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ABSTRACT In addition to wirelength and area, modern floorplans need to consider various constraints such
as fixed-outline. To handle the fixed-outline floorplanning optimization problem efficiently, we propose
an improved simulated annealing (SA) algorithm, which optimizes the area, the total wirelength, and the
prescribed outline constraints at the same time. In order to enhance the effectiveness of SA algorithm,
we propose a novel feasible solution strategy which ensures that viable solution would be found at all times.
Moreover, we propose a new penalty function to better solve the prescribed outline constraint. It consists of a
violation area function to prevent modules from moving to the prescribed outline, and an excessive violation
function to enable the modules to move close to the optimal positions. Experimental results show that the
proposed algorithm is effective and efficient to obtain a fixed-outline floorplan, and achieves a 100% success
rate on each benchmark in different aspect ratios.

INDEX TERMS Floorplanning, fixed-outline, simulated annealing algorithm, excessive violation function,
feasible solution strategy.

I. INTRODUCTION
In physical design, floorplanning is the first and crucial pro-
cess to design the floorplan of a chip. Floorplanning deter-
mines the topological structure of the floorplan according
to area and interconnection estimation of a chip. It provides
valuable insight into the hardware decisions and estimation
of various costs [1]. It is also important for choosing design
alternatives in the early stages which are likely to produce
optimal designs [2].

The objective of the conventional floorplanning is to find
a legal solution that minimizes certain design metrics, while
ensuring no block overlapping with the others. The optimiza-
tion metrics include area, wirelength, etc. However, with the
rapid advancement of technology, many other design con-
straints and objectives must be taken into consideration to
obtain a desirable floorplan. For example, the boundary rect-
angle of the fixed-outline floorplanning is specified before
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floorplanning. Moreover, we should determine the dimension
of chip and the package before implementing floorplanning,
to make it more practical.

For fixed-outline floorplanning, the non-overlapping con-
straint and fixed outline constraint should be satisfied simul-
taneously [3]. Boundary rectangle, especially tight boundary,
makes floorplanning design more complex, which can not
be solved by existing methods. In this paper, we introduce a
new penalty function and an improved simulated annealing
algorithm to minimize the area and total wirelength of a
chip subject to non-overlapping constraint and fixed outline
constraint.

A. PREVIOUS WORKS
As the fixed-outline floorplanning problem is becomingmore
practical, various algorithms have been proposed in the previ-
ousworks. Hoo et al. in [4] proposed a dynamic programming
enumeration clustering method to decrease the worse case
of time complexity and running time. In [5], the authors
presented a novel algorithm, which starts with a sub-example
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of the prescribed floorplan and augments until a candidate
solution is obtained.

In addition, the simulated annealing (SA) based algo-
rithms have shown their effectiveness and efficiency for the
fixed-outline floorplanning problem. Based on sequence pair
[6], the authors in [7] presented a new objective function,
and applied a slack-based method to enhance the local search
of simulated annealing algorithm. In [8], Roy et al. applied
min-cut algorithm and simulated annealing algorithm to han-
dle the fixed-outline floorplanning problem. The authors in
[9] presented a new perturbation in which the locations of the
modules are enumerated to accelerate the search process of
simulated annealing algorithm. In [10], the authors proposed
a novel fixed-outline floorplanner which applies simulated
annealing algorithm to optimize area and wirelength until the
utilization ratio of area is 100% as possible. The authors in
[11] presented an improved simulated annealing algorithm
and an area model to deal with the fixed-outline floorplan-
ning problem. Furthermore, the authors in [12] introduced
a modified simulated annealing algorithm and an excessive
area model to handle the problem.

Nowadays, SA algorithm has been widely used in very
large scale integration (VLSI) design, image recognition,
neural network computer research, TSP, knapsack problems
and so on. Simulated annealing is a general probability
method with random selections, which is used to search the
optimal solution of a statement in a large search space. The
basic ingredients for SA include solution space, neighbor-
hood structure, cost function, and annealing schedule. The
most important part is how to find the feasible solutions
in solution space. Since the solution spaces are very large
in modern VLSI problems, it is impossible to explore all
solutions and even can not find a feasible solution. In order to
tackle this problem, for example, based on geometric method,
the authors in [22] presented rollback method to deal with
the solution spacewhich includes infeasible solutions. Hence,
proposing an effective algorithm to address the fixed-outline
floorpalnning problem is an enormous challenge.

B. OUR WORK
As the scales of the problem and constraints increase, it’s
difficult to find feasible solutions. To address the prob-
lem effectively, we present a novel feasible solution strat-
egy in SA algorithm. In addition, we introduce a novel
penalty function and an improved simulated annealing algo-
rithm to minimize the area and total wirelength of a chip
subject to non-overlapping constraint and fixed outline
constraint.

Our main contributions can be summarized as follows:
• A novel feasible solution strategy is used to check
whether a new neighbor solution is feasible or not. This
strategy prevents from transforming a feasible solution
into an infeasible one, which enhances the effective-
ness of our algorithm. Based on B*-tree representation,
our feasible solution strategy based SA algorithm can

successfully deal with the fixed-outline floorplanning
problem. Compared with other strategies, our strategy
can get lower cost.

• The excessive violation function and the area function
are integrated in our penalty function. A new excessive
violation function is proposed to estimate the length
of each module beyond the prescribed outline. The
quadratic penalty function model is adopted to penalize
the excessive length generated by each module beyond
the outline, and enable the modules to move close to
the optimal positions. And the area function is used to
prevent modules from moving to the prescribed out-
line. Compared with the leading tools, our function can
increase the success rate to 100 percent.

• The comparisons of experiment show the effective-
ness and efficiency of the proposed algorithm. For
area optimization, the average area values calculated
by our algorithm are the minimum among 11 bench-
marks. For wirelength optimization, our algorithm could
obtain the minimum average wirelength values for all
the instances. For co-optimization between area and
wirelength, there are 13 cases with the minimum cost
for our algorithm.

The remaining structure is assigned as follows. Section II
is the preliminaries. Section III presents our method for the
fixed-outline floorplanning. Experimental results and conclu-
sions are made in Section IV and Section V, respectively.

II. PRELIMINARIES
A. PROBLEM STATEMENT
Let M = {m1,m2, . . . ,mn} be a set of rectangular modules,
and thewidth and height ofmi arewi and hi, respectively.N =
{N1,N2, . . . ,Ne} is the netlist that specifies the interconnec-
tions between the modules in M . The left bottom coordinate
of mi is denoted as (xi, yi). Wi denotes the wirelength of
net Ni. For the prescribed outline, its width and height are
denoted as W0 and H0, respectively. The objective of the
fixed-outline floorplanning problem is to find a floorplan F
with the width W ′ and height H ′ such that the total area
and total wirelength of F are minimized, and the following
constraints are satisfied.
1) Every module must be placed horizontally or vertically.
2) No module is overlapped with each other.
3) All modules must be placed within the prescribed

outline.
In order to judge whether the floorplan is better or not,

we first estimate the total area A and total wirelengthW of F
in this section. The total area A of a floorplan is estimated by
the area of the minimum rectangle that encloses the candidate
floorplan. Thus, it can be formulated as follows:

A = W ′ × H ′, (1)

where W ′ and H ′ are the width and hight of the
smallest enclosing rectangle, respectively. The wirelength
of each net Ni is calculated by the half-perimeter
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wirelength (HPWL) [14], which is defined as follows:

Wi = max
mi,mj∈Ni

|xi − xj| + max
mi,mj∈Ni

|yi − yj|. (2)

Thus the total wirelength W of F is calculated by

W =
∑
1≤i≤e

Wi. (3)

Next, to describe the non-overlapping constraint specifi-
cally, the overlap region of the intervals [L1,R1] and [L2,R2]
can be formulated as follows [15]:

20([L1,R1], [L2,R2])= [min(R1,R2)−max(L1,L2)]+, (4)

where

[a]+ =

{
a, if a > 0;
0, if a ≤ 0.

(5)

Thus the overlap area of mi and mj is defined by

2ij(xi, yi, xj, yj) = 20([xi, xi + wi], [xj, xj + wj])

×20([yi, yi + hi], [yj, yj + hj]). (6)

Moreover, the prescribed outline constraint can be

0 ≤ xi, xi + wi ≤ W0, 0 ≤ yi, yi + hi ≤ H0, 1 ≤ i ≤ n.

(7)

Finally, the mathematical formulation of the fixed-outline
floorplanning problem is shown as

min A+W

s.t.


2ij(xi, yi, xj, yj) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j;
0 ≤ xi, xi + wi ≤ W0, 1 ≤ i ≤ n;
0 ≤ yi, yi + hi ≤ H0, 1 ≤ i ≤ n.

(8)

For the fixed-outline floorplanning, given aspect ratio R =
H0/W0 and the allowable maximum dead space 5, H0 and
W0 can be obtained by

H0=
√
(1+5) · Atotal · R, W0=

√
(1+5) · Atotal/R, (9)

where Atotal is the sum of area of all modules in M and

Atotal =
∑
1≤i≤n

wi × hi. (10)

Actually, the fixed-outline floorplanning problem can be
regarded as an extension of the strip packing problem in engi-
neering [16]. The similar part between two problems is the
constraint that no module overlaps with each other. However,
the objective of the fixed-outline floorplanning problem is
different from that of the strip packing problem in terms of
the following features:
• For fixed-outline floorplanning problem, the constraints
also include the outline constraint that all modules must
be placed into the prescribed outline.

• In the fixed-outline problem, the overlapping constraint
function is non-convex and nonsmooth [17], which is
hard to solve directly, especially for large scale circuit.

• In the advanced circuit design, many other design rules
are considered in the floorplanning stage, such as con-
nectivity, power consumption and delay [18]–[20].

FIGURE 1. A feasible floorplan and its corresponding B*-tree.

B. B*-TREE
For a feasible fixed-outline floorplan, we can construct a
uniqueB*-tree, and vice versa [13]. Actually, the construction
between a B*-tree and its floorplan is similar to the depth first
search (DFS). The detailed procedure for the transformation
between a floorplan and its B*-tree is described in [13].
A fixed-outline floorplan is feasible if the outline constraint
is satisfied and any module could neither be removed left nor
be removed down. Figure 1 shows a feasible fixed-outline
floorplan and its B*-tree.
Based on the characteristics of the ordered binary tree,

the computation complexity of search, insertion and deletion
operations in a B*-tree is O(1), O(1) and O(n), respectively.
Moreover, a B*-tree and its feasible floorplan have a one-
to-one correspondence relationship, which results in that the
size of solution space of B*-tree is smaller than that of other
representations. The detailed comparison of various represen-
tations can be found in [13]. Among these methods, B*-tree
is considered as one of the most effective representations in
describing geometry relationship among modules.

In order to produce a neighbor solution, the authors in
[13] presented following three operation modes to disturb
a B*-tree to another one: rotate a module, remove a module
to another place, and swap two modules.

III. OUR ALGORITHM
In this paper, the overall flow of our algorithm is shown in
Figure 2. It starts with a set of rectangular modules, corre-
sponding circuit netlist and prescribed outline. And we also
initialize some parameters including initial temperature, ter-
mination of the temperature, rate of convergence and reject-
ing inferior solutions. After that, a complete binary tree is
taken as an initial solution. To complete the above processes,
our algorithm consists of four main parts: (1) novel feasible
solution strategy, (2) cost function estimation, (3) the cooling
schedule, and (4) the general improved simulated annealing
algorithm. We will detail these four major parts in the follow-
ing subsections.

A. NOVEL FEASIBLE SOLUTION STRATEGY
In this section, we present a novel feasible solution strategy
for simulated annealing algorithm. The detailed descriptions
are shown as follows.
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FIGURE 2. Our algorithm flow.

TABLE 1. Comparison with the three strategies.

In SA algorithm, a series of neighbor solutions can be
generated by the perturbations. However, a neighbor solution
may be infeasible since the operation is selected at random.
Searching for optimal solution or near optimal solutions
would be challenging if the solution space is filledwith a large
number of infeasible solutions. Therefore, some strategies
[22] are presented to evaluate the feasibility of a new solution.
What’s more, we present a novel feasible solution strategy
which is described in Algorithm 1. In this algorithm, a com-
plete binary tree [23] with specified modules is considered as
the initial input solution S. Here j is the iteration number, and
the specified number t and the probability r in Algorithm 1
are user-defined.

Table 1 compares the differences among our strategy and
two common strategies mentioned in [22]. By applying a
series of perturbations, the result of geometric strategy is a
solution which is the last solution. And the result of rollback
strategy is a solution which is the last feasible solution. At
last, the result of our novel feasible solution strategy is a
solution which is the first or second feasible solution. By
analyzing the performances of three strategies, if the solu-

Algorithm 1 Our Feasible Solution Strategy
Input:

An initial input solution S;
Output:

A feasible solution Sj;
1: j← 0;
2: while 1 do
3: j← j+ 1;
4: generate a new solution Sj by the perturbations;
5: if Sj is feasible then
6: while j ≤ t do
7: j← j+ 1;
8: generate a new solution Sj by the perturbations;
9: if r ≥ (random number) or Sj is feasible then
10: break;
11: end if
12: end while
13: break;
14: end if
15: end while

tion spaces include feasible solutions, our approach has the
following two advantages. On the one hand, if the solution
produced by perturbations is infeasible and the prescribed
number r is bigger than the random number, geometric strat-
egy and rollback strategy are inefficient to find a feasible
solution. However, our feasible solution strategy could ensure
that viable solutions would be found at all times. On the other
hand, by using the same parameters, if rollback strategy has
a feasible solution, our strategy takes less runtime than the
other two strategies, which makes it more efficient.

B. COST FUNCTION ESTIMATION
In order to better estimate width or height of each module
beyond the prescribed outline, we propose a new penalty
function with excessive violation function. Based on the
excessive violation function, it is easy for our algorithm to
find a desirable solution.

1) NEW PENALTY FUNCTION
In the proposed algorithm, we adopt penalization to prevent
the modules from moving out of the prescribed outline. Since
the penalization is one of the criterions to judge whether a
solution is feasible or not, its definition is of great signifi-
cance. Recently, several function models have been presented
for penalization. For example, in [11], the excessive area
function is calculated by the difference between the area
function of the smallest rectangle which encloses the candi-
date floorplan and the prescribed outline, which is defined as
follows:

A′ =


0, if H ′ ≤ H0, W ′ ≤ W0;

(W ′ −W0) · H0, if H ′ ≤ H0, W ′ ≥ W0;

(H ′ − H0) ·W0, if W ′ ≤ W0, H ′ ≥ H0;

W ′ · H ′ −W0 · H0, otherwise.

(11)
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FIGURE 3. Four violation cases. (a) No violation. (b) The width of the 6th
module violation. (c) The height of the 4th module violation. (d) Width
and height of the 6th module violation.

Based on the area function model [11], we propose a new
excessive violation function which emphasizes on the length
of each module outside the prescribed outline. The excessive
violation function L ′ is defined as follows:

L ′ =
∑
i∈S

Li, (12)

where S is the set of modules which exceed the fixed outline,
and Li is the violation function of the i-th module outside
the prescribed outline. According to the coordinate of module
i, Li can be defined in (13) and the corresponding cases are
depicted in Figure 3.

Li =



0,
if yi + hi ≤ H0, xi + wi ≤ W0;

(xi + wi −W0)2,
if yi + hi ≤ H0, xi + wi ≥ W0;

(yi + hi − H0)2,
if yi + hi ≥ H0, xi + wi ≤ W0;

(xi + wi −W0)2 + (yi + hi − H0)2,
otherwise.

(13)

In Figure 3, the rectangular whose boundary is drawn in
blue represents the prescribed outline. The rectangular with
the red dotted line boundary denotes the area function A′

which is defined in (11). Additionally, the modules with
the arrow denote that they exceed the prescribed outline.
Figure 3(a) shows that all modules are able to be placed
into the prescribed outline. From Figure 3(b), it can be seen
that the width of module 6 exceeds the prescribed outline.
Similarly, for the module 4 in Figure 3(c), its height exceeds
the prescribed outline. However, though there is only one
module outside the prescribed outline in Figure 3(d), both
the width and height of the module 6 exceed the prescribed
outline.

When only the area model [11] is considered, we note that
the model cannot exactly deal with the prescribed outline

FIGURE 4. The different violation cases. (a) One module exceeding the
outline. (b) Two modules beyond the outline. Moreover, for (a) and (b),
there is the identical excessive area value when only area model is taken
into account.

constraint from Figure 4. In Figure 4(a) and 4(b), the number
of modules beyond the outline are one and two, respectively.
If we look at the two cases, the area values are identical when
only area model is taken into account. However, the floorplan
of Figure 4(b) is distinctly worse than that of Figure 4(a).
Therefore, it is necessary to develop a more accurate penal-
ization which takes the excessive length of each module into
consideration.

According to the above analysis, our proposed excessive
penalization is defined as follows:

8 = A′ + L ′. (14)

In this penalization, the area function and the excessive length
function are integrated. The area function is used to pre-
vent modules from moving to the prescribed outline, which
gives the global search direction. What’s more, the quadratic
penalty function model is adopted to deal with the excessive
length generated by each module beyond the outline in (13).
This function can provide the local search direction and
enable the modules moving close to the optimal positions.

2) COST FUNCTION
For the fixed-outline floorplanning problem, the objective is
to optimize the total area and total wirelength of a chip such
that the constraints mentioned in Section II-A are satisfied.
The area A of a floorplan is estimated by the area of the
minimum rectangle which encloses the candidate floorplan,
and the total wirelength of a chip is calculated by the sum
of Wi (1 ≤ i ≤ e). Besides, a penalty function 8 is used to
describe the prescribed outline constraint, which is shown in
Section III-B.1. Hence the cost function is defined as follows:

cost(F) = α ×
A
A∗
+ β ×

W
W ∗
+ γ ×

8

8∗
. (15)

where α, β and γ are weights allocated to the area, wirelength
and penalty function, respectively. In addition, these coeffi-
cients satisfy the relationship that 0 ≤ α, β ≤ 1, α + β = 1,
where γ is a user-defined parameter. The area A, wirelength
W and penalization 8 are separately normalized with their
minimum value A∗, W ∗ and 8∗.

C. THE COOLING SCHEDULE
Simulated annealing algorithm inspired by the physical phe-
nomena in fluids solidification process [24] is considered as
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an efficient and general probabilistic algorithm for handling
the floorplanning problem. Different from greedy algorithm,
SA has a probability to receive a poor solution. This prob-
ability is related to the temperature T and the difference 1
between the last solution and the current solution, where1 is
calculated by the following equation:

1 = costcurrent − costlast . (16)

Classical simulated annealing algorithm estimate the temper-
ature T by the following equation:

T = θ × T , (17)

where θ is the coefficient between 0 and 1. From this formula,
it can be seen that the temperature reduces at first. It makes
that the probability approaches to 0, which results in accept-
ing few poor solutions. In this way, the classical simulated
annealing algorithm may fail to find a desirable solution.

To improve simulated annealing algorithm, an effective
hybrid simulated annealing algorithm [24] is introduced to
address non-slicing VLSI floorplanning problem. Experi-
ment results show that the hybrid simulated annealing algo-
rithm can produce optimal or nearly optimal chip areas for all
the tested benchmarks [21]. On the basis of the fast simulated
annealing algorithm [22] and hybrid simulated annealing
algorithm [24], we propose an improved simulated anneal-
ing algorithm to find a high quality solution. Similar to the
annealingmeasure [22], the cooling schedule in our improved
simulated annealing algorithm consists of three parts:

1) The stochastic search process. The process is identical to
the classical simulated annealing algorithm. In this part, the
temperature is high, which makes the acceptance probability
for poor solution also high (Close to 1).

2) The local search process. In this process, the temperature
is controlled by the parameter λ which approaches 0. Thus
few poor solutions can be accepted according to the lower
acceptance probability.

3) The uphill search process. In this process, with the
growing temperature, the probability of accepting inferior
solutions is also increasing. It makes many inferior solutions
accepted. In other words, the uphill search process contributes
to preventing from falling into the local minimal solution.

The calculation of cooling temperature is shown in
Algorithm 2.

Algorithm 2 The Cooling Schedule
Require: The parameter c and the parameter P;
Ensure: Tn, Tactual ;
1: Tn = avg/(log(P));
2: if n = c then
3: Tn = Tn × Pm × avgcost/(λ× n);
4: Tactual = estimateavg/Tn;
5: end if
6: if n > c then
7: Tn = Tn × avgcost/n;
8: Tactual = estimateavg/Tn;
9: end if

Algorithm 3 Outline of Our Algorithm
Require: The initial solution I0 and its corresponding B*-

tree J0;
Ensure: The best solution I1;
1: the operation number n on B*-tree is set to 0 at the

beginning;
2: the uphill number of accepting poor solution and the

number of rejecting poor solution are initialized to 0;
3: empty list L;
4: while (rejectrate < convrate and Tactual > Tterm) or n >=

15 do
5: n← n+ 1;
6: produce a new solution I ′, and its corresponding to B*-

tree J ;
7: call Algorithm 1, and return a feasible solution I ′;
8: calculate the cost value of I ′ and put I ′ in L;
9: 1← cost(I ′)− cost(I0);
10: if 1 ≤ 0 then
11: I0← I ′, J0← J , I1← I ′;
12: else
13: randomly select a real µ between 0 and 1;
14: if µ < e−

1
T then

15: I0← I ′, J0← J ;
16: else
17: reject ← reject + 1;
18: end if
19: end if
20: update Tn by Algorithm 4;
21: rejectrate← reject/n;
22: end while
23: return I1.

In Algorithm 2, n is the iteration index of simulated anneal-
ing algorithm. The average uphill cost and the initial accep-
tance probability for inferior solutions are denoted as avg
and P, respectively. avgcost defined in (16) is the average
difference in the current temperature. λ and c are user-defined
parameters. In the annealing process, λ is the coefficient
which decrease the temperature rapidly to 0. In our algorithm,
the parameter λ is set to 100. In addition, estimateavg is a
constant to control the temperature, and Tactual is the actual
temperature.

D. IMPROVED SIMULATED ANNEALING ALGORITHM
Based on B*-tree representation, a new penalty function

and an improved simulated annealing are presented to handle
the fixed-outline floorplanning. First, a complete binary tree
is taken as an initial solution in our improved algorithm. Sec-
ond, a novel feasible solution strategy is introduced since a
neighboring solution produced by the perturbation on B*-tree
may be infeasible. Third, the cooling schedule is presented,
which makes our algorithm more efficient. Based on these
modified methods, our improved simulated annealing algo-
rithm is applied to find an optimal solution. Algorithm 3
shows the detailed description of our algorithm.
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In Algorithm 3, convrate is the rate of convergence, and
rejectrate is the rate of rejecting inferior solutions, Tterm = 0.1
is the termination of the temperature. This makes the solution
be enough cooling.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our algorithm
on the GSRC benchmarks [25]. The proposed algorithm is
implemented in C++ programming language and performed
on an Intel Core (TM) i5-4210M CPU @2.6 GHz CPU and
4GB RAM. Besides, the Dead Space 5 of all benchmarks
are arranged to 10%. The aspect ratio R of each benchmark
is respectively arranged to 1.0, 2.0 and 3.0.

A. EFFECTIVENESS OF THE IMPROVED SIMULATED
ANNEALING ALGORITHM WITH OUR NOVEL
FEASIBLE SOLUTION STRATEGY
In order to validate the effectiveness of our feasible solution
strategy, we also implement geometric strategy and rollback
strategy for comparison purpose. Among these three strate-
gies, a complete binary tree with the specified modules is
considered as the initial input solution S. The parameter t of
three strategies is set to 30 and r is set to 0.15.
The cost values which discussed in (15) are also taken into

consideration. We run each strategy for 50 times on bench-
mark n30. The cost curve shown in Figure 5(a) demonstrates
the computation time of different strategies. The blue, green
and red curves represent the cost change of geometric strat-
egy, rollback strategy, and our feasible strategy, respectively.
From Figure 5(a), it can be seen that the average cost value
calculated by our feasible solution strategy is better.

In addition, compared with the classical simulated anneal-
ing algorithm, our feasible solution strategy based algorithm
has high probability to find a high quality solution, which is
illustrated in Figure 5(b). Figure 5(b) depicts the relationship
between temperature and cost which is calculated by the
area and wirelength. In this figure, the curve drawn in black
denotes the temperature change of the classical simulated
annealing algorithm. The blue curve denotes the temperature
change of our simulated annealing algorithm. According to
the left temperature axis, the metrics of our improved simu-
lated annealing algorithm can be obtained. For example, the
temperature drops sharply such that redundant solutions are
ignored. The curve drawn in green in Figure 5(b) denotes
the cost change without feasible solution strategy. The pink
curve denotes the cost change with feasible solution strategy.
Similarly, according to the right cost axis, it can be found that
the average cost with feasible solution strategy is better.

B. THE VALIDITY OF OUR PENALTY FUNCTION
In this part, we take the penalty function in (14) into
account. For convenience, our penalization is denoted by
EAL. To evaluate the effectiveness of EAL, we combine
classical simulated annealing (SA) with different penalty
functions: EL1, EL2, EL3, EL4, EA1 and EA2, which are
respectively introduced in [5], [7], [9], [11], [12].We run each

FIGURE 5. (a) Comparisons of the cost values for n30 when R = 1.
(b) The temperature and cost comparisons of n30 when R = 1.

instance 20 times and the experimental results are listed in
Table 2. For each benchmark, the maximum runtime is set as
10s, 10s, 30s, 40s and 60s, respectively.

In Table 2, the success rate (SR) and average runtime (AR)
of our penalization are compared with those of other penalty
functions. If SR is 100%, it means that the modules for
every benchmark are placed into the prescribed outline. The
term SA-EAL denotes that the classical simulated annealing
is integrated with EAL function model. Similarly, other six
items have the same meanings. From Table 2, we can see that
for all benchmarks, the success rates of SA-EA2 and SA-EAL
are 100%. In other words, for all instances, SA-EA2 and
SA-EAL have a fair chance of finding a high quality solution.
Furthermore, compared with SA-EA2, SA-EAL takes less
runtime on the whole. For instance, the runtime on n30 is
less than that of SA-EA2 when aspect ratio is 1.0 and 3.0,
respectively. For n50, although the runtime is larger than
that of SA-EA2 when aspect ratio is 3.0, the runtime is the
least when aspect ratio is respectively equal to 1.0 and 2.0.
Actually, it only takes more 0.02s than SA-EA2 when aspect
ratio is 3.0. For n100, the runtime on n30 is the least for
all aspect ratios. For n200, it costs more 0.53s than SA-EA2
when aspect ratio is 1.0. But the runtime is less when aspect
ratio is respectively 2.0 and 3.0. For n300, when aspect ratio
is 1.0, SA-EA2 saves more 0.66s than that of our proposed
function. However, in other cases, the benchmark n300 has
the similar situation as the benchmark n200. From Table 2,
it could be inferred that our penalization could more effi-
ciently cope with the fixed outline floorplanning problem.

C. AREA OPTIMIZATION
In this part, we lay particular emphasis on the area and
fixed outline constraint. We make a comparison between our
algorithm and MSA [12]. The results are listed in Table 3.

In Table 3, AA is the average area value. Note that the
success rates calculated by the algorithms with our penal-
ization are 100%, while those estimated by other function
models are not completely 100%. Actually, as the number
of the modules increases, the success rates are worse. For
instance, the success rates on n30, n50 and n100 calculated
by the algorithm with EA1 function are 100%. However, the
success rates on n200 and n300 calculated by SA-EA1 and
MSA-EA1 are not completely 100%.
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TABLE 2. Comparison results of the success rate and average runtime on the GRSN benchmarks.

TABLE 3. Comparison results of the average area on the GRSN benchmarks.

Additionally, from Table 3, it can be found that the success
rates of the algorithms with EA2 are also 100%. However,
compared with SA-EA2, for most benchmarks the average
area values of MSA are worse than those of our algorithm,
which indicates that our algorithm is better than MSA.
In other words, paralleled with other algorithms, the average
area values calculated by our algorithm are the minimum
on 11 benchmarks. From Table 3, it can be seen that our
algorithm has a fair chance of getting desirable solutions.

D. WIRELENGTH OPTIMIZATION
In this part, the wirelength and fixed outline constraint are
emphasized. We compare our algorithm with MSA [12]. The
results are displayed in Table 4.

In Table 4, AWL is the average wirelength value. It should
be noted that the success rates of the algorithms with our
penalization are 100%. Additionally, the success rates of the
algorithms with EA2 function are also 100%. However, the
success rates of the algorithms with EA1 function are not
completely equal to 100%. Actually, the success ratio of the
algorithms with EA1 function decreases as the increasing
number of the modules. Since the objective of fixed-outline
floorplanning problem is finding a desired floorplan that all
modules are placed into the prescribed outline, EA2 function
and our penalization are better than EA1 function.

Additionally, though the success rates got by MSA are
equal to 100%, the average wirelength values for all bench-
marks are worse than those obtained by our algorithm.
In other words, our algorithm could obtain the minimum
average wirelength values for all the instances. This indicates
that our algorithm ismore efficient to deal with the wirelength
optimization problem under the fixed outline constraint.

E. CONCURRENT AREA AND WIRELENGTH OPTIMIZATION
In this part, the area, total wirelength and fixed outline con-
straint are considered at the same time. We compare our
algorithm with MSA [12]. The results are reported in Table 5.

In Table 5, AOFV is the average cost value. From Table 5,
it can be seen that the success ratios of the algorithms with
EAL function are 100%. Besides, the success ratios of the
algorithms with EA2 function are also 100%. But the success
ratio of the algorithms with EA1 function is not completely
100%. Actually, as the number of the modules increases, the
success ratio of EA1 drops. These illustrate that EA1 function
is worse than EA2 function.

Though the success rates of MSA are 100%, the average
cost values of our algorithm are better than those of MSA
on the whole. In fact, for our algorithm, there are 13 cases
with the minimum cost. In comparison with MSA, when R
is 1.0, the cost value of our algorithm on n200 is worse.
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TABLE 4. Comparison results of the average wirelength on the GRSN benchmarks.

TABLE 5. Comparison results of the average cost on the GRSN benchmarks.

FIGURE 6. A floorplan on n300 with (a) R = 1.0, (b) R = 2.0, and (c) R = 3.0.

Besides, when R is 3.0, the cost values of our algorithm on
n300 are inferior. However, in other cases, the cost values
are better. These imply that our algorithm is more efficient to
seek for desirable solutions. For the purpose of understanding
intuitively, the floorplans of n300 with R = 1.0, 2.0 and 3.0
are shown in Figure 6(a)-Figure 6(c), respectively.

V. CONCLUSION
In this paper, we present a new penalty function, and apply an
improved simulated annealing algorithm to handle instances.
The penalty function is composed of the violation area func-
tion and the length function. To calculate the violation area
function, all modules are taken as a whole, and used to

estimate the area outside the prescribed outline. The length
function is employed to estimate the length of each module
beyond the prescribed outline. In the proposed algorithm, a
feasible solution strategy is used to enhance the effectiveness
of our algorithm. This strategy can prevent from transforming
a feasible solution into a infeasible solution. Experimental
results show that our algorithm is more effective for solving
the fixed-outline floorplanning problem compared with other
algorithms.
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