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ABSTRACT This paper presents a unique two-fold adaptive linear neural network (ADALINE) for fast
and accurate measurement of fundamental, harmonics, sub-harmonics, inter-harmonics and decaying DC
components of a distorted current signal with additive noise. The preceding parallel approach is termed as
Master-Slave ADALINE (MSADALINE). The Slave-ADALINE adopts least mean square (LMS) algorithm
with a fixed and large step-size for weight vector adjustment. During the training interval or transients,
this filter performs a significant role. On the other hand, the Master-ADALINE uses a variable step-size
LMS algorithm for achieving a small steady-state error. At the end of each iteration, the local averages
of the squared errors of both the ADALINE’s are calculated and weights of the Master-ADALINE are
updated accordingly. The amplitudes and phases of desired frequency components can be worked out from
Master-ADALINE’s weights. The proposed architecture improves the convergence speed by establishing an
independent control action between the steady-state error and the speed of convergence. The simulation
results of this method under various operating situations are analyzed and compared with single fold
ADALINE structure that obeys dynamic step-size LMS (DSSLMS) adaptation rule. Eventually, a scaled
laboratory prototype has been developed for the validation of the proposed technique in real-time utilization.
This innovative research finding makes the power system smart and precise.

INDEX TERMS Adaptive linear neural network (ADALINE), dynamic step-size least mean square
(DSSLMS), harmonic estimation, power quality assessment, master-slave (MS).

I. INTRODUCTION
The wide application of power converters using semicon-
ductor devices controls the performance of many electri-
cal and electronic equipment. Due to the switching mode
operation, these nonlinear devices inject harmonics into the
AC system. As a consequence, accurate measurement of the
individual component is essential for power quality control
and protection. Finding an efficient method for fast and accu-
rate estimation of the parameters (i.e. amplitude, phase, and
frequency) of the fundamental, harmonics, inter-harmonics,
sub-harmonics and decaying DC components has become a
large scale research area for power engineers and researchers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Savaghebi .

In the past, several approaches have been reported for
parameter estimation, among them, Fast Fourier Trans-
formation (FFT) is most commonly used due to its low
computational complexity structure. However, the FFT based
technique suffers from spectral leakage and poor conver-
gence rate while determining sub- and inter-harmonic param-
eters [1]. Furthermore, this method is delayed by more than
two fundamental periods because it takes one period for
acquiring the data and another period for analysis of data [2].
Therefore, its performance gets deteriorated in real-time
implementation.

A widely used method for parameter estimation is the
least-squares (LS) technique, where the aim is to minimize
the squared error between the measured and modelled sig-
nal [3]–[7]. The performance of the algorithm is affected by
the width of the observation window, choice of the sampling
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frequency, selection of reference time, and Taylor Series
truncation. Pradhan et al. [8] and Subudhi et al. [9] suggested
the LMS algorithm for power system frequency estimation.
However, this method is not so effective for amplitude and
phase estimation. On the other hand, the recursive least
squares (RLS) technique is a well established numerical
method which can deal effectively with decaying DC offsets,
power system frequency transients and subsynchronous oscil-
lations [10], [11]. However, the computational complexity of
the RLS technique hinders its real-time implementation.

Another commonly used estimation technique is the
Kalman filter (KF), as a recursive stochastic technique that
gives an optimal estimation of state variables of a given
dynamic system from noisy measurements [12]–[14]. The
main drawback of this algorithm is the bulk calculations that
limit its online application due to the requirement of large
memory and high-speed microprocessor. This algorithm also
fails to track abrupt or dynamic changes of the signal.

In the last couple of decades, many power system harmonic
estimation techniques employing the learning principles have
become quite popular. These techniques are applied to over-
come the shortcomings such as inaccuracy on account of
incorrect modelling, noise present in the signal and non-
linearity. Jain and Singh [15] proposed an artificial neural
network (ANN) to estimate the harmonic components accu-
rately by taking 1/2 cycle sampled values of a distorted
waveform in noisy environments. Abdeslam et al. [16] and
Rodriguez et al. [17] have suggested a new approach using
an adaptive linear neural network (ADALINE) for online
harmonic estimation. In recent years, ADALINE structure
is widely used as harmonic estimator due to its simple
structure and nonstationary signal parameter tracking capa-
bility. It resolves the distorted current/voltage signal to its
Fourier series. Goh et al. [18] developed a unified approach
for mean square convergence analysis for ADALINE struc-
ture, including mean square stability, mean square evolution
(transient behaviour) and the mean square steady-state per-
formance. Recently, Chang et al. [19] proposed two-stage
ADALINE that is robust and capable of detecting har-
monics and inter-harmonics. Sarkar et al. [20] proposed
a modified ADALINE structure, namely self-synchronized
ADALINE (S-ADALINE) provides faster response and bet-
ter noise immunity than the conventional ADALINE struc-
ture. Garanayak and Panda [21] proposed a hybrid ADALINE
and filtered-x LMS technique to overcome the error in esti-
mation under highly impulsive noise. Some well documented
harmonic estimation approaches using ADALINE structures
along with weight updating rule provide accuracy and reduce
response time [22]–[24]. This multi-input and single output
architecture provides low complexity design structure, mini-
mum tracking error and faster convergence rate.

In general, the weights/coefficients of the ADALINE are
updated by the LMS adaptation rule due to its simple
structure and robustness. The step-size parameter is crit-
ical to the performance of the LMS algorithm and eval-
uates how fast the algorithm converges along the error

performance surface. To accelerate the speed of convergence
and minimize the excess mean squared error (MSE), sev-
eral time-varying step-size techniques have been reported
in the literature [25]–[32]. The basic principle is that at the
starting stages of convergence or transients, the step-size
parameter should be large, in order to achieve a faster
convergence rate and minimum error. After a number of
iterations, the filter coefficients are closer to the optimum
solution; a minimum step-size value should be used for
attaining a small steady-state error [28], [29]. Adaptation of
step-size highly depends on a few parameters like instanta-
neous square error, error autocorrelation and change in the
sign of gradient between the input signal and output error.
In addition, the steady-state misadjustment depends on all
constant parameters, thus the dependence between the speed
of convergence and the steady-state error exist [30]–[33]. For
these reasons, ADALINE followed by variable step-size LMS
learning rule converges prematurely during the estimation
of the signal having time-varying parameters, decaying DC
function, high-level measurement noise and inter-harmonics.
As a result, the accuracy of the estimation gets reduced, which
is the main disadvantage of conventional methods.

This paper contributes to a new Master-Slave ADALINE
(MS ADALINE) based two-fold architecture for real-time
detection of grid voltage/current fundamental and harmonic
components. Thismethod theoretically cancels out the depen-
dency between the speed of convergence and steady-state
errors, and at the same time enhances the convergence
speed. InMSADALINE technique, two ADALINEmodules,
i.e.Master-ADALINE and Slave-ADALINE are connected in
parallel. The reference signals are applied to both ADALINE,
i.e. common parallel input and the error outputs are collected
independently, i.e. parallel output. The Slave-ADALINE’s
coefficients are updated by the fixed step-size LMS algo-
rithm. Just to speed up the convergence, large step-size value
is a prominent choice. During the training interval or sudden
parameter changes, this filter coefficients close near to the
optimum solution. On the other hand, the Master-ADALINE
chooses a time variable step-size LMS algorithm for coef-
ficient adjustment. When this algorithm goes closer to the
steady-state, the value of error magnitude reduces, which
decreases the step-size. In the meantime, the obtained filter
coefficients are optimum. At the end of each iteration, the
local averages of the squared errors of both the ADALINE’s
are computed and applied to the decision control circuit.
Then, the decision controller circuit compares the twomagni-
tudes and adjusts theMaster-ADALINEweights accordingly.
In this way, the system can overcome the effect of estimation
error with a large magnitude by using MS ADALINE. The
Master-ADALINE is the filter of interest, and from its coef-
ficients, the amplitudes and phases are estimated. The pro-
posed architecture provides the fastest convergence speed and
smallest steady-state error than the single-fold ADALINE
structure with a low increase in computational complexity.
It has the advantage to estimate the vibration harmonic mag-
nitude and phase with high tracking accuracy. It can be easily
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expected that the performance of the recommended architec-
ture would be better than that of simple ADALINE structure.
This approach is not only used for power quality assessment
in the electrical system but also it can be implemented in other
research fields like equalization, active noise control (ANC),
acoustic echo cancellation and biomedical engineering.

In the simulation, we assumed a test signal that contains
fundamental, harmonics, inter-harmonics, sub-harmonics,
decaying DC components and random noise. By using the
adaptive technique, we have estimated the parameters of these
components. Then, these estimated values are compared with
the actual values to evaluate the percentage errors. But for
experimental analysis, we have collected the discrete values
of nonlinear current from the laboratory prototype. This dis-
torted current is considered as a test signal for estimation. For
validation of the proposed algorithm in a real-time environ-
ment, the parameters of the individual component present in
a test signal are estimated and compared.

II. ARCHITECTURE OF SINGLE FOLD
ADALINE STRUCTURE
A periodic and distorted current i (t) can be described by the
sum of the fundamental frequency and integral multiples of
the fundamental frequency (i.e. harmonics) with unknown
amplitudes and phases. It is assumed that frequency is known
and constant during the estimation process. The discrete-time
version of i (t) can be expressed as follows.

i (n) =
∑L

i=1
Iisin (ωin+8i)

=

∑L

i=1

[
Iicos8i Iisin 8i

] [
sin ωin
cos ωin

]
=

∑L

i=1

[
ai bi

] [
xai (n)
xbi (n)

]
(1)

where ωi, Ii and 8i represent the angular frequency,
amplitude and phase angle of ith components respectively.
{a1 = I1 cos 81, b1 = I1 sin 81} and {ai = Ii cos 8i, bi =
Ii sin8i}

L
i=2 denote discrete Fourier coefficients of the funda-

mental and harmonic components, respectively. References
{xai (n) = sin ωin, xbi (n) = cos ωin}Li=1, are generated
from the phase-locked loop (PLL) circuit.

The functional block diagram of single fold ADALINE
for harmonic parameter estimation is depicted in Fig. 1. It is
composed of 2L number of neurons, whose weight vector
w =

{
âi (n) , b̂i (n)

}L
i=1 is adjusted by dynamic step-size

LMS (DSSLMS) algorithm [21], [27], [29]. The reference
inputs are {xai (n) , xbi (n)}Li=1. The control signal y (n), which
is the algebraic sum of all the filter outputs, can be derived as

y(n)=
∑L

i=1
(yi (n)) =

∑L

i=1

[
âi (n) b̂i (n)

] [
xai (n)
xbi (n)

]
(2)

The preceding equation can be written in matrix form as

y (n) = wT (n)x(n) (3)

FIGURE 1. Functional block diagram of single fold ADALINE structure.

Then, the instantaneous error e (n) is the difference between
the sensed signal i (n) and the control signal y (n). Accord-
ingly, we can write

e (n) = i (n)− wT (n)x(n) (4)

After a number of iterations, the estimated amplitudes {Ii}Li=1
and phases {8i}

L
i=1 can be computed as follows.

Ii =
√
âi (n)2 + b̂i (n)

2 (5)

8i = tan−1
(
b̂i (n)

/
âi (n)

)
(6)

A. DSSLMS WEIGHT UPDATING RULE
By employingDSSLMS algorithm, the estimated coefficients{
âi (n) , b̂i (n)

}L
i=1 at any sampling instant n are updated by

using the following expressions.

âi (n+ 1) = âi (n)+ µai (n) e (n) xai (n)

b̂i (n+ 1) = b̂i (n)+ µbi (n) e (n) xbi (n) (7)

where µai (n) = µbi (n) = µi (n) represents the time-varying
step-size parameters that can be adapted as

µ′i (n+ 1) = C1µi (n)+ C2p2 (n) (8)

µi (n+ 1) =


µmax , if µ′i (n+ 1) > µmax

µmin, if µ′i (n+ 1) < µmin

µ′i (n+ 1) , else

(9)

where (0 < C1 < 1) and (C2 > 0) are constant values to con-
trol the convergence rate, and µi (n+ 1) is restricted in some
pre-decided [µmin, µmax] to provide stability and learning
behaviour of DSSLMS algorithm. The error autocorrelation
p(n) can be expressed as

p (n) = C3p (n− 1)+ (1− C3) e(n)e(n− 1) (10)

where (0 < C3 < 1) is an exponential weighting factor that
controls the quality of the estimation of p (n). From Eq. (8)
and Eq. (10), it is seen that the autocorrelation between the
error output at adjacent time instants e (n) and e(n − 1)
regulate the step-size parameter. Therefore, the influence of
the measurement noise is reduced and the algorithm performs
better at the steady-state condition.
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FIGURE 2. Functional block diagram of proposed two fold MS ADALINE structure.

B. MISADJUSTMENT LEVEL
The steady-state performance of the adaptive algorithm is
commonly measured using a relative parameter, called mis-
adjustment. It is defined as the ratio of the steady-state excess
MSE function Jex(n) to the optimal MSE Jo. Referring [31],
the steady-state misadjustment level M is calculated as

M =
C1C2J2o (1− C3)

(1− C2
1 )(1+ C3)

tr[R] (11)

where tr[(·)] represents the trace of the matrix (·) and R is
the input autocorrelation matrix given by R = EX (n)XT (n).
The preceding equation states that M depends on all con-
stant parameters (C1, C2, and C3). The parameter C3 can
be selected such that a small M is attained while maintain-
ing a large C2, which increases the speed of convergence.
Thus, we conclude that dependency between the convergence
speed and steady-state misadjustment exists [32]. Due to
this reason, the variable step-size LMS algorithm employed
in ADALINE converges prematurely during some critical
conditions of estimation such as the presence of time-varying
parameters, decaying DC function, high-level measurement
noise and inter-harmonics in the signal. As a result, the algo-
rithm needs large time for convergence and the accuracy of
the estimation gets diminished.

C. STABILITY ANALYSIS
To ensure the stability of the DSSLMS algorithm,µi (n)must
be bounded within a certain positive range that yields the
following condition.

0 < µmin ≤ µi (n) ≤ µmax < 2
/
3tr[R] (12)

where µmin is selected to be a very small value and µmax is
chosen to be very close to the upper bound 2

/
3tr[R]. The

range betweenµmin andµmax plays a role in stability for such
time-varying step-size.

The required computational resources of ADALINE with
DSSLMS weight adaptation rule is (2L + 7) numbers of
matrix multiplications/divisions and (2L + 3) numbers of

matrix additions/subtractions for performing a single iter-
ation [21]. In addition, this algorithm necessarily needs
(2L + 12) memory locations to store the signal samples,
coefficients and variable parameters.

III. ARCHITECTURE OF PROPOSED MASTER
SLAVE ADALINE STRUCTURE
To eliminate the tradeoff between the speed of convergence
and steady-state misadjustment, and simultaneously accel-
erate the convergence rate in the above critical situations,
the authors have proposed a novel two-fold parallel architec-
ture named MS ADALINE. Fig. 2. illustrates the functional
block diagram of MS ADALINE for parameter estimation.
This recommended architecture consists of two ADALINE
i.e. Master-ADALINE and Slave-ADALINE, whose cor-
responding weights are denoted as

{
âiM (n) , b̂iM (n)

}L
i=1

and
{
âiS (n) , b̂iS (n)

}L
i=1. The signals {xai (n) , xbi (n)}Li=1

are represented as common reference inputs for both
ADALINE. The error outputs eM (n) and eS (n) are col-
lected from Master-ADALINE and Slave-ADALINE, sub-
sequently. In this research work, the subscript ‘M ’ stands
for Master-ADALINE’s parameters, whereas subscript ‘S’
indicates the parameters associated with Slave-ADALINE.
The Slave-ADALINE uses an LMS algorithm with a fixed
and large step-size value µiS , which makes the convergence
faster. On the other hand, the Master-ADALINE follows
a variable step-size parameter µiM (n), which is reinitial-
ized by the decision controller circuit for producing a small
steady-state error. At the end of each iteration, the sum of
squared errors of both ADALINE is calculated and fed to
the decision controller circuit. The decision controller circuit
compares these magnitudes and updates the coefficients of
Master-ADALINE accordingly. If the sum of squared error
of Master-ADALINE is greater than the sum of squared
error of Slave-ADALINE, it means that the performance
of the Slave-ADALINE is much more superior to Master-
ADALINE. Its weights approach towards the optimum value.
In this situation, the Master-ADALINE has used the weights
of the Slave-ADALINE. At the same time, the step-size is
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increased from µiM (n) to (µiM (n)+ µmax)
/
2, which raise

the speed of convergence of the Master-ADALINE. This
case arises at the starting stages of estimation or transients
when both adaptive filters are far from the optimum weights.
After a number of iterations, Slave-ADALINE close to the
steady-state and its sum of squared error will be larger than
the sum of squared error of the Master-ADALINE. At the
same time, the step-size of Master-ADALINE decrease from
µiM (n) to C4µiM (n), in order to maintain a low steady-state
misadjustment. Finally, µiM (n) approaching to a minimum
value µmin and the filter coefficients attain the wiener solu-
tion. So, the system can overcome the effect of large estima-
tion error by using MS ADALINE technique. By utilizing the
weights of the Master-ADALINE, the amplitudes and phases
are estimated.

A. PROPOSED WEIGHT UPDATING RULE
The weights of the Master-ADALINE and Slave-ADALINE
are updated by the following steps:
Step-1: Calculate the control signal yS (n) and the instan-

taneous error eS (n) of the Slave-ADALINE.

yS (n) =
∑L

i=1

[
âis (n) b̂is (n)

] [
xai (n)
xbi (n)

]
(13)

eS (n) = i (n)− yS (n) (14)

Step-2: Calculate the control signal yM (n) and the instan-
taneous error eM (n) of the Master-ADALINE.

yM (n) =
∑L

i=1

[
âiM (n) b̂iM (n)

] [
xai (n)
xbi (n)

]
(15)

eM (n) = i (n)− yM (n) (16)

Step-3: Update the Fourier coefficients
{
âiS (n), b̂iS (n)

}L
i=1

of the Slave-ADALINE.

âiS (n+ 1) = âiS (n)+ µiSeS (n) xai (n)

b̂iS (n+ 1) = b̂iS (n)+ µiSeS (n) xbi (n) (17)

Step-4: Compute the local averages of the square errors
{AS (m) ,AM (m)} of both ADALINE.

AS (m) =
∑n

m=n−Q−1
e2S (m), for n = Q, 2Q, 3Q · · ·

(18)

AM (m) =
∑n

m=n−Q−1
e2M (m), for n = Q, 2Q, 3Q · · ·

(19)

where Q is the length of the test interval that controls the
convergence rate of theMaster-ADALINE. IfQ is assumed to
be too large then the adaptation of the step-size of the Master-
ADALINE is lost. However, if Q is too small, the step-size
µiM (n) will have large variations in the steady-state. For
large values ofQ, the Slave-ADALINEmight converge inside
the test interval and µiM (n) is not sufficiently increased.
In this situation, the convergence rate will be very slow. Here
the value of Q is chosen as 50 for obtaining a satisfactory
result.

Step-5: Update the Fourier Coefficients {âiM (n), b̂iM (n)}Li=1
of the Master-ADALINE.

âiM (n+ 1) =

{
âiS (n+ 1) , if AS (m) < AM (m)
âiM (n)+ µiM (n) eM (n) xai (n) , else

b̂iM (n+ 1) =

{
b̂iS (n+ 1) , if AS (m) < AM (m)
b̂iM (n)+ µiM (n) eM (n) xbi (n) , else

(20)

Step-6: Reinitialize the step-size parameter µiM (n) of the
Master-ADALINE.

µiM (n+1)=


(µiM (n)+µmax)

2
, if AS (m)<AM (m)

max [C4µiM (n), µmin] , else

(21)

where (0 < C4 < 1) is the scaling factor that regulates the
adaptation of step-size and convergence rate. If C4 ' 0, then
the value of µiM (n) is reduced too fast and the convergence
of the algorithm is diminished. When C4 ' 1, the algorithm
will have poor convergence rate. By trial and error method,
the authors chose the typical value for C4 is 0.9.
Step-7: Estimate the amplitudes {Ii}Li=1 and phases
{8i}

L
i=1 from Master-ADALINE coefficients.

Ii(n) =
√
âiM (n)2 + b̂iM (n)

2 (22)

8i(n) = tan−1
(
b̂iM (n)

/
âiM (n)

)
(23)

Step-8: Calculate the MSE of Slave-ADALINE JS (n) and
Master-ADALINE JM (n).
The MSE of Slave-ADALINE JS (n) and Master-

ADALINE JM (n) can be obtained as

JS (n) = Jopt + tr[RKS (n)] (24)

JM (n) = Jopt + tr[RKM (n)] (25)

where Jopt is the optimal MSE, which can be expressed as

Jopt = lim
n→∞

E
{
e2opt (n)

}
. The value of Jopt for both filters

is equal. The correlation matrixes of the weight-error vector
VS (n) and VM (n) are expressed as KS (n) = E[VS (n)V T

S (n)]
and KM (n) = E[VM (n)V T

M (n)]. Referring [32], [33], the
MSE of the LMS with fixed step-size is written as

J (n) = Jopt +
∑N

j=1
λj
(
1− µλj

)2 v2j (0) (26)

where λj is the jth eigenvalue of the input autocorrelation
matrix, vj(0) is the jth element of the vector V (0). Taking
into account that during one test interval the step-sizes of both
ADALINE are constant, the MSE equations can be obtained
from Eq. 26 as

JS (kT )

= Jopt +
∑N

j=1
λj
(
1− µSλj

)2T v2Sj((k − 1)T ) (27)

JM (kT )

= Jopt +
∑N

j=1
λj
(
1− µM ((k − 1)T )λj

)2T v2Mj((k−1)T )
(28)
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where T is the number of iterations and k is an integer.
We assume that at the starting point of the test interval
the Master-ADALINE weights are re-initialized with Slave-
ADALINE, therefore we have

vSj((k − 1)T = vMj((k − 1)T (29)

Eq. 27 to Eq. 29, it is clear that MSE of the Slave-ADALINE
is smaller than the MSE of the Master-ADALINE at the
final point of the test interval. This evaluation was made for
a test interval (n from (k − 1)T to kT ) with the assump-
tion that the coefficients

[
âiM (n) b̂iM (n)

]
are initialized

with
[
âiS (n) b̂iS (n)

]
at n = (k − 1)T . The MSE of both

ADALINE, at time instant n = kT can be approximated by

JS (kT ) = Jopt +
∑N

j=1
λj
(
1− µSλj

)2T vSj((k − 2)T )

(30)

JM (kT ) = Jopt +
∑N

j=1
λj
(
1− µM ((k − 1)T )λj

)T
×
(
1− µM ((k − 2)T )λj

)T v2Mj((k − 2)T ) (31)

It is conclude that the Slave-ADALINE has a smaller level of
MSE than Master-ADALINE. At the steady-state condition,
the MSE of Slave-ADALINE JS (n) can be approximated as

JS (n) = Jopt + Jopt
µmax

2
tr[R] (32)

Since the Slave-ADALINE converges faster than the Master-
ADALINE, the step-size µiM (n) will only be reduced after
Slave-ADALINE is converged. Finally, µiM (n) attains its
minimum bound µmin, the Master-ADALINE converges to
the following level of MSE.

JM (n) = Jopt + Jopt
µmin

2
tr[R] (33)

The proposed algorithm is summarized as the Slave-
ADALINE dominates the adaptive process at the training
interval or transients, while the Master-ADALINE takes over
during the last process. Their sum of squared errors at a
specific adaptive interval is selected as the transfer criteria.

B. MISADJUSTMENT LEVEL
For a stationary environment, the steady-state misadjustment
of the Slave-ADALINE is approximately

M =
µiS

2
tr[R] (34)

At the steady-state condition, the step-size of the Master-
ADALINE µiM (n) converges to µmin, then the misadjust-
ment is given by

M =
µmin

2
tr[R] (35)

Eq. 34 and Eq. 35, it is noted that the steady-state misad-
justment is independent of convergence speed. Therefore, the
algorithm needs less time for convergence and the accuracy
of the estimation becomes more exact.

C. STABILITY ANALYSIS
In the Slave-ADALINE, the fixed step-sizeµiS could be large
as long as stable convergence is maintained. A necessary and
sufficient condition for the mean square bounded weights is
that

0< µmin � µiS ≤ µmax < 2
/
3tr[R] (36)

The stability, as well as the learning behaviour of the Master-
ADALINE, is guaranteed if we bound the time-varying
step-size µiM (n) [31]. According to

0 < µmin ≤ µiM (n) ≤ µmax < 2
/
3tr[R] (37)

The MS ADALINE requires (4L + 6) numbers of matrix
multiplications/divisions and (4L + 3) numbers of matrix
additions/subtractions per iteration. The computational cost
of the proposed architecture is effectively higher than the
conventional architecture due to the use of twice number
addition and multiplication blocks. The memory loads of the
MS ADALINE are (3L + 14).
In this work, the authors have further implemented

three-fold or higher version architectures for harmonic esti-
mation. But, it is observed that there is no such type of
advantages over the proposed two-fold architecture except
convergence speed. If the extra number of ADALINEs is
preferred, then the required computational resources are
effectively increased that undoubtedly inflation of cost. This
type of complexity architectures demoralizes for its practical
implementation. However, the steady-state MSE functions of
each ADALINE are nonlinear in nature, so their calculations
are very much complicated. In addition, optimum step-size
is required for minimizing the MSE. But, the calculation of
optimum step-size necessary requires many assumptions of
system parameters. Furthermore, the dependency between the
steady-state misadjustment and convergence speed exists like
single fold ADALINE with DSSLMS algorithm. Due to the
above reasons, the three-fold architecture or even more is not
an uncomplicated and cost-effective solution for harmonic
parameter estimation.

IV. SIMULATION RESULTS
Comprehensive simulation is carried out using MATLAB
to verify the effectiveness of the proposed MS ADALINE
approach for power system harmonic estimation. The current
signal considered for the simulation is composed of odd
harmonics of 3rd , 5th, 7th, 9th, 11th, 13th and 15th apart from
the fundamental. The expression of an assumed signal is
described as follows.

i (t) = 10.17 sin
(
ωt + 17.80

)
+ 2.02 sin

(
3ωt − 16.80

)
+ 1.62 sin

(
5ωt + 26.20

)
+ 0.89 sin

(
7ωt + 58.40

)
+ 0.75 sin

(
9ωt − 87.20

)
+0.58 sin

(
11ωt + 60.10

)
+ 0.4 sin

(
13ωt + 500

)
+ 0.13 sin

(
15ωt + 39.50

)
+Nrand(t) (38)

VOLUME 8, 2020 51923



P. Garanayak et al.: High-Speed MS ADALINE for Accurate Power System Harmonic and Inter-Harmonic Estimation

FIGURE 3. Estimated waveforms under 20 dB Noise condition. (a) Test signal. (b) Fundamental component. (c) MSE.

FIGURE 4. Estimated amplitudes under 20 dB Noise condition. (a) 3rd . (b) 7th. (c) 11th.

FIGURE 5. Estimated phases under 20 dB Noise condition. (a) Fundamental. (b) 9th. (c) 15th.

Simulation results are analysed with different sets of
Gaussian noise of zeromean such as no noise, 20 dB SNR and
5 dB SNR corresponding to N = 0, 0.1 and 0.562 (assuming
S = 1 for all sets). Signal to noise ratio (SNR) is defined as
the logarithmic ratio of the signal and noise, i.e. SNRdB =
20 log10

(
S
/
N
)
. The supply and sampling frequencies are

considered as 50 Hz and 10 kHz, respectively. Table 1 sum-
marizes the values of the various constants selected for the
simulations of the two different adaptive techniques.

A. ESTIMATION OF SIGNALS WITH DIFFERENT SNR
Fig. 3(a)-(c) illustrates the estimated test signal, fundamental
component, MSE using two different techniques at 20 dB
SNR. From these figures, it is noticed that extremely accu-
rate estimation is achieved by employing the proposed MS
ADALINE method. However, the conventional ADALINE
method shows more irregularity and oscillation in the first
cycle based on 50 Hz fundamental waveform.

TABLE 1. Values of the constants parameters.

B. ESTIMATION OF STEADY STATE PARAMETER
Fig. 4 and 5 illustrate the corresponding amplitude and phase
estimation of fundamental as well as other individual har-
monic components present in the current signal added with
random noise of 20 dB SNR. It is evident from Fig 4(a) and
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Fig 5(a) that estimation based on ADALINE technique tracks
the actual value almost a fundamental period (i.e. 0.02 s)
while considering the lower order harmonics. But, when we
deal with the higher-order harmonics the tracking perfor-
mance is very much affected as shown in Fig 4(b) and (c),
and Fig 5(b) and (c). However, these estimated values are
slightly fluctuating in behaviour that degrades the power
quality assessment. On the other hand, the results obtained
from MS ADALINE are more accurate and zero oscillation.
These estimated values follow the actual value by taking less
than three-fourth of the fundamental period (i.e. 0.015 s).
Especially, for phase estimation, these collected results are
absolutely impressive.

C. ESTIMATION UNDER DIFFERENT NOISE CONDITIONS
Fig. 6(a) and (b) emphasizes the comparison of robustness
in estimating the 3rd harmonic amplitude and 11th harmonic
phase with the variety of noise level (i.e. 0dB ≤ SNR ≤
80dB), respectively. The results reveal that at 80 dB SNR,
the accuracies for estimation employing both the techniques
are very high and nearly equal. But with the decrease in SNR
value (i.e. with the increase in noise level), theMSADALINE
based estimation performs better, and less variation between
actual and estimated values as compared to ADALINE.

FIGURE 6. Steady state performance comparison with different SNR.
(a) 3rd harmonic amplitude. (b) 11th harmonic phase.

D. ESTIMATION IN THE PRESENCE OF SUB- AND
INTER-HARMONICS
Inter-harmonics are the non-integer multiples of the fun-
damental frequency. Sub-harmonics are treated as inter-
harmonics when the frequencies are less than the fundamental
frequency [13], [21]. In order to assess the performance of

the proposed MS ADALINE structure for harmonic estima-
tion, a sub-harmonic component of 30 Hz frequency and an
inter-harmonic component of 185 Hz frequency are consid-
ered along with the test signal. Now, we can represent this
distorted waveform as

i1 (t) = 0.47sin
(
0.6ωt + 23.40

)
+1.32sin

(
3.7ωt + 39.50

)
+ i (t) (39)

For assessment of parameters present in a distorted signal,
the reference signals {xaK (n) = sin (Kωn) , xbK (n) =
cos (Kωn)} apply to the MS ADALINE structure as pri-
mary inputs; where K = 0.6 and 3.7 for sub-harmonic
and inter-harmonic components respectively. The estimated
coefficients of Master-ADALINE and Slave-ADALINE are{
âKM (n) , b̂KM (n)

}
and

{
âKS (n) , b̂KS (n)

}
respectively as

shown in Fig. 7. In this figure, the authors displayed com-
mon inputs for sub- and inter-harmonic components. But
in simulation, we have considered two separate inputs for
corresponding parameter estimation.

Fig. 8(a)-(d) show the estimation of amplitude and phase
of sub- and inter-harmonic components present in the test
signal. The waveforms justify the superior performance of
MS ADALINE in affording a better accuracy even with the
signal containing 20 dB SNR. The estimated value based
on ADALINE maintains a steady-state reference value by
taking more than 0.02 s, whereas estimation employing MS
ADALINE attains the same value within 0.015 s or less.

E. ESTIMATION IN THE PRESENCE OF DECAYING
DC COMPONENTS
The existence of decaying DC components causes the power
system distorted. This signal is non-periodic in nature, so the
exact estimation of its parameter is a challenging task. The
test signal i2 (t) embedded with decaying DC component can
be represented as

i2 (t) = i (t)+ Ae(−Bt) (40)

where A and 1
/
B are the magnitude and time con-

stant of the DC decaying offset respectively. Refer-
ring [13], [21], for parameter estimation, the reference inputs
are {xa (n) = 1, xb (n) = n} and the corresponding coeffi-
cients forMaster- and Slave-ADALINE are

{
âM (n) , b̂M (n)

}
and

{
âS (n) , b̂S (n)

}
, respectively. After a number of itera-

tions, the decaying DC parameters can be computed as

A = âM (n) and B = b̂M (n)
/
âM (n) (41)

In this test, A = 1.78 A and B = 1.59s−1 are chosen. The
estimated parameters of the decaying DC function for SNR
of 20 dB are shown in Fig. 8(e) and (f). It is observed that the
estimation of decaying parameter employing MS ADALINE
is very much accurate and the required convergence time is
0.012 s. Whereas the estimation utilizing ADALINE needs
0.02 s and 0.1 s to track A and B, respectively. Furthermore,
these estimated values employing ADALINE are not so much
accurate and marginally fluctuating in behaviour.
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FIGURE 7. Block diagram of sub-harmonic, inter-harmonic and decaying DC components estimation.

FIGURE 8. Estimated parameter at 20 dB SNR. (a) Sub-harmonic amplitude. (b) Inter-harmonic amplitude. (c) Sub-harmonic phase. (d) Inter-harmonic
phase. (e) Decaying DC Magnitude. (f) Decaying DC time constant.

F. ESTIMATION IN THE PRESENCE OF DYNAMIC SIGNAL
To verify the performance of the MS ADALINE in tran-
sients, a time-varying 3rd harmonic amplitude is introduced
in the test signal. In this study, the considered signal can be
represented as

i3 (t) = 10.17 sin
(
ωt + 17.80

)
+ (1.2+ id ) sin

(
3ωt − 16.80

)
+ 1.62 sin

(
5ωt + 26.20

)
+0.89 sin

(
7ωt+58.40

)
+ 0.75 sin

(
9ωt−87.20

)
+0.58 sin

(
11ωt+60.10

)
+ 0.40 sin

(
13ωt+500

)
+ 0.13 sin

(
15ωt+39.50

)
+ 0.1rand(t) (42)

where id is the 3rd harmonic amplitude modulating parame-
ter, it can be defined as

id = 0.96 sin 0.02ωt + 0.14 sin 0.12ωt (43)
The estimation of time-varying 3rd harmonic amplitude

in the presence of random noise is depicted in Fig. 9(a).
It is observed that the estimation based on the ADALINE
technique produces a vast amplitude deviation along with the
poor convergence speed. However, by implementing the MS
ADALINE technique, the convergence speed is found to be
faster, calculated data became more accurate and percentage
error is limited.

G. ESTIMATION OF TIME VARYING PARAMETER
The estimation of 5th order amplitude and 7th order phase
under sudden step change from 1.82 A to 1.62 A and 200
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FIGURE 9. Estimation during transients at 20 dB SNR. (a) Time-varying 3rd harmonic amplitude. (b) 5th harmonic amplitude drift. (c) 7th harmonic phase
drift.

TABLE 2. Percentage of amplitude error in different architectures.

to 500 at t = 0.1 s are illustrated in Fig. 9(b) and (c),
respectively. It is observed from the waveforms that estima-
tion based onADALINE lost its capability to track the sudden
variations and chased the actual value within 0.4 s. However,
the MS ADALINE based estimation precisely followed these
changes with a minor delay of 0.05 s.

Finally, this study concluded that the tracking perfor-
mances of both algorithms are approximately equal under
steady-state without noise. But, steady-state with high
noise level and critical conditions, the performance of MS
ADALINE is much more superior to single-stage ADALINE.

H. PERFORMANCE EVALUATION OF MS
ADALINE COMPARING WITH OTHER
RECENT ARCHITECTURE
Table 2 and 3 exhibit the percentage error of correspond-
ing amplitude and phase of fundamental, harmonics, inter-
harmonic, sub-harmonic components using four different
adaptive algorithms. The percentage of error can be calcu-
lated for N length of the estimated signal as

Error (%) =
1
N

∑N

n=1

|i (n)− y(n)|
i (n)

(44)

From Table 2, it is noticed that at 20 dB SNR the high-
est error occurs in the fundamental amplitude of 11.3%,
10.02%, 7.79%, 5.67%, 4.91%, and 3.86%, and the lowest
error in the 13th harmonic amplitude of 5.75%, 4.5%, 1.50%,
1.25%, 1.00%, and 0.5%, by employing ADALINE with
fixed and large step-size LMS algorithm (Design 1), fixed and
small step-size LMS algorithm (Design 2), variable step-size
LMS algorithm (Design 3), Hybrid FFT (Design 4) [18],
Gauss-Newton (Design 5) [23], andMSADALINEwith both
fixed and variable step-size LMS algorithm i.e. proposed
technique (Design 6), subsequently. The phase estimation
using the above six adaptive techniques are shown in Table 3,
the corresponding highest error of 16.93%, 14.20%, 12.87%,
8.10%, 7.34%, and 3.58% arises in 15th harmonic and lowest
error of 5.95%, 3.09%, 1.32%, 1.14%, 1.01%, and 0.23%
achieve in 3rd harmonic. In Design 1, the convergence speed
is very fast, but the steady-state error is large. In Design 2
the convergence speed is slow, but the steady-state error is
small. Designs 3-5 is achieved a small steady-state error than
the above two designs, but the interaction exists between the
steady-state misadjustment and convergence speed degrade
its performance. In Design 6, the step-size adaptation is
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TABLE 3. Percentage of phase error in different architectures.

FIGURE 10. Line diagram of the test system for real time signal parameter
estimation.

fully controlled by a decision controller circuit, where the
steady-state misadjustment is independent of the rate of con-
vergence. Therefore, Design 6 claims least percentage error
among all four designs.

V. EXPERIMENTAL RESULTS
To demonstrate the comparative performance of proposedMS
ADALINE over conventional ADALINE, a scaled laboratory
prototype is developed. The experimental setup comprises
of a thyristor bridge rectifier fed DC load acting as a non-
linear load and another inductive load of the series combi-
nation of the inductance of rating 64.5 mH and resistance
of 22.5� in each phase acting as a linear load. Both the
loads are connected in parallel to the three-phase 415 V,
50 Hz source through an autotransformer and isolation trans-
former. This type of combinational load injects a huge
amount of time-varying harmonics and impulsive noise into
the system. Fig. 10 shows the line diagram of a test system
and Fig. 11 depicts a photograph of the real experimental
setup including other measuring instruments. Two Tektronix
DMM4020 digital multimeters are used for accurate mea-
surement of supply current and voltage up to three decimal

FIGURE 11. Photograph of the real experimental setup.

points. The current measurement system is comprised of Tek-
tronix TCPA303 current probe for sensing the supply current
and Tektronix TCPA300 current amplifier for proper amplifi-
cation of the sensed current. Both supply current and voltage
waveforms are collected online at the point of common cou-
pling (PCC) and stored by using Tektronix TPS2024B digital
storage oscilloscope (DSO) in the form of discrete data. The
sampling frequency of the current probe, current amplifier
and DSO are set to be 25 kHz. The DSO is interfaced with
the HP desktop personal computer (PC) through DSO PC
communication software. By using this software, the discrete
data points are transferred to the PC. The measured signals
are not filtered to avoid any phase lag due to filtering. The
implementation is done via MATLAB R2019a on the PC.
The collected instantaneous real-time discrete data has been
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FIGURE 12. waveforms recorded by DSO. (a) Three phase supply voltages
(X − axis = 10ms/div, Y − axis = 100V /div ). (b) Three phase supply
current (X − axis = 10ms/div, Y − axis = 2A/div ). (c) Spectrum of
phase-a supply current.

analyzed in the PC by implementing the proposed algorithm
with the help ofMATLAB. Themeasurement data is captured
and analyzed on the PC after the experiments. The values of
the constant parameters used for implementation are similar
to simulated values.

The experimental waveforms of three-phase supply volt-
ages, three-phase supply currents and phase-a supply cur-
rent spectrum as recorded by the DSO are displayed in
Fig. 12(a)-(c) respectively. From figures, it is observed that
the supply voltages are almost sinusoidal. However, the sup-
ply currents are fully distorted because of the nonlinear load.
This distorted current signal containing fundamental along
with harmonics, sub-harmonics, inter-harmonics and addi-
tive noise, which is considered as a test signal for real-time
analysis.

A. ESTIMATED SIGNAL FROM REAL
EXPERIMENTAL SETUP
By using this real-time discrete data, the fundamental,
the sum of harmonics up to 99th order and MSEs are

FIGURE 13. signals from the real time data. (a) Fundamental. (b) Sum of
harmonics up to 99th order. (c) MSEs.

estimated as shown in Fig. 13(a)-(c), respectively. It is evi-
dent from these figures that the proposed algorithm com-
pletely filters out the additive noise as generated from the
hardware and produces exact assessment results. The time
point of convergence of MS ADALINE is approximately
0.01 s, which is same as the result obtained from the
simulation study. However, estimation based on ADALINE
suffers from huge oscillation before achieving the steady-
state. This algorithm takes more than 0.02 s for settling
down to the actual value. The magnitude of MSEs employ-
ing the proposed method is lower than the conventional
method.

B. ESTIMATED AMPLITUDES AND PHASES FROM
REAL EXPERIMENTAL SETUP
The estimation of amplitude of sub-harmonic, fundamen-
tal, inter-harmonic, 7th, 13th, 19th are illustrated in Fig. 14.
Similarly, the estimated phase of sub-harmonic, fundamen-
tal, inter-harmonic, 5th, 11th, 17th are shown in Fig. 15.
At t = 0+ s, the signal parameter shows transient
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FIGURE 14. Estimated amplitudes from real experimental data. (a) Sub-harmonic of 30 Hz. (b) Fundamental. (c) Inter-harmonic of 175 Hz.
(d) 7th. (e) 13th. (f) 19th.

FIGURE 15. Estimated phases from real experimental data. (a) Sub-harmonic of 30 Hz. (b) Fundamental. (c) Inter-harmonic of 175 Hz. (d) 5th. (e) 11th.
(f) 17th.

behaviour due to the initial interaction between the harmonic
components. Therefore, for power quality assessment, the
first two cycles are neglected. After the settling time, the sys-
tem achieves a steady-state and parameter maintains a fixed
value, then it is considered for estimation. It can be noticed
from figures that MS ADALINE based approach approxi-
mately takes 250 iterations (i.e. 0.01 s) to track the actual

value of each harmonic component, whereas ADALINE tech-
nique requires more than 500 iterations (i.e. 0.02 s) to attain
the same value. The required rate of convergence for MS
ADALINE is around half of the ADALINE. By introduc-
ing the Slave-ADALINE along with the Master-ADALINE,
the overall performance has been improved drastically under
the real-time situation.
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TABLE 4. Settling time of different estimation algorithms.

VI. CONCLUSION
In this work, a high-speed MS ADALINE technique is
suggested for fast and exact measurement of the individ-
ual harmonic component in a distorted current signal. The
steady-state performance employing the proposed technique
is verified via MATLAB at various SNR values. It is evi-
dent from the simulation results that the highest amplitude
and phase errors by applying MS ADALINE technique are
3.86% and 3.58%, respectively, whereas ADALINE based
estimation provides the corresponding values of 7.79% and
12.87%. Moreover, the proposed structure is solid and robust
against the presence of sub-harmonics, inter-harmonics,
time-varying signals and decaying DC components. Subse-
quently, both techniques are implemented in the real-time
environment. In order to validate the performance of the
proposed structure, a comparison result between the simu-
lation test and experimental test with same parameters and
same scenarios are summarized in Table 4. It is observed
that by employing recommended estimation theory, the sim-
ulated and experimental values of settling time are mini-
mum and identical. The overall simulation and experimental
results have demonstrated that the proposed estimation tech-
nique is admirable and powerful as compared to conventional
ADALINE based estimation.

The future works of MS ADALINE are discussed in brief.
For sustainable growth in the power system, recently renew-
able energy sources are gaining a lot of attention. These
energy sources feeding power via power converters can be
taken up as a further investigation in the field of power quality.
This technique can be applied to the aircraft electrical power
system for exact measurement of the harmonic content and
thus the designing of dynamic filtering approach guaran-
tees the power quality standards. By utilizing this technique
simultaneously on load and source currents, we can evaluate
the compensation effect of the active power filter (APF)
system connected to the distribution power network.
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