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ABSTRACT Robotic-assisted platforms are expected to guarantee the accuracy of surgical operation and
accelerate its learning curve. Iris tracking can guide the robotic manipulator during the operation. However,
few researches focused on it during surgery. It is a big challenge due to the deformation of the iris and
occlusion caused by instruments. A novel real-time iris tracking method based on a regression network
are proposed to meet the speed and accuracy requirements of the ophthalmic robotic system. It utilizes the
low-level visual features and high-level semantic meanings from different layers to capture the discriminative
representation of the iris target. Then the bottleneck layers are added to improve computation efficiency.
Furthermore, a multi-loss function is designed by jointly learning Absolute loss and Euclidean loss. Finally,
the experimental results under the typical surgical scene demonstrate that iris tracker achieves an accuracy
of 89.16% and a real-time speed of 134fps with GPU, which is suitable for the ophthalmic robotic system

to perform real-time robotic manipulation.

INDEX TERMS Robotic surgery, deep learning, cataract surgery, iris tracking, real-time tracking.

I. INTRODUCTION

Cataracts are one of the most common ophthalmic conditions.
They are the principal cause of blindness. According to a
world health report, about 43% of global blindness were
caused by cataracts [1]. Cataracts are largely associated with
aging. Some studies have shown that 17.2%Americans older
than 40 years have cataracts [2], 21.62% Chinese older
than 45 have cataracts [3]. Other countries have the same
trends [4].Cataracts are clouding of the eye lens. As they
grow, the normal life of the patient may be affected. The
specific symptoms are dim, blurred or yellow vision. Cur-
rently, surgery is the most effective and common way to treat
cataracts. During cataract surgery, the surgeon will remove
the cataracts and replace them with the intraocular lens
(IoL) [5].

The ophthalmic robotic system is expected to automatically
perform surgery in clinics. Autonomous robot can break
through the human physiological limits, complete advanced
procedures and increase the number of doctors [5], [6].
The typical robotic systems are precise surgical system and
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DA Vinci Surgical System. Retinal surgery has performed
successfully in clinic assisted with The Preceyes Surgical
System [7].1It is the first human test of robotic eye surgery. The
DA Vinci Surgical System has not been applied in clinical.
It has been used for robotic-assisted pterygium surgeries in
nonliving biological pterygium models [8]. However, existing
ophthalmic robotic systems have not achieved autonomous
operation. It only can assist with the surgeon. Other surgical
fields such as urological [9], general [10], digestive [11],
gynecological [12],liver [13] and cardiovascular [ 14] have the
same problem. The main reason is that robotic vision system
is not advanced enough. With the advanced vision system and
tracking control approaches [15]-[17], ophthalmic robot can
work in a secure and valuable manner. Building a robot with
human like vision capabilities is a demanding task. It should
have abilities to distinguish targets from backgrounds and
identifying the moving target [18], [19]. Then it can perform
the desired action through the understanding scene [20]. The
ophthalmic robotic system should be able to identify the soft
tissues and track them during the operation [21], [22]. Few
researches focused on tissue tracking due to the challenges
of the deformation, occlusion and movement of the target.
To meet the speed and accuracy requirements of the robot
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vision system, we focused on iris tracking task during the
surgical operation.

Iris tracking plays a vital role in the ophthalmic robotic
system. At the beginning of the cataract surgery, a very small
incision was made in the cornea. The incision was applied
to inject viscous material. Another very large incision was
made prior to the development of phacoemulsification. The
lens breaks into small pieces and the folded artificial lens are
inserted into the capsule through the incision. It is ordinary
to find the location of the incision for the human eye, while
not easy for the robot. Manipulator should be guided by
some determiner reference location. For ophthalmic robotic
system, iris tracking can provide a reference location for the
incision, it can guide the manipulator to move during the
operation. On the other hand, the patient’s eyes are difficult
to remain still or not always fully visible during the surgery,
which bring great challenges to the ophthalmic robotic sys-
tem. Iris tracking can also play a role in protecting patients in
this respect. It is a key step in intraoperative protection for the
ophthalmic robotic system. Iris tracking is the indispensable
part of the ophthalmic robotic system. Occlusion of surgical
instruments, changes in light, and interference with drugs
can also affect the implementation of robotic surgery. Iris
tracking is challenging due to these inference factors. In order
to perform fine cataract surgery, it is necessary to ensure that
the iris location can be accurately identified. Benefit from the
recording function of the binocular microscope, the surgical
procedure can be saved [23]. The ophthalmic robotic system
can learn from the recorded frames through deep learning
methods. A large quantity of surgical frames can be annotated
and trained for the iris tracker. The article aims to track the
iris accurately and real-time.

The main contributions of this paper can be summarized as
follows:

« A novel regression network for iris tracking during the
ophthalmic surgery is proposed. To capture the discrim-
inative representation of the iris target and take full
advantage of different level features, the low-level visual
features and high-level semantic meanings are fused.
The Bottleneck layer and skip connection are added to
the GOTURN [24] network to improve the accuracy of
iris tracking.

o A multi-loss objective function is designed by jointly
learning Absolute loss and Euclidean loss. The experi-
mental results under the real surgical videos show that
multi-loss network has a lower location error and the
higher area overlap rate.

o The tracking speed of our method is 134fps on an
NVIDIAGTX 1080Ti GPU. It demonstrates that the
proposed method is suitable for the ophthalmic robotic
system to perform real-time robotic manipulation.

The main body of this article is organized as follows.
Section 1 is the background and the introduction of our
proposed method. Section 2 elaborates on related work about
iris tracking. Section 3 describes the main ideas and contains
the methodologies of the experiment. The fourth section
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discusses the proposed method in terms of its accuracy and
speed. Finally, the Section 5 concludes the paper and suggests
the future work.

Il. RELATED WORK

Object tracking has received much attention from a wide
range of applications, such as surveillance and medical imag-
ing over the last decades [25]. Given the interested object
in a frame of a video, the goal of tracking is to locate the
target in the remaining subsequent frames. Lots of trackers
have achieved promising results. In this section, we discuss
the representative visual trackers and iris trackers.

Early works use the handcrafted features to track the object
from the images directly. Some feature descriptions are first
described beginning of the tracking. Then the regions of
the image are classified into different classes such as object
and non-object. The object tracking is generally performed
by search the candidate windows with the highest classifier
score. Feature like Haar-like [26] is used for object tracking in
[27]. Local Binary Patterns [28] and Scale Invariant Feature
Transform (SIFT) [29] are employed to find the center of the
iris [30]. The speeded-up robust features (SURF) [31] algo-
rithm has been conducted for gaze tracking [32]. An eyelid
shape model generated beforehand from PCA is used to track
the iris [33]. Other researchers have shown that a template
matching method is also a useful tool for iris tracking [34],
[35]. These features can be efficiently extracted from images,
however, have limited the ability of feature representation,
which is tough to handle complex scenarios. Since the surgi-
cal scene has much occlusion of surgical instruments, hand-
crafted features may not be sufficient for iris tracking for the
ophthalmic robotic system.

Correlation filters (CF) have become popular for visual
tracking task due to its high computational efficiency. The
speed results from the use of fast Fourier transforms (FFT).
Frequency domain has a lower computational cost. Kernel-
ized correlation filters (KCF) [36] computed the circulant
structure and FFT for fast tracking. Various extensions of
KCF have been proposed to considerably improve tracking
accuracy [37], [38]. B.A. Wilson et al. exploited the adaptive
correlation filters to track the face and eye for mobile robots
[39]. The trend of CF method is to combine with CNN
features [40], [41]. The biggest disadvantage of CF is a poor
performance for fast deformation and fast motion, while iris
deformation and motion are quite common during cataract
surgery.

CNN features make a great contribution to the
state-of-the-art object trackers [42]-[48] in recent years.
Features learned by the neural network show strong repre-
sentation of the semantic information of the target. It has
attracted great interests nowadays. Bin Li presented an effec-
tive cascaded CNNs methods to detect the eye location
in facial images, the first CNN can classify the region as
left or right eye, the second is for detection [49]. Harini K
employed ensemble learning with the ResNet10 model to
track eye for iphone [50]. Wolfgang et al. [51] proposed a dual
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FIGURE 1. The propose network architecture for iris tracking. It contains the feature extraction network and regression module. Different level features

are integrated together.

convolutional neural network for pupil position detection.
It has two stages, the pupil position was roughly identified
first and another CNN was employed to refine the position.
With the development of the neural network, more and
more new architectures have been proposed. 3D convolu-
tion structure is added to model the motion information of
objects [52]. Semisupervised adversarial learning method is
recently used in salient object detection [53], [54]. S Hoffman
designed a CNN architecture for eye detection, and incorpo-
rated a segmentation mask in order to automatically learn
the relative importance of the pupil and iris regions [55].
K Krafka et al. trained a convolutional neural network for
eye tracking, while running in 10-15 fps on a modern mobile
device [56]. Although deep learning methods overperform
lots of hand-crafter methods and correlation filters methods
on the VOT benchmark [57], most neural network-based
trackers can not achieve real-time tracking due to online
training.

GOTURN [24] is significantly the fastest network-based
tracker, which is a state-of-the-art tracker that can run at
100fps. It uses a simple feed-forward network to train.
It has learnt a generic relationship between object motion
and appearance. It can be employed to track novel objects.
Although the GOTURN [24] method has a very satisfac-
tory throughput, it only utilizes the high-level features and
is trained with generic objects. The Bottleneck layer and
skip connection are added to the GOTURN [24] network to
improve the accuracy of iris tracking. Multi-loss objective
function is designed to get a better overlap precision. These
modifications significantly improve the track accuracy for the
ophthalmic robotic system.

lil. METHOD
The proposed method will be explained in detail in
this section. The architecture of the proposed network is
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illustrated in Fig.1. It begins by utilizing a feature extraction
network to produce a set of feature maps, then different
level features are integrated. The low-level visual features
and high-level semantic meanings from different layers can
be utilized to capture the discriminative representation of
the iris target. After that the loss objective function is com-
puted between the ground truth and the predicted bounding
box. Here a new multi-loss function is designed by joint
learning Absolute loss and Euclidean loss. Finally, the tar-
get location is regressing. In following subsections, we first
introduce the network architecture, including the feature
integration method and the designed multi-loss function, and
then elaborate the training process.

A. NETWORK ARCHITECTURE

1) INPUT

Our network takes the two frames as input. It contains the
current frame image and the next frame image. It can output
the localization result in an end-to-end manner. The size of the
input image is 256 x 256. The target localization is marked on
the first frame. We use four parameters R, = {x,y, w, h} to
describe the target localization. Where R; is the target region,
x,y stand for the center coordinate of the iris target, w is
the width of the target bounding box, and /4 is the height
of the bounding box. Due to the smooth movement of the
target, previous localization can provide a reference for the
current frame [24]. The current frame is cropped according
the previous target localization. Ry = {x;, ys, wy, his}. We set:

Xsg =X, Ys =)
Wy =2 XWw
hy =2 xh ()

where R; is the search region, xg, ys stand for the center
coordinate of the search region, wy is the width of the
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search region, and /; is the height of the bounding box. Then
Two region are fed to the CNN, respectively.

2) FEATURE EXTRACTION AND REGRESSION

The network is composed of convolution, pooling,
concatenation and Fully-Connected (FC) layers. A set of
CNN features are generated from two cropped inputs.
Each CNN has 7 convolution layers. The convolution layer
produces the linear feature map:

fé(t) = ks * 1+ bs (2)

where kg and by stand for the convolution kernel weight and
bias, * is the convolution operator. We apply multi-scale con-
volution operation to capture multi-scale contextual informa-
tion. It contains 1 x 1,3 x 3,5 x5, 11 x 11 convolution layers.
Each CNN extracts different hierarchical features from its
ROIs. The 1 x 1 convolution layer combines the feature maps
for information integration. Other size convolution layers
reduce the resolution of the feature map. Then the different
level features are integrated together to represent the iris
target. The low-level visual features and high-level semantic
meanings from different layers can be both utilized to capture
the discriminative representation of the target. The relu layer
is used to generate non-linear feature map:

Ji(t) = ReLU (bn(f;(1))) 3

where bn stands for the batch normalization. Furthermore,
the features of two branches are concatenated and fed to 3 FC
layers. Finally, the fully connected layer regresses the local-
ization of the iris target. The output of the linear regression
layer is:

f(xi) = woh(x;) + bo 4

where h(x;) is the output of the previous concatenated pooling
layer. The output of the network has four components cor-
responding to the x and y coordinates of the upper corner,
the width and height of the bounding box.

3) BOTTLENECK LAYERS

The most significant thing is to ensure real-time tracking for
ophthalmic robotic system, Bottleneck layers can improve
computational efficiency. GOTURN [24] only used the con-
volutional layers of AlexNet [58] as the feature extraction
network. Referring to the DenseNet [59],ResNet [60] and
Highway NetWorks [61], that a 1 x 1 convolution layer can
be introduced as bottleneck layer before 3 x 3 convolution
to improve computational efficiency. It also can combine the
feature maps for information integration. In our network,
we add 1 x 1 convolution layer after the first pooling layer.

4) SKIP CONNECTION

Skip Connections help CNN directly extract coarse high-level
semantic feature and low-level visual features from different
layers. Multilayer features can be fused to capture both simple
features and semantic features. As opposed to the original
GOTURN [24] network that only use the high-level features,
low-level features and high-level features are combined in

VOLUME 8, 2020

uonnjoAu0) T X T
uonn[oAU0)) € X €
uonNN[OAU0) G X §
Su1jood € X €
uonn[oAuo0) € X €
uonnjoAu0) € X €
uonnjoAu0)) € X €
ﬁuqooc'[ eX€

[iN
—
X
[N
=
Q
=}
5
<
S
=,
=
=g
5}
5

)

Su00d € X €

FIGURE 2. The feature fusion architecture.

‘ Label H Neg %H‘ Flatten }7 i :
[el A G
Regression

m Module

FIGURE 3. The proposed multi-loss function framework.

the proposed network. It is shown in Fig.2. Different level
layers extract different features. The shallow layers of CNN
extract simple visual and high-resolution features, such as
corners and edges. The deep layers contain semantic infor-
mation. Both low-level and high-level features make contri-
butions to capture the discriminative representation of the
iris target. We use skip connection to ensemble multilayer
features together to train our network. Different level features
are concatenated to improve the tracking accuracy. Multi-
level features help the CNN generate multi-scale features
with accurate spatial and semantic information closely to iris
tracking task.

5) MULTI-LOSS

A multi-loss function is designed to reduce the iris location
error. It can jointly learn the Absolute loss and Euclidean loss
with different weight. It is shown in Fig.3. The iris position
can be accurately localized with the multi-loss function. It is
defined as:

L =ML+ Al 5)

where L is Absolute loss and L, is Euclidean loss. Here A is
a constant coefficient balancing the two parts of the two loss.
In our experiment,A; = 0.7, A, = 0.3.

N
Li =Y |yu =yl (6)
n=1
1 N
~ 2
L= 21 ¥ — yall3 )
n=

where y,, represents the label and y, represents the network
output of the given input data. N is the batch size.
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B. TRAINING

Training of the proposed network is the same as GOTURN
[24] model. The proposed tracker is initialized with the
bounding box in the first frame. Transfer learning is used and
iris tracking model is fine-tuned from pre-trained imagenet
model. The pre-trained model has learned a discriminative
feature representation of the generic object, which can help to
solve the iris tracking task. We train our network with Caffe
[62]. The 1 x 1 convolution layer is initialized by msra dis-
tribution and other convolution layers initialized by Gaussian
distribution. The base learning rate is le-6, the learning policy
is step.

A dataset of 13 videos from 13 consecutive cataract
surgeries was collected at Beijing Chaoyang Hospital and
Beijing Tongren Hospital (Beijing, China) between April and
June 2018. A total of 17221 frames of 7 patients were labeled
as training dataset. The training data includes the continuous
procedures in cataract surgery. In our experiment, per sub-
classes in the training set are all according to the procedures
in the real surgery. Each patient’s video contains the main
6 steps of the cataract surgery, including liquid injection, inci-
sion, capsulorhexis, phacoemulsification, aspiration of lens
and intraocular lens implant process. In addition, external
interference is also considered in the data set, videos that
contain deformation, movements and occlusion are also in
the training set. The remaining 6 videos are used to evaluate
the performance of our tracker. There are 4531 frames for
test. It contains the main 6 steps and 3 external interference
scenes.

We have written a labeling program using Matlab software
to label the training set and test set. The targets in each frame
of video are labeled with rectangular boxes, and the position
coordinates of the boxes are saved in the txt file.In the testing
stage, tracker predict the bounding box of the target for every
frame.

Algorithm 1 summarizes the detail procedure of our
proposed iris tracking algorithm. It contains four parts: crop,
according to the initial frame, training using the multi-loss
function, optimization and test. Since iris usually move
smoothly, our tracking algorithm first crop the two input
frame. It makes the tracking algorithm less computation.
Secondly, two inputs are forward propagated through the
proposed network. Both low-level and high-level features
make contributions to capture the discriminative represen-
tation of the iris target. Feature integration can improve the
tracking accuracy. Then we design a multi-loss functions to
optimize the network parameters. It can jointly learn Abso-
lute loss and Euclidean loss. It can produce lower location
error and higher area overlap rate. After training procedure,
the weights are frozen, test, videos are forward propagated
through the trained network. Finally, the network outputs the
iris localization.

IV. EXPERIMENT AND ANALYSIS
In this section, the effect of the proposed method will
be explained through experimental results. Iris tracker
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Algorithm 1

Training data D, parameters 6, hyperparameters 6

: Input: Previous frame and current frame

: Output: Iris localization

: STEP 1: Crop according to the initial frame

: Generate the search region Ry = {xg,ys, ws, hg)
according to the initial target region.

: D, <= crop(D)

6: STEP 2: Training using multi-loss function

7: Two frame is forward propagated through the proposed

feature extraction and regression network.
8: STEP 3: Optimization
9: Optimizing the parameters using the multi-loss L as

AW N =

W

equation 5.
10: for epoch € [0, max_epochs] do
11: for i € [0, num_batches] do
12: Lpaten =0
13: for d. € D. do
14: L <= MLi(de; 0) + Aalo(de; 6)
15: Lpasen = Lparen + L
16: end for
17: 0 < Backpro(Lpatch, 9, é)
18: end for
19: 6 < ParameterUpdate(epoch, 6)
20: end for

21: STEP 4: Test

22: Input a test cataract video, forward propagate the data
through the network with trained weights, record the
output target localization.

is implemented on python 2.7 and Caffe [62]. It runs
at 134fps in a single NVIDIA GTX 1080Ti GPU with
CuDNN v5.1. In our system, the base learning rate is
0.000001, the learning policy is step, the step size is 100000,
the momentum is 0.9. In the comparison of multiple train-
ing processes, the above parameters can ensure training
convergence.

Experiments are conducted to verify the effectiveness of
the proposed iris tracking method.

Firstly, we use the test dataset to evaluate the tracking
performance of the proposed method. The tracking result is
compared to the marked bounding box. Not only the tracking
results are shown, but also the center point coordinate of the
iris target is compared.

Secondly, the advantages of the feature fusion method and
bottleneck layers are analyzed. We compare the network that
use single loss function with GOTURN [24] network. Two
methods use the same loss function in this aspect. Then,
the availability of the designed multi-loss function is demon-
strated. We compare the multi-loss method with the single
loss method. Two methods use the same convolution layers
in this aspect.

Finally, speed comparisons are conducted in the same
hardware environment.
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FIGURE 4. Some tracking results of the proposed tracker. The blue box stands for the ground truth. The red box stands for the tracking results
of our multi-loss method.The black box stands for the tracking results of our single loss method. The white box stands for the tracking results

of GOTURN method.

A. TRACKING PERFORMANCE

Some tracking results are shown in fig. 4. We have used
two metrics: precision plot and success plot to validate the
accuracy of the proposed method. Both two metrics are
common evaluation indicators in the field of target tracking.
Experimental results are also presented in two forms: tracking
video with tracking box, accuracy and speed comparison data.
We choose the typical surgery scenes to validate the pro-
posed method. It contains the main procedure of the cataract
surgery. The first to sixth row represent the main 6 steps
of the cataract surgery, including liquid injection, incision,
capsulorhexis, phacoemulsification, aspiration of lens and
intraocular lens implant process. The last three rows stand for
the deformation, movements and occlusion process that may
occur during surgery.

Ophthalmologists may use different color and different
type instruments to perform surgery. The injection of the lig-
uid may cause reflection of light, which will bring challenges
to the robotic vision. The surgical operation will also cause
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the deformation and occlusion of the iris target. The iris
tracker must robust enough to face various conditions for the
ophthalmic robotic system. We compare the tracking results
with the labeled bounding box in Fig.4. We can observe that
our method can track the iris accurately under the different
challenge surgical scenes.

We also compare the coordinates of the target center point
with the label in fig. 5. There are totally 4531 test frames.
It contains the various typical surgery scenes shown in Fig.4.
It is observed that the proposed method can accurately track
the iris in both horizontal and vertical directions. Our tracking
results are quite close to the ground truth.

B. ACCURACY COMPARISON
We use two metrics: precision plot and success plot [57] to
validate the accuracy of the proposed method.

Firstly, in order to demonstrate the advantages of the fea-
ture fusion method and bottleneck layers, we compare the
network with GOTURN [24] network. Two methods use the
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same loss function. We use ““Ours single loss™ to stand for
the method that employ the proposed convolution architecture
with the Absolute loss function. We use “Ours multi-loss”
to stand for our method that use the proposed convolution
architecture with the multi-loss function.

Secondly, to prove the effectiveness of the designed motels
function, we compare the multi-loss method with the single
loss method. Two methods use the same convolution layers.

We have selected 9 typical scenes that have the most
representative role in the surgical process to analyze the
accuracy of the tracking algorithm. The overall comparison
for three trackers is shown in Fig.6. The 9 typical scenes
results comparison for three trackers are shown in Fig.7.
The values in the legend are the Area under curve (AUC)
scores for precision and success plots. The higher AUC value
indicates better performance. According to the comparative
data, the algorithm proposed in this paper performs best in 6
of these scenes, especially in liquid injection, deformation,
and instrument movement. That is, in the presence of external
interference, the algorithm can still achieve accurate tracking.
From a clinical perspective, the target tracking algorithm
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TABLE 1. The accuracy and speed comparison.

Method Auc Prec Speed(fps)
Ours multi-loss ~ 0.8916  0.6671 134.67
Ours single loss  0.8912  0.6046 136.48
GOTURN [25]  0.8423  0.6506 186.01

should have the ability to adapt to external interference, so the
method in this paper can assist the ophthalmic robotic system
to achieve precise operations.

We also list the accuracy values in Table 1 and detailed
values of typical scenes in Table 2. Due to the low-level visual
features and high-level semantic feature are integrated, single
loss method has higher accuracy than GOTURN [24] method.
Due to the designed multi-loss function, multi-loss method
has higher overlap and lower localization error than the single
loss method. Among the above methods, our method achieves
the best performance.

C. SPEED COMPARISON

The results of speed comparison are shown in Table 1.
Since the new layers and extra loss function are added,
the speed of our method is slightly slower than the original
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FIGURE 7. Success plot comparison of 9 typical test scenes.

TABLE 2. The accuracy comparison of 9 typical scenes.

Overlap Threshold

05 06 07 0 01 02 03 04 05 06 07 08 09 1

Overlap Threshold

Scenes

Ours multi-loss Ours single loss GOTURN
Liquid injection 0.9201 0.8309 0.9110
Incision 0.9314 0.8957 0.9092
Capsulorhexis 0.8824 0.8944 0.8811
Phacoemulsification 0.9432 0.8859 0.9351
Aspiration of lens 0.9030 0.8513 0.9021
Intraocular lens implant 0.8996 0.8750 0.9053
Deformation 0.9279 0.9044 0.9279
Occlusion 0.9457 0.9482 0.9348
Instruments movement 0.8779 0.8570 0.8713

GOTURN network. But it can also achieve real-time track-
ing. The tracking speed can meet the requirements of the
ophthalmic robotic system.

GOTURN [24] is the fastest network-based tracker that can
run at 100fps with ordinary GPU. It just includes a simple
feed-forward network. No extra online training is needed.
It has learnt a generic relationship between object motion and
appearance through the training procedure. The trained model
can be employed to track novel objects that not included in the
training dataset. But it has a lower tracking accuracy since it
only uses the high-level feature.

The Bottleneck layer and skip connection are added to
the GOTURN [24] network to improve the accuracy of
iris tracking. The low-level visual features and high-level
semantic meanings are both utilized from different layers in
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our method. It can capture the discriminative representation
of the iris target. From Table 1, compare with the GOTURN
[24] method, we can observe that the model using fused fea-
tures has higher accuracy. Compare with the same network,
which only use a single loss function, the results show that
the model with the designed multi-loss function has a higher
AUC score for precision and success plot. The experimental
results under the typical surgical scene demonstrate that the
proposed method can track the iris accurately in real time.
Iris tracking can help ophthalmic robotic system work in a
secure and valuable manner. The ophthalmic robotic system
should be able to identify the soft tissues and track them
during the operation. Iris tracking can provide a reference
location for it and guide its manipulator to move during
the operation. It can also play a role in protecting patients.
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It is necessary to ensure that the iris location can be accu-
rately identified for the ophthalmic robotic system. However,
there are still some problems, such as when the liquid is
injected or there is serious occlusion, the tracking accuracy
is not high enough, which is the next step to improve.

V. CONCLUSION

The aim of this study is to develop an iris tracker specifically
for the ophthalmic robotic system. For this purpose, a real-
time CNN tracker is proposed. Iris tracking can provide a
reference location for the incision and also play a key role
in protecting patients.

In the proposed structure, different hierarchical features
are integrated. The tracker can learn more discriminating
features by adding the bottleneck layer and skip connec-
tion. Furthermore, to accurately localize the iris position,
not only the different level features are fused, but also a
multi-loss function is designed by jointly learning Absolute
loss and Euclidean loss. The experimental results under the
typical surgical scene demonstrate that iris tracking accuracy
achieves 89.16% at 134fps. Our method outperforms the
original GOTURN network. The proposed scheme is general
enough to be adapted to the real surgical scene. It can track the
iris accurately and real-time, it is suitable for the ophthalmic
robotic system to perform real-time robotic manipulation.

Deep learning-based studies are still going on for robotic
assisted surgery, further investigations include joint iris
tracking and key point detection task, and then convey control
commands to the robot according the detection results.
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