and frequency.

FIGURE 7. Curvelets at scale j ; (a)–(c) spatial, (d)–(f) the corresponding
frequency domains.

The returnCD (j, l, k) is a collection of frequency response
coefficients arranged in to Cartesian coronae of four quad-
rants (North, East, South, West) each of which are arranged
from coarse to fine outwards from center and separated in to
rectangular tilings (Fig. 6).

At a given scale, the Curvelets are an oriented needle in
space and a wedge in the frequency domain (Fig. 7) whose
effective support is a rectangle obeying a parabolic relation
of width ≈ length2 [49]. At high frequency, they are fine
and looks like needle shaped elements (Fig. 7(c)) and at
low frequency they are none directional coarse elements
(Fig. 7(a)).

The values of the Curvelet coefficient are determined by
how the Curvelets are aligned in the image. Higher coef-
ficients are expected when a Curvelet is accurately aligned
to certain curve in an image. Fig. 8 shows an example of
alignment of a Curvelet in relation to a curve in an image.
In Fig. 8(a), the Curvelet is quite far from the curve align-
ment and therefore one can expect coefficient of zero value.
In Fig. 8(b), the Curvelet intersected the curve and hence the
coefficient would be a small none zero value. In Fig. 8(c),
the Curvelet is almost perfectly aligned with the curved edge
and therefore a high coefficient value is expected.

After selective manipulation of the Curvelets, the required
output is recovered by employing inverse Curvelet trans-
form (21).

I (m, n) =
∑

j≥j0,l,k

CD (j, l, k)ϕDj,l,k (m, n) (21)

FIGURE 8. Alignment of curvelets in relation to curves.

Two implementations of FDCT were designed by [48]:
the Unequally Spaced Fast Fourier Transform (USFFT) and
wrapping methods. They differ mainly in the choice of spatial
grid used to translate the Curvelets at each scale and orien-
tation. The USFFT method is used to rotate the translation
grid so as to align with the orientation of the Curvelet and
the Curvelet coefficients at each scale and angle pair is then
obtained by irregular sampling of the Fourier coefficients.
The wrapping method involves periodizing the windowed
frequency domain coefficients and re-indexing by wrapping
it around a rectangle centered at the origin. It uses the
same translation grid for every angle within each quadrant.
Although, the output for both of the approaches is a table of
digital Curvelet coefficients indexed by scale, orientation and
spatial location parameters, the Wrapping method is easier.
The details of these has been given in [47], [48], [50].

D. EXTRACTION AND REFINING
A well-established way to extract target features from
images is thresholding. Depending on the pre-processing
outputs and separablity of image features, different threshold-
ing approaches were proposed. Image histogram properties
(modality and evenness) were commonly used to determine
single and multiple threshold values [51], [52]. Single thresh-
olding may work for feature extraction from images of
bi-modal histograms. However, due to gray level variation of
an object across an image, it is unusual that single thresh-
olding is successful always. The multi-thresholding methods
were used for images of multi-modal histograms [53].

For images of unimodal histogram with no clear valley,
dual thresholding is quite desirable. A faithful approach
for dual thresholding, particularly, in the presence of
noises or for images of filtering output is the hysteresis
thresholding [54]. The hysteresis thresholding uses the spa-
tial information of image features in addition to histogram
information [55], [56]. It is a two-step approach: thresholding
and connected component analysis and returns two threshold
values, the high (TH ) and low (TL) thresholds. The proce-
dure is implemented in a way that a pixel P of an image
IP (x, y) at location (x, y) is first classified as foreground (if
strong), background or candidate (if weak) with reference to
the threshold values and then will be checked for directional
component connectivity. Any pixel or pixel difference below
TL is considered as background and discarded. Any pixel
above TH is considered as strong foreground and preserved.
Intermediate pixels are then classified as candidates or weak
foreground pixels based on connectedness. If a weak pixel
is connected directly or through a path to a foreground, it is
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FIGURE 9. Gabor filter responses at f = 0.088; (a) original RGB image, (b) grayscale image, (c) filter response
at θ = 56.250, (d) filter response at θ = 78.750 e) response of maximal combination.

TABLE 1. Basic information of the experimental images.

preserved by changing it in to foreground. Otherwise, it is
made background and discarded [54].

Ip(x, y) =


foreground if Ip (x, y) > TH
background if Ip (x, y) < TL
candidate otherwise

(22)

III. EXPERIMENTS
The experimental investigations were conducted on 48 high
resolution real images with power lines. Due to the fineness
of the power lines, the analysis was conducted on high res-
olution images: the UAV and the onboard helicopter cap-
tured images, and the streaming on demand Google Earth
imagery [57]–[59] (Table 1). On the UAV images, power lines
from both high tower and shorter electric poles were depicted.
The rest possessed only high tower based power lines. Other
six images (two from each of the above three sources) with
no power lines were also used for the analysis.

The selection of the experimental images was made from
the point of view of addressing the existing problems in
extracting the power lines. The availability of the power lines
associated with different noisy backgrounds and clutters,
power lines crossing very high bright image regions and those
represented with low contrast pixels were considered. Images
with networked and multi-oriented power lines were also
used to test the approach. The size of the experimental images
varies based on the resolution and coverage.

In this section, the application of the experimental pro-
cedures on a sample image is presented. The experimental
results conducted on the other test images are presented in
section IV.

For the implementation of the experiment, first, a bank
of 48 Gabor filters from 3 radial frequencies (f ) correspond-
ing to scale λ = [2, 4, 8] and 16 orientations (θ) was used
based on (5) and (6). These parameters were preferred based
on the properties of the power lines. The λ values were

proposed from the fact that power lines are represented with
few pixels. The number of θ was preferred to achieve opti-
mum detection by reducing information loss. The generated
Gabor filters were then applied over an UAV image of size
512 × 512 pixels following (5). The image depicts power
lines oriented to different directions (Fig. 9(a)). It contains
power lines that crossed very bright image regions and partly
represented with low contrast pixels. Array of magnitude
coefficients in which the image’s pixels (xi, yi) represented
by 48 dimensional feature vectors depicting the information
of the subbands were obtained.

The Gabor response subbands were examined for their
optimum information content (6) with respect to the parame-
ters. The subbands with FBW=2.2 and AR=0.2 were found
responding better at certain θ and f . More than one subbands
were found containing optimum information. The output
manifests that the better the filter’s orientation matches the
direction of the power lines, the better the power lines are
discriminately enhanced. This implies that more than one
Gabor filter is required to enhance multiorientation power
lines. Although a single subband Gabor filter matching the
direction of specific power lines improve the power lines
globally, local structures are essentially better enhanced with
multiple subband filters.

Fig. 9(a) depicts three power lines with directional change
at the electric pole. The power lines are also crossing very
bright and low contrast image regions. At these regions,
the power lines were hardly identifiable. From filtering out-
puts presented in Fig. 9(c) – (d), for the same power line with
changing direction, two filters with significant magnitudes
in representing the power lines were found. One filter is
derived from f = 0.088 oriented at θ = 56.250. The output
of the filter is presented in Fig. 9(c). It is clearly visible
that parts of the power lines were enhanced well. However,
the power lines over the very bright image region oriented
to a different direction were not discriminated by this filter.
The second filter with the same central frequency but oriented
at θ = 78.750 is found enhanced the other part of the power
lines (Fig. 9(d)). Thus, it can be deduced that the maximal
combination of two or more complementary subbands can
provide an improved output. Fig. 9(e) shows the output of
the maximal combination of the two filtering responses. It is
clear now that the power line structures on both parts of the
image were enhanced and the influence of the background
objects were significantly reduced.
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FIGURE 10. Maximally combined gabor response showing power lines
represented by weak pixels and streaks introduced.

FIGURE 11. The matched filtering output; (a) the suppressed unnecessary
background and noises by keeping the structures of the power lines
(b) The zoomed in part of the brightness affected image region showing
the discriminately filtered power lines.

However, the maximal combination of the different ori-
entated filter response introduced some unnecessary short
streaks (Fig. 10). Moreover, power lines crossing the very
bright image regions and those represented with weak pixels
were still not discriminated adequately. Therefore, we used
the Gaussian template based MF (section B) to enhance
discriminately.

The MF is adjustable based on the parameters used to esti-
mate the dominant orientation, length and width of the power
lines. In order to set the parameters, the properties of the
power lines: the shape of the cross-section intensity profile,
orientations, width and length were considered. They are thin
(usually 1-5 pixels) and long, straight or very small curvature
between two electric towers on the image. These properties
are common for aerial and space born remote sensing images
captured vertically. Based on these properties, the parameters
and their respective values were determined. From series of
experiments, the angular resolutions of 50, scale σ = 0.5 and
L = 15 were found suitable. Thus, the MFs were generated
and convolved with the output of the fused Gabor response
according to (7-11). For each pixel only the maximum of the
responses was retained. It can be seen from Fig. 11 that the
effects of the background and the noises were significantly
suppressed and the structures of the power lines were much
better discriminated. The streak noises were also suppressed.

As Fig. 11shows, although most parts of the power lines
can be discriminated from the background after applying
complementary filters, resistant noises and weak pixels of
the power lines still exist, which may still affect the eventual
extraction. It has been defined in section C that the Curvelet
transform is effective for selective modification of the image
objects. Thus, the FDCT with the wrapping method was

preferred and employed over the Gabor-MF image using the
Curvelab package (http://www.curvelet.org).

The Curvelet coefficients (20) were computed as
C {j} {l} (k). The total number of scales (J) was determined
from the image’s size (23).

J = dlog2 (min (m× n))e − 3 (23)

where m× n denotes the row by column sizes
Accordingly, the total number of scale for the experimental

image was determined as J = 6. For angular decomposition,
we have found in our experiment that 24 total number of
orientations at j = 2 generated acceptable result. Thus,
the angular decomposition of the wedges in each scale was
computed by assigning Nl,j2 = 24, where Nl,j2 represent
the number of orientation at the second scale. This is the
first scale at which an angular decomposition begins. For
j ≥ 2, the angular decomposition is doubling in every second
scale as N = Nl,j2

(
2dj−2/2e

)
. Then the Curvelet transform

was implemented over the image with real value coefficient
option. The finest scale was preferred to be wavelet coeffi-
cient as a solution to issues related with under/over sampling
as defined in [48] and [40].

The output Curvelet coefficients arranged as a digital
Cartesian corona was obtained (Fig. 12). The inner most scale
(j = 1) contains the smoothed version of the input formed by
low frequency coefficients with no angular decomposition.
From the second through the last scales, the Curvelets gets
finer and finer. As the discrete forward Curvelet coefficients
are represented at 4 quadrants, the Nl per quadrant became
6 at j = 2; both j = 3 and 4 have the same number of wedges
Nl,j3,4 = 12 per quadrant but differ with k. At j = 5,Nl = 24
per quadrant. Scale j = 6 contains the finest wavelet derived
high frequency coefficients with no angular decomposition.
The wedges are arranged in a clockwise direction from north-
west corner for each j.

The north-east quadrant wedges and the south-west were
reflections of each other and symmetric around the center. For
instance, in Fig. 12, the same power lines were represented at
j = 5, l = 16 in the northern quadrant and at j = 5, l =
64 in the southern quadrant. It is also clearly visible that
the Curvelet decomposition separately represented the power
lines from other objects at specific j and l. They are well
discriminated at j4, l8 and j5, l16.

Once the objects were represented separately, selective
preserving and enhancement of the power lines and the sup-
pression/removal of the unnecessary background and noises
will be implemented. The scale j = 1 has low frequency and
does not provide the geometric information of power lines
(Fig. 13(a)). It includes the smooth background objects. Scale
j = 6 contains isotropic and high frequency random noises
(Fig. 13(b)).

The scale j = 2 was also found as less detailed providing
less geometric information. Therefore, the scales j = [1, 2, 6]
were all shrunken to zero. The remaining coefficients at scales
j = [3, 4, 5] were found containing significant power line
information (Fig. 12) and thus reserved.
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FIGURE 12. A set of curvelete coefficients with J = 6 and l trapezoidal wedges arranged in to
four quadrants.

FIGURE 13. Reconstructed output; (a) j = 1 and (b) j = 6.

Now, the wedges of the reserved scales that contain opti-
mum information needs to be identified and selected. Sig-
nificant information for the image at hand was concen-
trated in the northern and the corresponding reflection in
the southern quadrants. We preferred the northern quad-
rant and identified a set of wedges {j = 3, l ∈ [8, 11]} ∪
{j = 4, l ∈ [8, 11]} ∪ {j = 5, l ∈ [14, 22]} containing opti-
mum information. These trapezoidal wedges were reserved
and all the rest were assigned with zero values. As shown
in Fig. 14(a), in order to remove the remaining redundant
objects, a threshold with a value of 0.6% was applied to
the reserved coefficients. Finally, by implementing inverse
FDCT, a much better improved power lines image with much
better suppressed noises was reconstructed (Fig. 14(b)). It can
be seen that almost all false lines were removed and the power
lines even from the severely impaired part of the image were
well recovered.

The multiscale and multiorientation methods implemented
so far enabled the selective preservation and enhancement of
the power lines effectively. The final operation is the seg-
mentation and extraction of the power lines. The hysteresis
thresholding (22) was used for the extraction. As two thresh-
olding values (TH and TL) are required for the hysteresis
thresholding, the histogram modality of the reconstructed
image was examined to select the values. The histogram was

unimodal and cannot be applied for threshold value deter-
mination. Therefore, the maximum value of the image was
used as a starting value to determine TH . TH was derived by
dividing the maximum value of the image to a constant and
then TL was obtained from dividing TH to another constant.
The constant value may vary from image to image.

For the experimental sample image, we used TH =

max(real (IFCT(x))/2 and TL = TH/2. A binary image
with zero values corresponding to the background and ones
representing the power lines was obtained. Then, by refining
some remaining small line segments using morphological
functions, the power lines were extracted (Fig. 14(c)). The
extracted lines were not uniform in thickness. However, lines
representing same feature needs to be uniform. Using, mor-
phological thinning operation [51], accurate power lines were
generated. Fig. 14(d) presents the extraction output over-
laying the original image. Based on the standard accuracy
measures (described under section IV), the approach achieved
0.83, 0.85 and 0.99 completeness, correctness and quality
measures, respectively.

IV. RESULT AND DISCUSSIONS
In this section the experimental application of the approach
over the three image data sets (the UAV images, the onboard
helicopter derived images and the Google maps) is demon-
stared to confirm the validity of the approach. For the sake
of limiting space, sample experimental outputs from each
of the three datasets were presented by zooming out their
actual sizes. The presented images depicts power lines asso-
ciated with different levels of background noises, clutters
and brightness effects. The approach was also applied over
images with no power lines to examine its contribution
towards false positive values.

The output of each of the steps for each images is presented
in Fig. 15. The first column is the grayscale original images.
Fig. 15(a) is a UAV image of size 512×512 pixels possessing
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FIGURE 14. The digital curvelet transform and power lines extraction; (a) Digital cartesian representation of the
reserved curvelet coefficients, (b) the reconstructed image, (c) the extracted power lines, (d) overlay the original
image with the extraction output.

five horizontal oriented parallel power lines. It covers partly
mixed vegetation with canopy shadows, randomly distributed
noises and partly a bright contaminated low contrast region.
Fig. 15(b) is a size of 512× 512 pixels UAV image covering
a very bright road, bright noises and mixed vegetation. The
image depicts five parallel power lines with irregular distance
from each other. The power lines were completely lost and
look disconnected due to the brightness of the road. More-
over, the randomly distributed noises have intensity similar
to the power lines posing discrimination challenges.

Fig. 15(c) shows an imagewith 700×700 pixels of onboard
helicopter captured image. The image depicts power lines
with mixed objects, bright tin roofs of buildings, bare land
and low contrast pixels. Fig. 15(d) is a 1000 × 1000 pixels
image of onboard helicopter. The image depicts power lines
of low contrast pixels associated with mixed bright objects
and varied land surface structures.

Fig. 15(e) shows Google Earth image of size 512 × 512
pixels illustrating 12 closer power lines. The power lines
crossed low contrast image regions and associated mainly
with bare land, sparse forest and brighter foot paths. Fig. 15(f)
is also a Google Earth image of 900 × 900 pixels cov-
ering farmland associated with different surface structures.
It depicts 12 power lines connected at the electric towers.
The power lines coming from/radiating to different directions
were connected at the towers. The high towers obstructed the
connectivity of the power lines at the middle.

The second column shows the output of the maximal com-
bination of the Gabor filtering response. It can be seen that
the unnecessary backgrounds were suppressed and the power
lines were improved to some extent. The level of enhance-
ment of the power lines and suppression of the background
varies based on the quality of the original images. For images
with clear and distinctive power lines, pixels representing
the power lines were discriminated better. For those image
regions affected by brightness, associated with low contrasts
and noises; the Gabor filtering was not enough. Some power
lines pixels at low contrast and noisy regions were still weak.
Some streak like structures were introduced and false lines
parallel to the power lines were also enhanced. This is clearly
visible on the second column of Fig. 15(a) and (e).

The third column shows the MF of the Gabor response
images. At this step, pixels representing the power lines were

TABLE 2. Reserved scales j and orientations l .

discriminated well and the background noises and unneces-
sary objects were suppressed better. The connectivity of the
power lines was also improved much better. This is particu-
larly evident from the third column of Fig. 15(a), (b), (c) and
(f) where the power lines were lost because of the brightness
influences. But, still some resisting false lines were left.

The fourth column shows the outputs of the selective
reconstruction of the reserved Curvelet transform coefficients
derived from the MF outputs. Based on the respective size
of the images different total numbers of scales (J) were
obtained (23). The angular partitioning (number of angles)
at the second coarsest scale was preferred as j2, l = 24
for all the presented samples. The set of scales {j} and
wedges {l} reserved corresponding to the sample images
shown in Fig. 15 are given in Table 2.

Additional selective preservation was also implemented on
the reserved coefficients for each image depending on the
response. For all the presented sample images, 0.5%preserva-
tion was found working. Then the final enhancement outputs
were recovered by applying the inverse FDCT. It can be seen
that the unnecessary background and noises were suppressed
and the required power lines were enhanced much better.

The fifth column shows the extracted and refined power
lines by the hysteresis thresholding and morphological thin-
ning operations. Finally, the extracted power lineswere super-
imposed over the original RGB images and presented in the
last column. One can realize visually that the extracted power
lines are matching the power lines in the original images.

The automatically extracted power lines were evaluated
quantitatively to determine how complete and correct the
extracted power lines are with respect to the ground truth.
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FIGURE 15. The result of the experimental outputs. The first and the second row are the UAV images, the third and fourth are the onboard
helicopter captured images and the fifth and sixth row are Google images. Column wise, from the first to the sixth column corresponds to
the grayscale of the original image, the selectively maximally combined gabor filtering response, the output of the mf, the response of the
curvelet transform, the final extraction result, and the overlaying of the extraction over the original RGB images; respectively.

We used the common standard discrepancy measures of com-
pleteness, correctness and quality used for line feature extrac-
tion [60], [61]. They are computed by generating the factors
True Positive (TP), True Negative (TN ), False Positive (FP)
and False Negative (FN ) numbers of pixels.

• Completeness = TP
TP+FP .

• Correctness = TP
TP+FN

• Quality = TP+TN
TP+FP+FN+TN

Accordingly, the accuracy of the approach over each of the
experimental samples presented in Fig. 15 is evaluated by
comparing the extraction output with the manually labeled
ground truth data. The evaluation was carried out in two steps.

TABLE 3. Evaluation of the extraction outputs.

First, matching factors were generated and then the accuracy
measures were computed (Table 3).

For a good extraction, all the evaluation values are closer
to 1. The completeness and correctness values are espe-
cially attractive measures of accuracy sensitive to over and
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FIGURE 16. The networked and multi-oriented power lines. a) and d)
Original images, b) and e) extraction output, c) and f) extracted power
lines overlaying the original image.

FIGURE 17. Power lines discrimination, a) original grayscale image,
b) filtering and curvelet transform output, c) extraction output, d)
Superimposing the original image.

under-extraction. While over-extraction leads to low cor-
rectness scores, under-extraction leads to low completeness
scores. Both yield high values if both the ground truth and
the extracted output agree in location and level of detail.
The quantitative results in table 3 corresponds to each of the
images presented in Fig. 15. The completeness for all the
images is over 0.86 which is quite good. The correctness
ranges from 0.80-0.87 scores. The relatively lowest correct-
ness score (0.80) is obtained from the image of Fig. 15(a).
This is because of the fact that the original image was
degraded and affected by the impacts of brightness, low
contrast and noises. Thus, the power cables on the original
image were poorly represented and hardly identified, espe-
cially on the affected part of the image. Concerning quality,
the approach achieved over 0.98 scores which is quite good.
Therefore, though there are differences based on the quality
of the images, the approach provided satisfactory accuracy
measures.

It has been presented in the first section that most of
the existing approaches were orientation limited. Unlike

FIGURE 18. Extraction of power lines from similar and equal image
objects; (a) original grayscale image, (b) filtering and curvelet transform
output, (c) extraction output, (d) superimposition.

FIGURE 19. Suppression of roads parallel to power lines, (a) grayscale
image, (b) extracted power lines, (c) superimposition over the original
RGB image.

FIGURE 20. False positive outputs, (a)-(c) indicate original grayscale
images, (d)-(f) shows the respective false positive pixels.

those approaches, our approach achieved the detection and
extraction of multi-oriented and network of power lines
from a single image (Fig. 16). Fig. 16(a) presents an
image depicting network of power lines oriented to dif-
ferent directions. The image shows power lines associated
with background clutter and noise. Some parts of the power
lines were seriously affected by high brightness. Some of
them were represented by very weak intensity and can-
not easily be discriminated. Fig. 16(d) shows the sam-
ple image presented earlier depicting multi-oriented power
lines with changing direction. The effects of low contrast
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FIGURE 21. Comparison of outputs of direct FDCT and Gabor-MF-FDCT applications on two images; (a) and (d) are original grayscale
images, (b) and (e) are extraction outputs from the direct application of FDCT, (c) and (f) The output of the Gabor-MF-FDCT approach.

FIGURE 22. Output of the application of PCNN-Hough transform power line extraction, (a) and (e) the PCNN filter outputs,
(b) and (f) the PCNN-Hough transform outputs superimposing the original gray-scale image, (c) and (g) shows comparative
location of the power lines obtained with PCNN-Hough transform to the pixels representing power lines on the original images,
(d) and (h) shows the comparative location of the power lines obtained with the Gabor-MF-FDCT approach to the orginal RGB
image.

and brightness were also associated with this image. With
the application of the approach, the multi-oriented power
lines were effectively extracted from both of the images
(Fig. 16(b)- (c) and (e) - (f).

The discrimination of power lines from objects similar and
parallel to the power lines was also mentioned as one of
the challenges to extract them. Power lines are thin, usually
stretched over longer distance and they are little curve to
straight between two poles. Our approach exploited these
properties to selectively enhance and preserve the power lines
and to remove the other similar unnecessary parallel objects.

Fig. 17(b) shows that both power lines and parallel fences
are detected at the first place. With step by step filtering and
Curvelet transform, the fence was subdivided in to smaller
pieces and finally removed.

However, for shorter and straight power lines associated
with similar and parallel linear objects exactly equal in length,
the separate discrimination and extraction still remains chal-
lenging. Fig. 18 presents part of the image in Fig. 17 showing
a fence with two parallel edges located parallel to the power
lines. The edges of the fence have equal length and look
similar with the power lines. Using our approach with the
same parameters used above, the outputs of filtering and
Curvelet transform (Fig. 18(b)), and the extraction output
(Fig. 18(c)) could not separate them.

Therefore, for images with shorter and straight power lines
associated with exactly equal, similar and parallel objects,
the approach can respond higher false positive value and
thus not adequate to separately extract the power lines. This
problem will be investigated in our future study.

Objects equal in length with the power lines but differ in
width can be suppressed using the complementary qualities
of the Gabor filter with the FBW and AR parameters, and the
scale based MF. Fig. 19 shows a road depicted parallel to the
power lines. It can be seen that (Fig. 19(b) the road is removed
leaving the power lines.

The proposed approach is effective for orientation based
reduction of false positive pixels. Fig. 20 shows the response
of our approach over three sample images (from the three
sources) with no power lines. As the images do not depict any
power lines to determine the parameters, the same filtering,
Curvelet transform and hysteresis thresholding parameters
used for the image with power lines presented above (Fig. 19)
were used as a benchmark for this demonstration. However,
the refinement operations were not employed here.

Obviously, false positive pixels were produced. However,
the numbers of the false positive pixels are quite low. For
the three sample images, the number of false positive pixels
produced were 219 (0.022%), 516 (0.11%), and 356 (0.09%)
respectively. As power lines have some particular properties,
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most of the false alarms can easily be identified and managed
using the proposed refinement operations.

Though, the data available in literatures do not permit
sufficient comparison of our approach with other approaches,
an attempt was made to compare with some two other
approaches: the extraction output from the direct applica-
tion of FDCT and the PCNN-Hough transform approaches.
Fig. 21 shows the comparative outputs of the direct applica-
tion of FDCT to the Gabor filtered-MF- FDCT based power
line extraction. It can be seen that in both Fig. 21(b) and (e),
the structures of the power lines were broken and incomplete.
Moreover, the false alarms (unwanted noises) were hardly
removed. These problems are well addressed by the Gabor-
MF- FDCT approach in that the structures of the power lines
were extracted very well Fig. 21(c) and (f)).

Also, the output of the application of the PCNN-Hough
transform based power lines enhancement and extraction is
shown in Fig. 22. For these experimental images, the appli-
cation of the PCNN-Hough transform in extracting the power
lines looks unsatisfactory. Although some pixels correspond-
ing to the power lines right orientated diagonal were pulsed
well over most of the background pixels (Fig. 22(a) and
(e)), background pixels over bright regions crossed by the
power lines and some other regions were also pulsed in
the same way. On the other hand, power line pixels with
low intensity oriented up-right diagonal were all removed.
It can be seen that the power line structures are only partially
recovered (Fig. 22(b) and (f)) and the positions of those
extracted power lines by the PCNN-Hough transform are also
inaccurate (Fig. 22(c) and (g)). In comparison, the Gabor-
MF-FDCT approach (Fig. 22(d) and (h)) showed complete
and accurate extraction output and thus showed quite superior
performance.

V. CONCLUSION
The development of high resolution remote sensing systems
enabled the acquisition of finer resolution images. These
images provide potentials for extracting finer spatial fea-
tures. This paper presented a novel approach for automatic
extraction of power lines from high resolution remote sens-
ing images. The proposed approach involves complementary
MGA tools and extraction methods. The experimental result
revealed that the approach is capable of extracting power
lines from high resolution images of different sources and
captured from different orientations. It is robust in extract-
ing power lines represented with weak pixels, power lines
crossing bright regions, and those networked and curved
power lines with changing orientation. It derived power line
structures from disconnected/broken image regions caused by
noise effectively. Further researches are needed to improve
the performance.
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