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ABSTRACT The number of pedestrian accidents continues to keep climbing. Distraction from smartphone
is one of the biggest causes for pedestrian fatalities. In this paper, we develop SaferCross, a mobile
system based on the embedded sensors of smartphone to improve pedestrian safety by preventing distraction
from smartphone. SaferCross adopts a holistic approach by identifying and developing essential system
components that are missing in existing systems and integrating the system components into a ‘‘fully-
functioning’’ mobile system for pedestrian safety. Specifically, we create algorithms for improving the
accuracy and energy efficiency of pedestrian positioning, effectiveness of phone activity detection, and
real-time risk assessment. We demonstrate thatSaferCross, through systematic integration of the developed
algorithms, performs situation awareness effectively and provides a timelywarning to the pedestrian based on
the information obtained from smartphone sensors and DirectWi-Fi-based peer-to-peer communication with
approaching cars. Extensive experiments are conducted in a department parking lot for both component-level
and integrated testing. The results demonstrate that the energy efficiency and positioning accuracy of
SaferCross are improved by 52% and 72% on average compared with existing solutions with missing
support for positioning accuracy and energy efficiency, and the phone-viewing event detection accuracy is
over 90%. The integrated test results show that SaferCross alerts the pedestrian timely with an average
error of 1.6sec in comparison with the ground truth data, which can be easily compensated by configuring
the system to fire an alert message a couple of seconds early.

INDEX TERMS Mobile computing, pedestrian safety, Wi-Fi direct.

I. INTRODUCTION
The number of pedestrian accidents continues to keep climb-
ing. In 2018, 6,283 pedestrians were killed which accounted
for an increase of 3% compared with pedestrian fatalities
in 2017, the highest number of pedestrian fatalities since
1990 [1].

Many sources point out that smartphone distraction is
one of the major causes for pedestrian fatalities [2]–[4].
Many pedestrians use their mobile phones while walking on
sidewalks and crossing the street [5], [6]. A recent study
shows that more than a third of pedestrians use their mobile
phones while crossing streets [7], and 16% of pedestrian
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accidents were caused by distraction due to phone use [8].
Another study shows that 85% have seen distracted pedes-
trians, and 26% of the respondents were actually involved
with distracted-walking accidents [9]. According to the report
from US Consumer Product Safety Commission, the per-
centage of pedestrian injuries involving smartphones are
increasing steadily [10]. Interestingly, the significant rise in
the pedestrian injuries started in 2009, and this is exactly
when smartphones started to take hold [11]. These dis-
tracted pedestrians are even called ‘‘smartphone zombies’’ in
recent scientific publications to stress the seriousness of the
problem [12].

In this paper, we aim to develop a mobile system that
enhances pedestrian safety by preventing distracted phone
use. Numerous approaches have been designed and deployed
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FIGURE 1. (a) Signage in Delaware, (b) Signage in NYC, (c) LED stoplight
in Israel, (d) Ground flashlight in Seoul. Numerous pedestrian safety
systems have been developed.

to protect distracted pedestrians, e.g., using a signage [13],
and LED spotlights [14] as shown in Fig. 1. However, paint-
ing road signs and installing LED lights at every crosswalk
not only involves huge cost, but it can even be distraction
to drivers especially at night. With a myriad of embedded
sensors such as accelerometers, cameras, microphones, and
GPS, smartphones have opened the new opportunities for var-
ious applications [15]; especially, those sensors can be used
to improve pedestrian safety by directly alerting pedestrians.
The camera of smartphone is used to detect approaching
vehicles posing danger to pedestrians [16]. Some mobile
systems utilize communication between cars and pedestrians.
For example, Wu et al. adopt the Dedicated Short Range
Communication (DSRC) to enable the vehicle to pedestrian
communication [17], and Lin et al. utilize the cellular net-
work [18] to perform risk analysis and alert the pedestrian
accordingly.

Although existing solutions contribute to improving pedes-
trian safety, most solutions are focused on a certain aspect
of a mobile system for pedestrian safety such as detection of
approaching cars, communication between cars and pedes-
trians. However, a number of essential system components
are still missing to build a complete mobile system for
pedestrian safety. In this paper, we aim to develop a ‘‘fully-
functioning’’ mobile system for pedestrian safety by develop-
ing these critical system components for precise pedestrian
positioning, energy efficiency, accurate phone activity detec-
tion, and effective risk assessment. To this end, we present
SaferCross, a mobile system for pedestrian safety based on
the embedded sensors and WiFi Direct of smartphone [19].
SaferCross effectively senses approaching cars, performs
real-time risk assessment, and alerts drivers and pedestrians
in a timely and energy-efficient manner without requiring any
modifications to the host mobile system. The key contribu-
tions of SaferCross are development of the essential sys-
tem components that can be adopted for developing mobile
systems for pedestrian safety, ultimately to spark the mobile
computing research focused on protecting pedestrians from
accidents. We note that it is ideal to force pedestrians not to
use their phones while walking. At the same time, however,
we admit that there are still a lot of pedestrians who are
tempted to use their phones. In fact, a huge number of pedes-
trian involved accidents happen every year. As such, we argue
that SaferCross is developed as an assistive technology for
those distracted pedestrians and is not intended to encourage
blind reliance on the technology.

SaferCross is built upon fundamental technologies
focused on enhancing the effectiveness of pedestrian

localization, energy efficiency of smartphone, phone activ-
ity detection, and situation awareness. More specifically,
the pedestrian localization module of SaferCross is
specifically designed to accurately localize slow-moving
pedestrians. This module is particularly useful for localizing
pedestrians in urban areas with skyscrapers where accurate
positioning based on GPS is very challenging. Based on the
observation that pedestrians walk along a sidewalk, a map
matching algorithm is adopted and customized for accurately
localizing slow-moving pedestrians. To mitigate the impact
of significant power consumption of the GPS module and
improve the energy efficiency, a dynamic approach is pro-
posed to activate the GPS module adaptively depending on
the estimated time that the user is expected to be geograph-
ically close to a nearby crosswalk. Additionally, a novel
algorithm is designed to detect the user activities effectively
so that the system is activated at the exactly right time. The
communication module of SaferCross is built based on the
WiFi Direct technology. A new technique based on oppor-
tunistic overhearing of WiFi Direct messages is developed to
address the challenge of allowing for n-to-n communication
for WiFi Direct. Finally, a collision probability model is
designed based on real-world data collected via WiFi Direct
to effectively perform risk assessment. SaferCross system-
atically structures these novel system components to build the
first fully functioning mobile system for pedestrian safety.

Extensive experiments were conducted in which both the
module-level test and the integrated test were performed to
evaluate the effectiveness of the proposed system modules
individually and the system performance as a whole. The
results demonstrate that the localization accuracy was sig-
nificantly improved by up to 72%; the user phone viewing
event was accurately detected with the accuracy of over 90%;
and the energy consumption was reduced by 50.2%. An inte-
grated test was performed to evaluate the effectiveness of the
interplay of the individual system components. The results
show that all modules effectively cooperate to provide an
alert message to the user in a timely manner with an error
of 1.6sec on average in comparisonwith the ground truth data.
Such a small error can be easily compensated by configuring
the system to fire an alert message a couple of seconds
early. The contributions of this paper are summarized as
follows.
• A Hidden Markov Model-based map matching algo-
rithm is designed for accurately localizing pedestrians.

• An adaptive algorithm is developed to improve the
energy efficiency of a mobile system for pedestrian
safety.

• An effective algorithm is created to detect the pedestrian
phone viewing event accurately.

• A novel approach is developed to perform risk assess-
ment effectively based on Wi-Fi Direct-based commu-
nication between cars and pedestrians.

• Experiments are performed in a parking lot to demon-
strate the effectiveness of individual system components
and the proposed mobile system as a whole.
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This paper is organized as follows. Section II presents a lit-
erature review on related approaches designed for improving
pedestrian safety. In Section III, we describe an overview of
the proposed app followed by the details of each system com-
ponent. The performance of the proposed app is evaluated in
Section IV. We then conclude in Section V.

II. RELATED WORK
Wang et al. develop an app that uses the rear camera of a
phone to monitor approaching vehicles to alert the pedes-
trian [16]. A machine-learning-based image processing algo-
rithm is designed to capture approaching cars for pedestrian
safety assessment. This approach, however, raises the privacy
issue as it takes photos of cars without acquiring permission
of drivers. Additionally, the energy efficiency is another prob-
lem as this system is based on continuously executing image
processing algorithms which consume much energy.

A cellular network is used to enable car-to-pedestrian
communication [18]. However, this approach based on a
cellular network not only incurs high cost but also results
in non-negligible message delay compared with the direct
peer to peer communication. Especially, even a small mes-
sage delay is critical in mobile systems for pedestrian safety.
Dedicated Short Range Communication (DSRC) is a wireless
communication standard specifically designed for vehicle-to-
vehicle communication (V2V). Researchers utilize DSRC as
a means to enable vehicle-to-person (V2P) communication
for pedestrian safety [17]. However, implementing DSRC on
a phone requires significant modifications to the host sys-
tem firmware, and extra device support is needed to operate
DSRC on vehicles.

Specialized hardware is designed to enhance pedestrian
safety. For example, sensors are adhered to the pedestrians’
shoes to detect whether the pedestrian is crossing at a cross-
walk [20]. Those sensors are used to calculate the slope
between the sidewalk and the roadway as an indicator to find
whether the pedestrian is about to cross the street. Another
example is to exploit an electronic transponder that is attached
to the pedestrian’s body to determine whether the pedestrian
is visible or not [21]. However, typically asking the users
to attach these types of specialized hardware is not easy,
preventing widespread adoption of such technology.

WiFi has been actively considered as an appropriate alter-
native technology to enable vehicle to pedestrian communi-
cation for pedestrian safety [22]–[24]. In particular, WiHonk
is quite similar to the Communication module of our
work [23]. However, WiHonk is based on the modification
of the beacon frame of IEEE 802.11 which requires the root
privilege that makes it difficult for common use. Additionally,
no details are provided regarding when to exchange mes-
sages with cars, potentially resulting in unnecessary network
bottleneck. WiSafe is another WiFi-based pedestrian safety
system which resembles our Communication module [24].
Our work is different in that the system design involves both
the driver and pedestrian while WiSafe utilizes only one-way
communication from a pedestrian to cars.

FIGURE 2. Different pedestrian safety levels of SaferCross. SaferCross can
be configured to support various pedestrian safety levels.

III. SYSTEM DESIGN
A. SYSTEM OVERVIEW
SaferCross has two modes of operation: the driver mode
and pedestrian mode. In the driver mode, SaferCross keeps
monitoring the speed and location of the vehicle, and sends
the speed and location information to the pedestrians within
the communication range of WiFi Direct. In the pedestrian
mode, SaferCross keeps track of the pedestrian location
and activity to detect if the user is attempting to cross a
crossing while viewing their phone. It communicates with
approaching cars, i.e., driver phones of those cars, to obtain
the speed and location information of the cars and estimates
the probability of collision. Depending on the calculated
probability of collision, the pedestrian is alerted. Tominimize
driver distraction, the driver is only alerted when the pedes-
trian ignores the alert message several times.

SaferCross also supports the stand-alone mode where it
works without requiring to communicate with driver phones.
In other words, it can be configured to alert the pedestrian
based only on the distance to the crossing and the pedestrian’s
walking direction with varying safety levels (Fig. 2). More
specifically, the user will be alerted if he is close to the
crossing and his phone screen is on (Level 3); if the phone
screen is on and he is viewing the phone (Level 2); and if
the phone screen is on and he is viewing the phone and he is
walking toward the crossing (Level 1).

SaferCross consists of five main systemmodules, namely
Location, Energy, Context, Alert, and Communication
(Fig. 3(a)). Specifically, the Location module is developed
to improve the positioning accuracy of the pedestrian. The
resulting pedestrian location information is distributed to
other system modules. The Energy module is designed to
save energy by adaptively controlling the operation of the
GPSmodule. Taking the user location as input from the Loca-
tion module, the Context module identifies the user activity,
e.g., whether the user is walking, running, and viewing their
phone. In particular, the module addresses the challenge of
effectively detecting the ‘phone viewing’ activity. The Alert
module is where the collision probability is calculated. As can
be seen in Fig. 3(a), it interacts with the Location and
Communication modules to obtain necessary information
in calculating the collision probability. The Alertmodule then
makes a decision to send an alert message to the user based
on the resulting collision probability. The Communication
module enables P2P communication between pedestrians and
approaching cars using WiFi Direct.

To explain the operation of SaferCross in more detail,
a flowchart (Fig. 3(b)) is used. When the system is started,

VOLUME 8, 2020 49659



M. Won et al.: SaferCross: Enhancing Pedestrian Safety Using Embedded Sensors of Smartphone

FIGURE 3. (a) System structure of SaferCross; (b) Flow chart representing the operation of SaferCross.

it identifies whether the user is a driver or not. For this,
we adopt an existing driver phone detection algorithm [25].
If the user is a driver, using WiFi Direct, SaferCross starts
to scan on the predetermined channel to be connected with
pedestrians. Once it is connected, SaferCross sends the
vehicle information to the pedestrian so that the pedestrian
can calculate the collision probability. More specifically,
the autonomous mode of WiFi Direct is adopted to mini-
mize the connection establishment time and to alert the user
timely [19].

If the user is a pedestrian, the Locationmodule is activated
to obtain the calibrated user location. This location informa-
tion is distributed to the Energy, Context, and Alert mod-
ules. The Energy module in turn finds if the user is located
within an alert zone, a region around a crossing–detailed
description about the alert zone will be presented when we
explain the Energy module in Section III-C. If the user is
in an alert zone, the Context module kicks in and detects
whether the user is actually walking/running while viewing
their phone. If the phone-viewing-event is detected, the Con-
text module triggers the Communication module. And then
the Communication module is used to create a P2P group
for Wi-Fi Direct to initiate communication with cars and
obtain necessary information for the Alert module to perform
risk assessment. Notations used to explain the modules of
SaferCross throughout this paper are summarized in Table 1.

B. IMPROVING POSITIONING ACCURACY
Attaining high positioning accuracy of the pedestrian is cru-
cial for SaferCross to estimate the collision probability
accurately and alert the pedestrian timely. However, achiev-
ing precise localization using the GPS module of smartphone
is a challenging problem, especially in urban canyons with
significant multipath and non-line-of-sight effects. To under-
stand the localization accuracy of the smartphone that we

FIGURE 4. Location measurement in a metropolitan area. The result
demonstrates significantly large location errors in a typical city
environment.

used in our experiments, we collected GPS locations in a
metropolitan area. Fig. 4 shows the collected GPS locations.
The red-colored dots represent the measured GPS locations.
The green arrow indicates the ground-truth trajectory. The
mean location error was very large as 12.9m.

The Location module of SaferCross is designed to
improve the positioning accuracy. It finds highly erroneous
GPS locations and replaces them with newly estimated loca-
tions. The Location module is developed based on the obser-
vation that pedestrians walk along a sidewalk, and therefore
a GPS location that is geographically far from a sidewalk can
be considered as an outlier. Specifically, a Hidden Markov
Model-based map matching algorithm is designed to infer
the current sidewalk segment using preceding user locations
and to remove/replace erroneous GPS locations. In contrast
to existing map matching algorithms, an unique approach is
developed specifically for ‘slow-moving’ pedestrians. Fig. 5
depicts an overview of the Location module. The current
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TABLE 1. Notations used in this paper.

FIGURE 5. Overview of the Location module of SaferCross. The module is
developed based on a customized map matching algorithm.

GPS location is provided as input to the map matching algo-
rithm. The algorithm then estimates the current sidewalk seg-
ment based on the preceding user locations. Once the current
sidewalk segment is identified, the algorithm calculates the
location error and rejects or replaces the GPS location with a
newly estimated location.

The Location module identifies the current sidewalk seg-
ment using a Hidden Markov Model (HMM). Let us define a
set of states S = {r1, r2, . . . , rN } where each state represents
a sidewalk segment with N being the total number of states.
Note that only the sidewalk segments in the surrounding area
of the current user location are considered in finding the cur-
rent sidewalk segment in order to reduce the computational
overhead. Now we exploit HMM to find the most probable
sidewalk segment ri ∈ S, 1 ≤ i ≤ N given the observation
of a set of the preceding GPS locations in a sliding window
examined at time t , which is denoted by Zt . A unique aspect
of the proposed map-matching algorithm based localization
method compared to other map matching algorithms is that a
set of preceding locations are taken into account rather than
a single location to account for the low speed of a pedestrian.

More formally, a HMM is modeled as λ = (S,Zt ,A,B, π),
where S is the state set. Zt is an observation that is represented
as a sliding window of sizeω consisting of the preceding GPS
locations, i.e., Zt = {z1, . . . zω}, where zj is a GPS location
measured at time j. A is the observation probabilities denoted
by P(Zt |ri), 1 ≤ i ≤ N . It defines the likelihood that the
user is actually on sidewalk segment ri. B is the transition
probabilities denoted by P(rj|ri), i 6= j(i, j = 1 . . .N ).
It represents the likelihood of the user moving from one
segment ri to another rj. π is the initial state probabilities
which are defined as P(Z1|ri), 1 ≤ i ≤ N .

The probability models A, B, and π are designed to decide
the most probable current sidewalk segment. First, the obser-
vation probabilities A are computed based on the fact that a
GPS location geographically far from the current sidewalk
segment is less likely to occur [26]. An observation probabil-
ity P(zt |ri) for a GPS location zt thus can be modeled as the
probability distribution of the geodetic distance between zt
and zt,i. Here zt,i is the geographically closest location from
on a sidewalk segment ri from zt . Let us denote this geodetic
distance by |zt − zt,i|geo. Since the geodetic distance repre-
sents the GPS positioning error which is known to follow the
zero-mean Gaussian [27], the observation probability can be
written as:

P(zt |ri) =
1

√
2πσz

e−0.5(
|zt−zt,i|geo

σz
)2
, (1)

where σz is the standard deviation of GPS measurements,
which can be obtained empirically. Note that our system regu-
larly updates σz based on previously measured GPS locations
since σz may change depending on the environment. Now
considering a set of GPS locations Zt = {z1, . . . zω} stored in
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a sliding window, the observation probabilities A = P(Zt |ri)
can be defined as follows.

P(Zt |ri) =

∑ω
t=1 P(zt |ri)
ω

, (2)

which represents the likelihood that the user is on sidewalk
segment ri given the set of preceding GPS positions Zt .
Next we model the transition probabilities B which define

the likelihood that the user transitions to another sidewalk
segment. For this, let us define the moving distance between
two GPS locations zt and zt+1, denoted by |zt+1− zt |mov. The
moving distance refers to the geographic distance between
the two GPS locations along the shortest sidewalk trajec-
tory. Fig. 4 illustrates the geodetic and moving distance
between two GPS locations zt and zt+1. Newson and Krumm
noted that the transition probability depends on the difference
between the moving distance and the geodetic distance [26].
More specifically, the transition probability becomes higher
when the difference is larger, and vice versa. It was also
shown by [26] that the difference follows the exponential
distribution. A trick that we make to account for the slow
moving speed of the pedestrian is to use the GPS location
measured ε time ago (i.e., zt−ε) rather than using the preced-
ing GPS location (i.e., zt−1) in calculating the moving and
geodetic difference. Now by denoting the distance difference
as δ = ||zt−zt−ε |mov−|zt−zt−ε |geo|, we obtain p(δ) = 1

β
e
−δ
β .

Finally, since the transition probabilities B depend on the
distance difference, we obtain: B = P(rj|ri) ≈ p(δ). We also
note that using Eqs. 1 and 2, the initial state probabilities
π = P(Z1|ri) can be easily calculated. Given these prob-
ability models A, B, and π , the proposed map matching
algorithm identifies the current sidewalk segment. Once the
current sidewalk segment is identified, the ‘‘valid’’ region is
calculated. Any GPS location that is outside this region is
either rejected, or projected onto the region. More precisely,
the width of the region is defined as ‘α· (max walking speed) ·
(GPSmeasurement interval)’ and the height of it is defined as
‘α· (the sidewalk width)’. Here, the parameter α is adopted to
allow the user to adjust the tolerance to location errors. In our
experiments, we used 15m as the threshold to reject a GPS
location. If the distance between a measured GPS location
and the valid region is greater than 15m, we rejected the GPS
location, and if not, the GPS location is projected onto the
closest point on the valid region.

C. IMPROVING ENERGY EFFICIENCY
TheGPSmodule of smartphone is one of themost power hun-
gry sensors [28]. We develop the Energy module to improve
the energy efficiency of SaferCross that heavily utilizes
the GPS module. To characterize the energy consumption
of the Location module of SaferCross, an experiment was
performed using the Monsoon Power Monitor [29]. Fig. 6
shows the experimental setup. We connected the power mon-
itor’s probes to the phone’s battery terminals so that the
monitor provides current to the phone. And then, a laptop
was connected to the power monitor via USB and mea-

FIGURE 6. Experimental setup for power measurement. The power
monitor is directly connected to the phone’s battery terminals.

FIGURE 7. Power consumption of the GPS module. The result indicates
that significant energy savings are possible by adaptively activating the
GPS module.

sured the samples of current drawn and the voltage at a rate
of 5KHz.

Fig. 7 shows that a large amount of power was consumed
for a short period of time when the app was started to load
and display the app on the screen. After that, the app used
about 1.5 watt for updating and calibrating the position.
An interesting observation was that the GPS module con-
sumed very a small amount of energy, as low as the baseline
energy consumption, when the GPS module was put into
the sleep mode, indicating that significant energy savings
can be achieved by putting the GPS module into the sleep
mode. It is worth to note that the sleep mode depends on
mobile operating systems. For example, by the sleep mode
in Android, we mean that we stop receiving position update,
while the GPS module maintains the lock on the acquired
satellites, so that when we resume position update, the GPS
module does not need to re-acquire and lock on satellites.

The Energy module determines dynamically when to turn
on the GPS module and when to put it into the sleep mode.
To explain the mechanism, we need to define the alert zone.
The alert zone is a 2D region, the boundary of which is
equidistant from a nearest crosswalk (Fig. 8). This alert
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FIGURE 8. An illustration of an alert zone which is a 2D region,
the boundary of which is equidistant from a nearest crosswalk. The
system components of SaferCross are activated when the user is within
an alert zone.

zone is important for SaferCross as system components
are activated only when the user is within an alert zone.
An interesting aspect of this alert zone is that it can also
be set up for non-crosswalk areas to prevent accidents for
jaywalkers. The basic mechanism for saving energy is to
estimate the time when the user will be at an alert zone and
put the GPS module into the sleep mode until that time. More
specifically, the estimated time is calculated as d

vmax
where

d is the shortest geodetic distance between the current user
location and the closest alert zone, and vmax is the maximum
brisk human walking speed [30]. An interesting aspect of
the Energy module is that GPS is adaptively controlled in
coordination with the provided map and the associated alert
zones, considering the user walking direction. The walking
direction can be monitored even if the GPS is off based on
a known technology [31] so that the GPS will be turned
back on when the user direction is reversed to re-estimate the
time.

D. DETECTING PEDESTRIAN PHONE USE
The Context module is developed to effectively detect
the user- phone-viewing event. However, detecting the
phone-viewing event is hard because it is associated with lim-
ited user interactions such as tapping on the phone. There is
an approach that utilizes the camera of the phone to detect the
phone viewing event by recognizing the user’s face/eyes [32].
A limitation of this approach is the privacy concerns. Fur-
thermore, the phone orientation information is insufficient
to determine whether the user is viewing the phone or
not.

In order to develop a novel approach for detecting the
phone-viewing event, we hinge on the observation that when
the user views their phone while walking, they tend to try
to minimize phone shaking to better read email/text mes-
sages, and watch videos. Based on this motivational obser-
vation, we quantify phone shaking using the variance of the
acceleration magnitude of phone. We then use the quanti-
fied data to detect the phone-viewing event. More precisely,
given an accelerometer reading (ax , ay, az) of phone in x,
y, and z directions respectively, we remove random noise

FIGURE 9. MAD values measured with a 10sec window. The two events
are clearly distinguished.

using the standard low-pass filtering. As a result, we obtain
filtered accelerometer data denoted by âx , ây, âz. The mag-
nitude of the acceleration vector m is then calculated as

m =
√
âx

2
+ ây

2
+ âz

2.

A sliding window W = {m1,m2, . . .mφ} is used to store
a sequence of acceleration magnitude values collected over
a period of time. The variation of the magnitude values in a
window is represented as the mean absolute deviation (MAD)
which is used to quantify the shaking of phone. Fig. 9 displays
an example of MAD values for both phone-viewing and
non-viewing events with a 10-sec slidingwindow. Leveraging
the clear difference between the MAD values of the two
events, we design a simple threshold-based method to detect
the phone-viewing event. More specifically, a threshold 0 is
defined as the average of the mid points of MAD values for
phone-viewing event and non-phone viewing event. Given
training data, i.e., the MAD values for the phone viewing
event X = {x1, x2, . . . , xn}, and the MAD values for the non-
phone-viewing event Y = {y1, y2, . . . , yn}, the threshold is

calculated as
∑

i=1..n(
yi+xi
2 )

n . A more advanced AI-based and
dynamic mechanism to determine the threshold is left as a
future work.

An experiment was performed to evaluate the feasibility
of the proposed approach. Five volunteers participated in
this experiment. They were asked to walk with viewing their
phones. They were also asked to walk without viewing their
phones. Figs. 9 and 10 show the results for different sizes
of the sliding windows, i.e., 10sec and 20sec, respectively.
As it can be seen, MAD values for the phone-viewing sce-
nario were significantly smaller than that for the non-phone-
viewing scenario, allowing us to clearly differentiate the two
scenarios. The proposed method turns out to be quite accurate
with detection accuracy over 90%.

It is also worth to note that since the Context module is
only activated when the user is within an alert zone, and the
accelerometer consumes significantly less amount of power
than the GPS module, the energy efficiency issue for the
Context module is less critical than the Location module.
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FIGURE 10. MAD values measured with a 20sec window. The two events
are more clearly distinguished with a larger window size.

E. DETERMINING WHEN TO ALERT THE USER
The Alert module of SaferCross is developed to determine
when to alert the user by estimating the collision probability.
This module is activated when the user is within an alert zone.
It sends a REQ message to approaching vehicles via WiFi
Direct. In response to the REQmessage, vehicles send a REP
message to the user. The REP message contains information
required to estimate the collision probability including the
vehicle speed vc, vehicle mass m, cross-sectional area of the
vehicle A, and time for the vehicle to reach the crossing
denoted by tc (Fig. 11). The vehicle and the pedestrian keep
exchanging these messages to update the collision probability
in real time to account for the changing motion of the vehicle
and the user.

In estimating the collision probability, the time for the
pedestrian to reach at the crossing is calculated, i.e., tp =

dp
vp

where dp is the shortest geodetic distance between the pedes-
trian and the crossing, and vp is the user walking speed. The
Android context API is used to determine vp. Specifically,
we use a brisk walking speed [30] when the API detects
that the user is walking; if the user is running, vp is set to a
predetermined running speed. In particular, if the user is not
walking or running, the collision probability is not calculated.

It is important to note that to provide the near real-time
computation of the collision probability, when the user in an
alert zone, the calculation of the current sidewalk segment of
the Location module is suppressed, which is based on the
observation that the user stays in the same sidewalk segment
when she is in the same alert zone.

Given vc, m, tc, A, and tp, the Alert module is ready to
estimate the collision probability. Let vc(i), m(i), tc(i), and
A(i) be the vehicle speed, vehicle mass, amount of time to
reach at a crossing, and cross-sectional area for vehicle i,
respectively. If tp � max(tc(i)),∀i, i.e., if the user is expected
to reach at the crossing long after all approaching vehicles
have passed, the user is not alerted. On the other hand,
if tp < max(tc(i)), ∃i, i.e., there is at least one approaching
vehicle around the crossing by the time the user reaches at
the crossing, the module estimates the collision probability.

FIGURE 11. An illustration of how the Alert module works. The message
exchanged between the pedestrian and the driver contains information to
estimate the probability of collision.

Consequently, if the following two conditions are satisfied,
an alert message is generated for the user: (a) The pedestrian
is walking/running while viewing the phone; (b) The prob-
ability of collision is greater than a threshold. Note that the
estimation of the collision probability is continually updated
as the REQ and REP messages are kept being exchanged
between vehicles and the user. Thus, if there is any new vehi-
cle within the range of WiFi Direct, the collision probability
for that new vehicle will be calculated and updated.

More details are presented on how the collision probability
is calculated. First, we define a term ‘user warning time’
denoted by twarning = min(tc(i)) − tp that represents the
amount of time allowed for the driver to avoid an accident
after he sees the pedestrian who is about to cross the street.
And then, the collision probability is estimated as P(tdelay +
treact+ tskid > twarning), where tdelay is the round-trip message
delay for a single-hop 802.11 link. treact is the driver reaction
delay, and tskid is the amount of time from the point when the
driver applies brakes until the car completely stops. If the sum
of these time delays is greater than twarning, the likelihood of
collision is deemed high. In particular, we disregard the WiFi
Direct connection establishment time since the connection
has been already established before the first alert message is
sent from the user to the approaching cars.

More specifically, tdelay is empirically obtained as the
pedestrian continuously exchanges messages with approach-
ing vehicles, i.e., tdelay is the average of measured round-trip
message delays. In calculating treact , we leverage the obser-
vation that the log-normal probability model fits the driver
reaction time well [33]. Thus, treact is defined based on the
log-normal distribution [34] as follows:

f (x|µ, σ ) =
1

xσ
√
2π

e
−(ln x−µ)2

2σ2 , (3)

where we select the mean and standard deviation of the driver
reaction time asµ = 1.14 and σ = 0.32, respectively accord-
ing to the experimental data collected by Gaziz et al. [35].
To calculate tskid , we first compute dskid that is the distance
that a car moved until it is completely stopped after brakes are

applied as follows: dskid =
mv2p
2f , where m is the vehicle mass,

and vp is the vehicle speed, which we obtain from the REP
message. f is the resistance force, which is calculated based
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on the model proposed by Ho and Chen [24].

f = µkmg+
ρACdv2r

2
+ f0, (4)

where ρ is the density of air, A is the cross-sectional area
of the vehicle, Cd is the drag coefficient, vr is the speed of
the vehicle relative to the air, and f0 is the other resistance
force. In our experiments performed on a sunny day on a good
conditioned road with Volkswagen Passat 2013, we used the
parameter: m = 1400kg, µk = 0.8, A = 2.7m2, Cd = 0.25,
ρ = 1.23kg/m3 according to [36]–[38]. vr was approximated
as the current vehicle speed v due to the slow wind speed.
Thus, tskid =

dskid
v .

Once tdelay, tskid , and twarning are known, the collision
probability can bewritten as:P(treact > twarning−tdelay−tskid )
which can be calculated leveraging the fact that treact follows
the log-normal distribution specified in Eq. 3. Note that we
are very careful in sending an alert message to approaching
cars. The reason is that alert messages may disturb safe driv-
ing. In designing the Alert module, thus, we give an emphasis
on alerting the user first in an hope that the user will stop and
look up when they receive the alert message. However, if the
user ignores the alert message (e.g., by clicking the cancel
button), an alert message is eventually sent to the driver.

F. ENABLING COMMUNICATION BETWEEN PEDESTRIAN
AND CARS
To enable direct communication between the user and
approaching cars, WiFi Direct is used. WiFi Direct is a
standard designed by the WiFi alliance to facilitate device-
to-device (D2D) communication between nearby devices
without involving an access point [19]. In WiFi Direct,
devices communicate by establishing a group. One of them
is the group owner (GO), and the others are the group mem-
bers (GM). These roles are negotiated by the devices in the
device discovery phase. The GO implements the AP-like
functionality, and the GMs act like clients. Specifically,
the GO advertises to its GMs and allows new GMs to join
the group. The GO runs a Dynamic Host Configuration Pro-
tocol (DHCP) server to provide IP addresses to joining GMs
after going through the WiFi Protected Setup (WPS) phase.

In SaferCross, the pedestrian is the GO, and approaching
cars are the GMs. An approaching car scans a predefined
channel to search for the GO. Once the GO is discovered,
the car joins the group immediately. There are two main chal-
lenges. The first one is that these scanning and negotiation
processes take too much time. The literature shows that it can
take about 8 to 9 seconds [19]. Fortunately, WiFi Direct pro-
vides the autonomous mode in which the negotiation process
is not required as the GO is predetermined. The autonomous
mode fits perfectly with SaferCross because there are clear
roles, i.e., the user and the cars. Our experiments show that
the average time to form a group in the autonomous mode is
2.8 seconds, which coincide with the results of the previous
research [19].

FIGURE 12. A department parking lot used as an experimental site. The
acceleration zone is used to reach the desired vehicle speed.

Another challenge is that WiFi Direct is essentially
designed to support 1-to-1 or 1-to-many communication. For
example, consider Fig. 11 in which the user PedA forms a
group (1-to-many) with two cars CarA and CarB. However,
there may be other users around, say PedB in this figure who
wants to communicate with the cars. Basically, the challenge
is how to allow the GMs (cars) to join more than one groups.
According to the WiFi Direct Specification, operating GMs
for more than one groups is not precluded, but the implemen-
tation is not described [39].

We address this challenge by allowing the user to overhear
on the operating channel for a very brief moment, if the user
is not the GO. For example, PedB overhears the message
exchanges between PedA and the cars. PedB then finds that
the cars have already formed a group with PedA. Since there
is already a group, PedB joins as a GM and communicates
with PedA instead of the cars. Now the trick is that the REP
messages received from the GO (i.e., PedA) are forwarded to
PedB. As a result, although PedB is not the GO, it still can
receive the vehicle information that it needs to compute the
collision probability. Essentially, the proposed solution effec-
tively establishes the virtual n-to-n communication based on
a single group.

IV. EXPERIMENTAL RESULTS
We implemented SaferCross on a Samsung Galaxy
S6 which is equipped with 1.5GHz octa-core processor and
3GB RAM running on Android 5.0. We performed exper-
iments in a department parking lot (Fig. 12). To charac-
terize the experimental environment, the packet delivery
rates (PDR) were measured for both Pedestrian → Driver,
and Driver→ Pedestrian. The average PDR was over 90%
when the distance between the car and the pedestrian was
smaller than 60m (Fig. 13). Based on the results, the length
of the emulated road segment was set to 75m including the
20m acceleration zone.

A driver ran SaferCross in the driver mode. A Volk-
swagon Passat’13 was used which moved along the 75m
road segment. The driver was asked to accelerate the car
to reach the desired vehicle speed in the 20m accelera-
tion zone (Fig. 12). After reaching the desired speed, the
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FIGURE 13. PDR for WiFi Direct in the experimental site. The length of the
road segment was determined based on the measured PDR.

vehicle’s cruise control was used to maintain the same speed.
Another participant was asked to act as a pedestrian with
SaferCross in the pedestrian mode and walk toward the
crossing. To ensure safety, we made sure that the pedestrian
always stops at the crossing.

We performed the module-level test first to evaluate the
performance of individual system components. We then con-
ducted the integrated test to evaluate the overall performance
of SaferCross. The main parameter used for this experiment
was the vehicle speed, and we used the ‘user warning time’
twarning as the main metric because it effectively measures the
performance of SaferCross as a whole. Specifically, we can
get the accurate user warning time only if all other system
components work correctly and the interplay of these compo-
nents functions effectively. The measured user warning time
was compared with the ground truth data.

The experimental environment serves effectively the pur-
pose of evaluating the performance of SaferCross in com-
parison with conducting the experiment in real roads. The
individual module test can be done readily without account-
ing for real traffic conditions. Also, the integrated test would
effectively approximate the performance of SaferCross in
real roads, because eventually the pedestrian maintains com-
munication only with the foremost vehicle for estimating the
collision probability regardless of the traffic of approaching
vehicles, and the vehicle used in the experiment effectively
represents the foremost vehicle. It should be noted, however,
that in order to understand better the effect of other real-world
factors such as obstacles, weather conditions, lighting con-
ditions, and human factors, performing experiments in real
roads would be valuable. Due to the space limitation and
restricted access to public roads, we had to leave the extension
of the experiment as future work.

A. POSITIONING ACCURACY
Positioning accuracy was measured in both rural and city
areas without using the Location module first. Five differ-
ent trajectories were used in each area. In each experiment,

FIGURE 14. CDF of measured location error. The results show that the
Location module significantly improves the positioning accuracy.

a participant was asked to walk along the trajectories to
measure the GPS locations and calculate the location errors.
Specifically, the location error was defined as the shortest
geodetic distance from the measured GPS location to the
ground-truth trajectory. Fig. 14 shows the cumulative distri-
bution graph of the location errors for both the rural and city
environments. The mean location error for the rural area was
0.9m. The location error for the city area was significantly
greater than the rural area as 12.9m due to many obstacles
that disturbed reception of signals from satellites.

To improve the localization accuracy, the Locationmodule
was activated, and the experiment was performed under the
same conditions. In particular, other system modules were
turned off in order to focus on evaluating the effectiveness
of the Location module. The results show that the Location
module significantly reduced the location errors (Fig. 14).
The average location errors for the rural and city areas
after applying the Location module were 0.8m and 3.5m,
respectively. Although the improvement was not significant
for the rural area because the location accuracy was already
high without the Location module, the module success-
fully decreased the location error by 72% in the urban area.
Of course, an average error of 3.5m in the urban area is not
negligible; yet, it can be compensated by increasing the size
of the alert zone, i.e., by providing an alert message to the
user a bit early.

B. ENERGY EFFICIENCY
We evaluate the performance of the Energy module focusing
on two key questions: (1) Is GPS reactivated timely, and (2)
how much energy savings are achieved. To answer the first
question, wemeasured the shortest geodetic distance between
the pedestrian and the alert zone when GPS was reactivated
by the Energy module. If the distance is small, it means that
GPS is reactivated timely. This experiment was performed
with both the actual walking speed and the brisk walking
speed. The actual walking speed was measured by asking the
participant to walk for 5mins. Fig. 15 shows the histogram
of the actual walking speed. We then calculated the average
walking speed and integrated it into the Energy module.
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FIGURE 15. The histogram of walking speed data. The data was used by
the Energy module in the experiments.

FIGURE 16. A scenario designed for measuring energy savings by using
the Location module. The alert zones are set up around the crossings.

The pedestrian was asked to walk from 30 meters away
from the alert zone toward the alert zone. We then measured
the geodetic distance when GPS was reactivated. The results
are shown in Fig. 15. The shortest geodetic distance between
the pedestrian and the alert zone was about 1m when the
average of the actual walking speed was used by the module.
In contrast, when the module used the brisk walking speed,
the shortest geodetic distance was about 4m. The results may
seem that using the actual walking speed for estimating the
time to reactive GPS is better. However, we note that reac-
tivating GPS several seconds early actually would not affect
much the energy efficiency, and in fact, it could improve the
safety of the pedestrian since other system components are
activated several seconds early to allow for more time for the
pedestrian to respond to the alert message.

Assuming the brisk walking speed, we evaluated energy
savings resulting from the Energy module.
We then performed experiments to understand how much

energy savings can be achieved. In this experiment, we used
the brisk walking speed. Specifically, we created 8 alert zones
along a 850m sidewalk and asked the pedestrian to walk along
the sidewalk repeating 5 times (Fig. 16). In this experiment,
only the Location module was turned on to provide the cal-
ibrated location information. We then measured energy con-
sumption with and without the Energy module. The results
are depicted in Fig. 17 demonstrating that Location module
decreased energy consumption by 50.2%.

C. CONTEXT DETECTION ACCURACY
We measured the accuracy of detecting the phone viewing
event. The accuracy is defined as the sum of true positives
and true negatives divided by the total number of event

FIGURE 17. Energy savings by using the Energy module. The results
indicate that significant energy savings are achieved by using the Energy
module.

detection. In this experiment, 7 volunteers participated. They
were asked to walk with and without viewing their phones for
10mins each to collect the training data.

The size of the sliding window is determined before mea-
suring the accuracy. We should choose the sliding win-
dow size that makes clear distinction between the phone
viewing and non-phone viewing events. To quantify how
well the two events are differentiated, a new metric 1 =∑

i=1..n(|yi−xi|)
n is defined, where X = {x1, x2, . . . , xn} and Y =

{y1, y2, . . . , yn} are MAD values for the phone-viewing and
non-phone-viewing events, respectively. Thus, higher 1 val-
ues are preferred because it will lead to higher event detection
accuracy due to the fact that the two events are more clearly
differentiated. However, note that higher accuracy does not
necessarily mean higher1 values because the phone-viewing
event will be detected even if the difference between the
MAD values of the two events is small, which is the reason
why this new metric is defined to determine the window size.

To decide an appropriate window size, we measured 1 by
varying the window size. Fig. 18 shows the results which
indicate that using a larger window distinguishes the two
events better because of more samples contained in the win-
dow. A downside of using a large window size is, however,
the increased delay to fill up the window with samples.
An interesting observation is that even if we use a small
window, 1 does not decrease too much. For example, 1 for
the window size of 3sec is only 12% smaller than that for the
window size of 60sec. In this experiment, we decided to use
the window size of 3sec.

With the window size, we measured the event detection
accuracy. This time the volunteers were asked to walk with
and without viewing their phones for another 5 mins. Fig. 18
shows the results. The accuracy was varied depending on the
individual as each participant had a different walking style.
However, it can be noted that the accuracy for all participants
was greater than 90%, validating that the Context module
effectively detects the phone viewing event.

D. INTEGRATED TEST
We perform an integrated test to evaluate the performance of
SaferCross as a whole by putting together all the individual
modules. We use the user warning time twarning as a main
metric for performance evaluation based on the observation
that accurate twarning can only be obtained if all system mod-
ules perform effectively. Specifically, in this experiment, tc
and tp were recorded to calculate the user warning time, i.e.,
|tc − tp|. However, measured twarning may be different from

VOLUME 8, 2020 49667



M. Won et al.: SaferCross: Enhancing Pedestrian Safety Using Embedded Sensors of Smartphone

FIGURE 18. Effect of the window size on the accuracy of detecting the
phone viewing event. The accuracy is over 90% for all participants.

FIGURE 19. The ground-truth distance to the crossing. It varies due to the
nondeterministic nature of the user walking speed, GPS locations, and
message delay.

the ground-truth time to collision denoted by tGTwarning due to
various factors such as the positioning error (for both the car
and the pedestrian), processing delay, and transmission delay
for delivering the warning message to the driver. We focus on
capturing the difference, i.e., |twarning − tGTwarning in evaluating
the overall system performance.

In this experiment, a participant was asked to walk toward
the crossing while viewing his smartphone. At the same time,
a driver was asked to drive a car toward the crossing. twarning
was measured for different vehicle speeds. For each vehicle
speed, we repeated measurement of twarning five times and
obtained the average value of twarning. At the same time, the
locations where an alert message was actually sent (pedes-
trian) and received (driver) were recorded based on an LED
indicator and a camera to calculate tGTwarning. Fig. 19 shows
the ground-truth distance to the crossing when the vehicle
received an alert message, which varies due to the nondeter-
ministic nature of the user walking speed, GPS locations, and
message delay.

Fig. 20 shows the user warning times for different vehi-
cle speed and the corresponding probabilities of collision.
The figure also shows the ground-truth user warning time.
The results indicate that when the vehicle speed was high,

FIGURE 20. User warning time and collision probability. The estimated
user warning time is very close to the ground-truth value. The difference
can be used to calibrate SaferCross for better pedestrian safety.

the vehicle was closer to the crossing when the alert message
was generated, leading to the small user warning time and
greater collision probability. We compared the measured user
warning time calculated based on tc and tp with the ground
truth user warning time. The difference was between 0sec
and 3sec, and the average difference was 1.6sec. Although
the max difference of 3sec is a non-negligible amount of time
considering the fast moving vehicle, it can be compensated
by configuring the system to fire an alert message several sec-
onds early.

V. CONCLUSION
We have presented SaferCross, a first fully functioning
prototype mobile system for preventing distracted phone use.
We develop critical system components for mobile systems
for pedestrian safety focusing on the positioning accuracy,
energy efficiency, activity detection, and effective risk assess-
ment, laying the foundation for future research and devel-
opment of mobile systems for pedestrian safety. We demon-
strated that SaferCross effectively performs risk assessment
of pedestrian safety via systematic integration of various
software components for pedestrian positioning, phone use
activity detection, energy efficiency, and car-to-pedestrian
communication. We expect that the technical contributions
made in this paper will be useful assets for various other
transportation research involving pedestrians. A potential
extension of this work is to enhance the pedestrian positioning
accuracy as well as the proposed energy efficiency algorithm
utilizing the recently arising 5G network [40]. Another inter-
esting future direction is to understand how pedestrians and
drivers respond to a warning sent by the proposed system,
which is an important research problem as noted by a recent
research [41] that pedestrians tend to reduce their attention
when receiving awarning, and they sometimes do not respond
to a warning once they initiated a crossing.

REFERENCES
[1] NHTSA. (2015). Traffic Safety Facts. Accessed: Sep. 1, 2019. [Online].

Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/
812375

49668 VOLUME 8, 2020



M. Won et al.: SaferCross: Enhancing Pedestrian Safety Using Embedded Sensors of Smartphone

[2] MarketWatch. (2019). Inattention is Leading Cause of Deadly Pedestrian
Accidents in el Paso. Accessed: Sep. 1, 2019. [Online]. Available:
https://kfoxtv.com/news/local/inattention-leading-cause-of-deadly-
pedestrian-accidents-in-el-paso-say-police

[3] Fox TV. (2019). Pedestrian Deaths Could Hit a 30-Year High.
Accessed: Sep. 1, 2019. [Online]. Available: https://www.marketwatch.
com/story/pedestrian-deaths-could-hit-a-40-year-high-2019-02-28

[4] C. Tribune. (2019). Look Up From Your Phone: Pedestrian Deaths
Have Spiked. Accessed: Sep. 1, 2019. [Online]. Available: https://www.
chicagotribune.com/news/opinion/editorials/ct-edit-pedestrian-deaths-
rise-20190301-story.html

[5] C. H. Basch, D. Ethan, P. Zybert, and C. E. Basch, ‘‘Pedestrian behavior at
five dangerous and busy manhattan intersections,’’ J. Community Health,
vol. 40, no. 4, pp. 789–792, Aug. 2015.

[6] L. L. Thompson, F. P. Rivara, R. C. Ayyagari, and B. E. Ebel, ‘‘Impact
of social and technological distraction on pedestrian crossing behaviour:
An observational study,’’ Injury Prevention, vol. 19, no. 4, pp. 232–237,
Aug. 2013.

[7] M. Castillo. (2012). CBS News. Accessed: Sep. 1, 2019. [Online].
Available: http://www.cbsnews.com/news/1-in-3-use-phones-text-while-
crossing-the-r oad/

[8] AndroidPIT. (2019). If You’re Not Careful, Your Smartphone May Kill
You. Accessed: Sep. 1, 2019. [Online]. Available: https://www.androidpit.
com/if-youre-not-careful-your-smartphone-may-kill-you

[9] M.-I. B. Lin and Y.-P. Huang, ‘‘The impact of walking while using a
smartphone on pedestrians’ awareness of roadside events,’’ Accident Anal.
Prevention, vol. 101, pp. 87–96, Apr. 2017.

[10] J. L. Nasar and D. Troyer, ‘‘Pedestrian injuries due to mobile phone use in
public places,’’ Accident Anal. Prevention, vol. 57, pp. 91–95, Aug. 2013.

[11] AndroidPIT. (2019). If You Are Not Careful Your SmartphoneMayKill You.
Accessed: Jan. 30, 2020. [Online]. Available: https://www.androidpit.com/
if-youre-not-careful-your-smartphone-may-kill-you

[12] E. Duke and C. Montag, ‘‘Smartphone addiction and beyond: Initial
insights on an emerging research topic and its relationship to Internet
addiction,’’ in Internet Addiction. Cham, Switzerland: Springer, 2017,
pp. 359–372.

[13] T. N. Y. Times. (2012). A Reminder to Look(!) Both Ways. Accessed:
Jan. 30, 2020. [Online]. Available: https://www.nytimes.com/2012/09/
20/nyregion/in-new-york-city-curbside-signs-to-look-both-ways.html

[14] A. News. (2019). Tel Aviv Deploys ‘Zombie Lights’ for Mobile-
Obsessed Walkers. Accessed: Jan. 30, 2020. [Online]. Available:
https://apnews.com/4defdfd4939e40ac9ed5ac7496f059d1

[15] M. Fahim, T. Baker, A. M. Khattak, and O. Alfandi, ‘‘Alert me: Enhancing
active lifestyle via observing sedentary behavior using mobile sensing
systems,’’ in Proc. IEEE 19th Int. Conf. e-Health Netw., Appl. Services
(Healthcom), Oct. 2017, pp. 1–4.

[16] T. Wang, G. Cardone, A. Corradi, L. Torresani, and A. T. Campbell,
‘‘WalkSafe: A pedestrian safety app for mobile phone users who walk and
talk while crossing roads,’’ in Proc. 12th Workshop Mobile Comput. Syst.
Appl. (HotMobile), 2012, pp. 1–6.

[17] X. Wu, R. Miucic, S. Yang, S. Al-Stouhi, J. Misener, S. Bai, and
W.-H. Chan, ‘‘Cars talk to phones: A DSRC based vehicle-pedestrian
safety system,’’ in Proc. IEEE 80th Veh. Technol. Conf. (VTC-Fall),
Sep. 2014, pp. 1–7.

[18] C.-H. Lin, Y.-T. Chen, J.-J. Chen, W.-C. Shih, and W.-T. Chen, ‘‘pSafety:
A collision prevention system for pedestrians using smartphone,’’ in Proc.
IEEE 84th Veh. Technol. Conf. (VTC-Fall), Sep. 2016, pp. 1–5.

[19] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, ‘‘Device-to-device
communications withWi-Fi direct: Overview and experimentation,’’ IEEE
Wireless Commun., vol. 20, no. 3, pp. 96–104, Jun. 2013.

[20] S. Jain, C. Borgiattino, Y. Ren, M. Gruteser, Y. Chen, and C. F. Chiasserini,
‘‘Lookup: Enabling pedestrian safety services via shoe sensing,’’ in Proc.
MobiSys, 2015, pp. 257–271.

[21] A. Fackelmeier, C. Morhart, and E. Biebl, ‘‘Dual frequency methods for
identifying hidden targets in road traffic,’’ in Advanced Microsystems for
Automotive Applications. Berlin, Germany: Springer, 2008, pp. 11–20.

[22] J. J. Anaya, P. Merdrignac, O. Shagdar, F. Nashashibi, and J. E. Naranjo,
‘‘Vehicle to pedestrian communications for protection of vulnerable
road users,’’ in Proc. IEEE Intell. Vehicles Symp. Proc., Jun. 2014,
pp. 1037–1042.

[23] K. Dhondge, S. Song, B.-Y. Choi, and H. Park, ‘‘WiFiHonk: Smartphone-
based beacon stuffed WiFi Car2X-communication system for vulnerable
road user safety,’’ in Proc. IEEE 79th Veh. Technol. Conf. (VTC Spring),
May 2014, pp. 1–5.

[24] P.-F. Ho and J.-C. Chen, ‘‘WiSafe: Wi-Fi pedestrian collision avoid-
ance system,’’ IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 4564–4578,
Jun. 2017.

[25] Y.Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin, ‘‘Sensing
vehicle dynamics for determining driver phone use,’’ in Proc. Proc. 11th
Annu. Int. Conf. Mobile Syst., Appl., Services (MobiSys), 2013, pp. 41–54.

[26] P. Newson and J. Krumm, ‘‘Hidden Markov map matching through noise
and sparseness,’’ in Proc. 17th ACM SIGSPATIAL Int. Conf. Adv. Geo-
graphic Inf. Syst. (GIS), 2009, pp. 336–343.

[27] S. S. Chawathe, ‘‘Segment-based map matching,’’ in Proc. IEEE Intell.
Vehicles Symp., Jun. 2007, pp. 1190–1197.

[28] J. Paek, J. Kim, and R. Govindan, ‘‘Energy-efficient rate-adaptive GPS-
based positioning for smartphones,’’ in Proc. 8th Int. Conf. Mobile Syst.,
Appl., Services (MobiSys), 2010, pp. 299–314.

[29] Monsoon. (2018).PowerMonitor. Accessed: Sep. 1, 2019. [Online]. Avail-
able: https://www.msoon.com/

[30] W. Bumgardner. (2018). Brisk Walking Speed. Accessed: Sep. 1, 2019.
[Online]. Available: https://www.verywell.com/how-fast-is-brisk-
walking-3436887

[31] N. Roy, H. Wang, and R. Roy Choudhury, ‘‘I am a smartphone and i can
tell my user’s walking direction,’’ in Proc. 12th Annu. Int. Conf. Mobile
Syst., Appl., Services (MobiSys), 2014, pp. 329–342.

[32] C. Dickie, R. Vertegaal, C. Sohn, and D. Cheng, ‘‘eyeLook: Using atten-
tion to facilitate mobile media consumption,’’ in Proc. UIST, Oct. 2005,
pp. 103–106.

[33] G. T. Taoka, ‘‘Brake reaction times of unalerted drivers,’’ ITE J., vol. 59,
no. 3, pp. 19–21, 1989.

[34] W. Feller, An Introduction to Probability Theory and its Applications,
vol. 2. Hoboken, NJ, USA: Wiley, 2008.

[35] D. Gazis, R. Herman, andA.Maradudin, ‘‘The problem of the amber signal
light in traffic flow,’’Operations Res., vol. 8, no. 1, pp. 112–132, Feb. 1960.

[36] D. R. Ankrum, ‘‘Ivhs-smart vehicles, smart roads,’’ Traffic Saf. (Chicago),
vol. 92, no. 3, pp. 6–9, 1992.

[37] R. W. Rivers, Evidence in Traffic Crash Investigation and Reconstruction:
Identification, Interpretation and Analysis of Evidence, and the Traffic
Crash Investigation and Reconstruction Process. Springfield, IL, USA:
Charles C Thomas, 2006.

[38] W. Hugemann. (2002). Driver Reaction Times in Road Traffic. Accessed:
Jan. 30, 2020. [Online]. Available: https://www.unfallrekonstruktion.de/
pdf/evu_2002_reaction_english.pdf

[39] P. T. G. Wi-Fi Alliance. (2018). Wi-Fi Peer-to-Peer (P2P) Technical
Specification, Version 1.7. Accessed: Sep. 1, 2019. [Online]. Available:
https://www.wi-fi.org

[40] M. Dighriri, A. S. D. Alfoudi, G. M. Lee, T. Baker, and R. Pereira, ‘‘Com-
parison data traffic scheduling techniques for classifying QoS over 5G
mobile networks,’’ in Proc. 31st Int. Conf. Adv. Inf. Netw. Appl. Workshops
(WAINA), Mar. 2017, pp. 492–497.

[41] P. Rahimian, E. E. O’Neal, S. Zhou, J.M. Plumert, and J. K. Kearney, ‘‘Har-
nessing vehicle-to-pedestrian (V2P) communication technology: Sending
traffic warnings to texting pedestrians,’’ Hum. Factors, vol. 60, no. 6,
pp. 833–843, Sep. 2018.

MYOUNGGYU WON (Member, IEEE) received
the Ph.D. degree in computer science from Texas
A&MUniversity at College Station, in 2013. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, University of Mem-
phis, Memphis, TN, USA. Prior to joining the
University of Memphis, he was an Assistant Pro-
fessor with the Department of Electrical Engi-
neering and Computer Science, South Dakota
State University, Brookings, SD, USA, from

August 2015 to August 2018, and he was a Postdoctoral Researcher with
the Department of Information and Communication Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), South Korea,
from July 2013 to July 2014. His research interests include smart sensor
systems, connected vehicles, mobile computing, wireless sensor networks,
and intelligent transportation systems. He received the Graduate Research
Excellence Award from the Department of Computer Science and Engineer-
ing at Texas A&M University—College Station, in 2012.

VOLUME 8, 2020 49669



M. Won et al.: SaferCross: Enhancing Pedestrian Safety Using Embedded Sensors of Smartphone

AAWESH SHRESTHA received the B.S. degree
from the Computer Engineering Department,
Kathmandu University, Kathmandu, Nepal,
in 2014, and the M.S. degree from the Department
of Computer Science, South Dakota State Uni-
versity, Brookings, USA, in 2018. He is currently
working as an Associate at Deutsche Bank.

KYUNG-JOON PARK (Member, IEEE) received
the B.S. and M.S. degrees in electrical engi-
neering and the Ph.D. degree in electrical engi-
neering and computer science from the School
of Electrical Engineering, Seoul National Uni-
versity, Seoul, South Korea, in 1998, 2000, and
2005, respectively. From 2005 to 2006, he was a
Senior Engineer with Samsung Electronics, South
Korea. From 2006 to 2010, he was a Postdoctoral
Research Associate with the Department of Com-

puter Science, University of Illinois at Urbana–Champaign, Champaign, IL,
USA. He is currently a Professor with the Department of Information and
Communication Engineering, Daegu Gyeongbuk Institute of Science and
Technology, Daegu, South Korea. His research interests include resilient
cyber-physical systems and smart factory.

YONGSOON EUN (Senior Member, IEEE)
received the B.A. degree in mathematics and the
B.S. and M.S.E. degrees in control and instru-
mentation engineering from Seoul National Uni-
versity, Seoul, South Korea, in 1992, 1994, and
1997, respectively, and the Ph.D. degree in elec-
trical engineering and computer science from the
University of Michigan, Ann Arbor, MI, USA,
in 2003. From 2003 to 2012, he was a Research
Scientist with the Xerox Innovation Group, Web-

ster, NY, USA, where hewas involved in a number of subsystem technologies
in the xerographic marking process and image registration method in pro-
duction inkjet printers. He is currently a Professor with the Department of
Information and Communication Engineering, Daegu Gyeongbuk Institute
of Science and Technology, Daegu, South Korea. His research interests
include control systems with nonlinear sensors and actuators, geometric
control of quadrotors, communication networks, and resilient cyber-physical
systems.

49670 VOLUME 8, 2020


