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ABSTRACT Thinned silicon dies and thin substrates using thin core and coreless structures have enabled
thin packages. For robust manufacturing and reliability of these parts, solving the warpage problem is key.
While current finite element methodologies can provide some insights at the design stage, these simulations
are only as accurate as the inputs such as the material properties and the stress-free temperatures. Electronic
substrates are especially challenging to characterize andmodel as they are laminates consisting of a core with
layers of resin and metal lines on either side. In this work, a hybrid approach using Markov Chain Monte
Carlo (MCMC) and Finite Element Analysis (FEA) is used to learn the spatially varying properties of the
substrate from Digital Image Correlation (DIC) measurements of the warpage. The analysis is carried out at
room temperature and at an elevated temperature point. Image analysis on electrical artwork is also carried
out to correlate the material properties to the substrate metal density. These results will be useful to package
and substrate designers to understand how material properties vary over the substrate and how temperature
and metal density affect material properties so that robust design for future packages to minimize warpage
can be initiated by careful routing of metal lines depending on the locally desired properties of the stack.

INDEX TERMS Bayes method, finite element analysis, Markov Chain Monte Carlo (MCMC), material
characterization, substrate, warpage.

I. INTRODUCTION
As consumers call for high performance mobile devices like
laptops in thinner form factors, there is a push in the industry
to make the electronic packages that go into them thinner.
These thin packages need to be designed carefully as high
warpage in these parts can lead to assembly and reliabil-
ity issues like bump bridging and solder extrusion [1], [2].
Finite element analysis (FEA) would be a good tool for
warpage prediction if accurate material properties were avail-
able. One study has shown that variation in package warpage
measurements can be directly attributed to variation in the
material properties of the bismaleimide triazine (BT) sub-
strate [3]. The electronic substrate is inherently a compos-
ite material consisting of a core and alternating layers of
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Ajinomoto Build-up Film (ABF) and copper metal lines on
either side. The result is an anisotropic, spatially-varying, and
temperature-dependent material that is cumbersome to char-
acterize [3], [4], tedious to calculate analytically [5]–[7] and
complex tomodel [8]. Several authors have demonstrated that
FEA simulations with substrates modelled using trace map-
ping is the best method tomodel warpage accurately [9]–[13].
Trace mapping works by first importing the electrical artwork
and then ‘superimposing’ it onto the elements of the metal
layer in the FEAmodel. As a result, the volume fraction of the
metal for each element is calculated and material properties
are assigned accordingly. Regions of higher metal density
would be assigned different material properties than regions
of lower metal density. However, this method requires that
the electrical artwork be available. During the design stage,
this method is not feasible as the electrical artwork is often
not even started. Clearly, an efficient method to determine
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substrate material properties is required where electrical art-
work is not a prerequisite.

In one of the recent studies by Brandt et al., material
properties of different layers and interfaces in the solar cell
have been predicted with good accuracy using a methodology
which combines Bayesian inference with a physics-based
model [14]. A similar approach is attempted here to address
this problem. The results achieved using the Bayesian infer-
ence are very promising as will be evident in the sections that
follow. In an earlier work of the team, we proposed a hybrid
approach of using Markov Chain Monte Carlo (MCMC) and
FEA to learn the material properties of the electronic sub-
strate at locations along the package diagonal, which showed
that the simulation error reduced by as much as two orders of
magnitude [15].

In this work, the approach is extended to learn the material
properties across the whole substrate and at two different
temperatures as well. Understanding how the material prop-
erties of the substrate vary spatially and result in the observed
warpage measurements will add to our understanding of the
warpage phenomena and help us design better packages. In
addition, the learned material properties are then correlated
with the metal densities at different regions over the substrate
to gain a better understanding of how metal densities affect
material properties and warpage.

II. METHODOLOGY
The Bayesian inference approach uses each new evidence
(experimental observation) to update the probability of a
hypothesis. For this problem, the warpage model parameters
are represented as a random vector (x) with a prior distri-
bution→ p0(x). Using Bayes’ theorem, the posterior distri-
bution of parameters given the observation (or likelihood),
L(ϒ |x) is

p(x|ϒ) ∝ L(ϒ |x)p0(x) (1)

where ϒ is the observed data.
Therefore, the posterior considers the observed data and

refines our hypothesis about the distribution of the parame-
ters. MCMC is a subset of this approach where evidence is
collected by sampling the probabilistic space randomly [16],
[17]. In this work, FEA simulations were carried out using
random vectors of parameters generated by MCMC random
sampling. The likelihood, L(ϒ |x) is obtained from

L(Υ |x) =
e−SS/(2v

2)

(2πv2)n/2
(2)

where SS is the sum of squared error between the measure-
ments and the FEA model output, ν is the standard deviation
of the measurement errors and n is the number of parameters.
The MCMC analysis is carried out on MATLABr using a
toolbox developed by Haario et al. [18]. A short introduc-
tion to MCMC can be found in our previous work, where
this approach is used to learn the material properties of the
stiffener and different regions of the substrate [15].

As the objective of this work is to learn the spatially varying
material properties of the substrate at two different tem-
peratures, experimental measurements of warpage over the
whole substrate and at two temperatures are required. In the
next section the warpage measurements from digital image
correlation (DIC) that are used in the MCMC analysis as the
experimental observations (likelihood) will be presented.

III. DIGITAL IMAGE CORRELATION
DIC is a deformation measurement tool. A typical DIC setup
consists of the camera to image the sample at certain time
intervals, the speckled sample under external force or temper-
ature loading and a computer for image correlation, speckle
tracking and deformation measurement. The 2D version of
this tool consists of one camera and can measure the in-
plane deformation only. On the other hand, a 3D setup of
this system consists of two or more cameras. As each camera
captures different views of the sample, image processing and
tracking can be used to measure in-plane and out-of-plane
deformation at once, enabling curved surfaces to be measured
as well. A speckle pattern on the sample is typically required
for accurate measurements [19]. 3D DIC measurements were
carried out on three package samples at two temperatures
sequentially→ 25◦C and 60◦C. The temperature ramp rate
used was about 40◦C/min to simulate the fast ramp rate of a
typical reflow profile. The package sample has a body size
of less than 40 × 40 mm2 with a total thickness of less
than 1.5mm. The sample consists of a silicon die assembled
onto an electronic substrate with a stiffener ring to control
the warpage. In turn, the electronic substrate is a laminate
consisting of the core and alternating layers of metal line and
ABF. As we are interested in measuring the warpage of the
whole package, the speckle pattern was applied on the back
of the substrate. A sample speckle pattern can be found in
our earlier publication [8]. The contour plot of a typical DIC
result is shown in Fig. 1. Out-of-plane deformation of these
parts was measured over four lines – two diagonal lines (AC
and BD), one horizontal (FH) and one vertical line (EG) as
shown in Fig. 1, in order to fully characterize the warpage of
the part.

Line plots of the warpage measurements are shown in
Figs. 2-4. Fig. 2 and 3 shows the warpage of all three samples
(referred to as S1, S2 and S3), along each line, at room
temperature and the elevated test temperature of 60◦C respec-
tively. The mean of the measurements from the three samples
is represented by the dashed black line in both figures. From
Fig. 2, in general, there is good agreement between the mea-
surements from the three samples at room temperature, with
the largest variability observed along the horizontal line F-H.
Fig. 3 indicates that greater variability between the samples
is observed at the higher temperature. This could be the result
of different amount of residual stresses accumulated in each
package during the assembly process, resulting in different
amounts of stress relief and hence, different warpages.

For the MCMC analysis, the observation (likelihood) data
used is the mean of the DIC measurements from the three
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FIGURE 1. Contour plot of out-of-plane deformation from DIC. Four lines
(A-C, B-D, F-H and E-G) drawn show locations along which warpage was
extracted.

FIGURE 2. Warpage plots for three samples and the mean along four
lines (A-C, B-D, F-H and E-G) at room temperature (25◦C).

samples. This is shown in Fig. 4. It is clearly evident that
warpage is higher at room temperature and decreases as
temperature increases. Similar warpage shapes and trends are
observed along all four lines.

IV. FEM AND MCMC MODEL DETAILS
A. FINITE ELEMENT ANALYSIS (FEA)
Typical FEA analysis for package warpage assumes that the
package is symmetric about the two axes. Using symmetrical
boundary conditions, the model size can be reduced by four
times. However, in this case, there can be no assumption of
symmetry as the objective is to determine material properties
over the entire substrate. Therefore, a finite element model
of the whole package was built on ANSYSr v19. The model
consists of the silicon die, substrate, underfill and stiffener, as
shown in Fig. 5(a). The loading condition used was a single
step temperature ramp down from the stress-free temperature
of 150◦C to the temperature of interest (25◦C or 60◦C).
The stress-free temperature was determined from warpage
measurements, where the magnitude of the warpage is the
smallest.

FIGURE 3. Warpage plots for three samples and the mean along four
lines (A-C, B-D, F-H and E-G) at a higher temperature of 60◦C.

FIGURE 4. Comparison of the mean of the warpage plots of the three
samples along four lines (A-C, B-D, F-H and E-G) at the two temperatures.

In order to learn the spatially-varying material properties
of the substrate, the substrate was divided into nine parts as
shown in Fig. 5(b). The model was parameterized such that
each of the nine sections of the substrate can be assigned its
own unique in-plane coefficient of thermal expansion (CTE)
value. This approach of assigning each section its own unique
CTE will allow the MCMC analysis to learn the material
properties of the substrate that reflect the variation of copper
density across the substrate.

A mesh convergence study is carried out to optimize the
run-time of the warpage model to about 15 sec without com-
promising on the warpage simulation accuracy. The model is
post-processed to extract warpage at the same locations as in
the DIC measurements i.e. along the two diagonals and the
central vertical and horizontal lines and output these values
to a text file. Warpage contours from the simulations and

VOLUME 8, 2020 50165



C. Selvanayagam et al.: Learning Localized Spatial Material Properties of Substrates in Ultra-Thin Packages

FIGURE 5. (a) FEM model of the whole package for warpage analysis and
the corresponding (b) top view of the substrate showing the nine sections
with unique CTE properties.

FIGURE 6. Warpage contour plot showing the four lines along which
warpage data from the FEA model is extracted.

the lines along which the warpage is extracted are shown in
Fig. 6. Fig. 7 shows the initial warpage plots from simulation
when assuming uniform CTE of 14 ppm/◦C for the whole
substrate. As expected, there is a large discrepancy between
the measured and simulated results. The total squared sum
difference between measured and simulated results for the
four curves is 9.9 x10−2.

B. MARKOV CHAIN MONTE CARLO (MCMC)
For this analysis, the equations governing the MCMC are
similar to those in our previouswork [10]. The only difference
is that we are trying to fit to the measurements over four
discrete lines, instead of just one. In order to accomplish this,
the sum of squared error for each line is added together.

The relationship between the displacement yi,l and position
pi,l is given by the FEM model in Eqn 3. Subscript i denotes

FIGURE 7. Displacement plot showing experimental measurements from
DIC (blue line) and FEA simulations with initial assumed parameters (red
circles) along the four lines (A-C, B-D, F-H, E-G). Relatively large SS
between these two results of 9.9 × 10−2 is obtained.

the point along the line and l denotes the line.

yi,l = fi,l
(
pi,l, x

)
, i = 1, . . . ,N , l = 1, . . . , 4 (3)

Here, x = (x1, . . . , xnp ) is a vector of np parameters of
the model. Given that the measurement of displacement data
along each line Υ =

{
zi,l = yi,l + ςi,l

}
, i = 1, . . . ,N , l =

1, . . . , 4 and errors, ςi,l , are available, the total sum squared
error is now given by:

SS(x) =
∑4

l=1

∑N

i=1
(zi,l − fi,l(pi,l, x))2 (4)

V. RESULTS AND DISCUSSION
A. NINE-PARAMETER MODEL: IN-PLANE CTE AT
DIFFERENT LOCATIONS ACROSS THE SUBSTRATE AT
ROOM TEMPERATURE
A nine-parameter MCMC is executed to determine the spa-
tially varying material properties in the substrate. This anal-
ysis is run for 2000 iterations. The total time taken for this
analysis is about 9 hours. The convergence plot is shown
in Fig. 8. Note that all the nine CTE values seem to have
converged. The corresponding probability density plots are
shown in Fig. 9.

The best estimate for CTE1 through CTE9 are deter-
mined to be 16.0, 14.8, 12.0, 10.7, 8.2, 11.2, 12.9, 15.1 and
14.9 ppm/◦C respectively by averaging the latter values of
the MCMC trials. These values are represented graphically in
Fig. 10. Note that there is quite a wide variation in the CTE
in the nine regions with variations of up to 50%. Similar to
earlier work, it is worth noticing that the CTE increases from
the center to the corner of the substrate.

Displacement plots of the experiment and simulation are
shown in Fig. 11 using the optimum values of CTE obtained
above. Also shown on this plot are the 5% and 95% quan-
tiles for the 2000 iterations. The total squared sum of the
difference between the experimental and simulated displace-
ment curves across the four lines has now decreased from
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FIGURE 8. Convergence plot of the nine CTE parameter values across the
substrate at room temperature over 2000 iterations.

FIGURE 9. Probability density functions of the learnt nine CTE parameter
values at room temperature post execution of the MCMC.

9.9 × 10−2 in the previous section to 3.2× 10−3, much more
than an order of magnitude. This implies that an extremely
good fit is achieved with the learnt material properties.

B. NINE-PARAMETER MODEL: IN-PLANE CTE AT
DIFFERENT LOCATIONS ACROSS THE SUBSTRATE AT
ELEVATED TEMPERATURE
The MCMC analysis is repeated to determine the material
properties, this time at 60◦C. The analysis is run for 1500
iterations and the total time taken for this analysis is about
6 hours. The convergence plot in Fig. 12 shows that the nine
CTE values have converged satisfactorily. The corresponding
probability density plots are shown in Fig. 13.

The best estimate for CTE1 through CTE9 is determined to
be 16.1, 12.7, 10.2, 8.8, 8.0, 10.0, 12.2, 13.9 and 15.3 ppm/◦C
respectively by averaging the latter values of the MCMC tri-
als. Again, these values are represented graphically in Fig. 14.

FIGURE 10. Graphical representation of optimum effective CTE values, as
obtained from the MCMC analysis, indicating that the CTE clearly
increases from the center to the corner of the substrate by as much as
50-100%.

FIGURE 11. Displacement plot showing experimental measurements
from DIC (blue line) and FEA simulations with optimized set of parameter
values at room temperature (red circles) along the four lines (A-C, B-D,
F-H, E-G). Significantly lower SS of 3.2 × 10−3 is obtained between these
two results. The 5% and 95% quantiles for the 2000 simulation runs are
also plotted (dashed black lines).

FIGURE 12. Convergence plot of the nine CTE parameter values across
the substrate at 60◦ C over 1500 iterations.

Just as in the results for the room temperature, the CTE is
again found to increase from the center to the corner of the
substrate. This trend will be investigated further in the next
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FIGURE 13. Probability density functions of the learnt nine CTE parameter
values at 60◦C post execution of the MCMC.

FIGURE 14. Graphical representation of CTE values at 60◦C from the
MCMC analysis, indicating that CTE increases from the center to the
corner of the substrate.

section when we correlate the learnt material properties to
the metal layer density. Displacement plots of the experiment
and simulation are shown in Fig. 15 with the 5% and 95%
quantiles for the 1500 iterations. The total squared sum of
the difference between the experimental and simulated curves
across the four lines is 3.7× 10−3. This is in the same range as
that for the room temperature analysis. Again, an extremely
good correlation between the simulated and experimental
curves is achieved with the learnt material properties.

C. CORRELATION BETWEEN LEARNT MATERIAL
PROPERTIES AND METAL LAYER DENSITIES
Though learning material properties of the substrate is found
to be greatly useful in modeling the current design of the
substrate and warpage accurately, the learnt material prop-
erties will not help in future robust design unless they can
be correlated to the metal layer densities. Unfortunately, the
software that generates the electrical artwork, Cadencer, is
only able to output the metal densities of the whole layer and

FIGURE 15. Displacement plot showing experimental measurements
from DIC (blue line) and FEA simulations with optimized set of parameter
values at 60◦C (red circles) along the four lines (A-C, B-D, F-H, E-G).
Significantly lower SS of 3.7 × 10−3 is obtained between these two
results. The 5% and 95% quantiles for the 1500 simulation runs are also
plotted (dashed black lines).

not subsections of the layer. In order to get this information,
a code in Matlabr is written to carry out image analysis
on the electrical artwork of each of the eight layers in the
substrate and compute the metal densities based on counting
of the white and black pixels. The metal density results from
the code are then validated using similar data obtained from
Cadencer. There is an error of about 6% in the copper
density calculated by the Matlabr code, as compared to the
Cadencer report for the first metal layer. This is possibly
caused by the reduced resolution of the narrow trace lines in
the imported image. Other layers with fewer lines have their
areas calculated with an error of less than 3%.

With the validated code, image analysis is carried out to
determine the copper density in each of the 8 metal layers,
in each of the 3 by 3 cells (Fig. 5(b)) in the substrate,
totaling 72 different regions. The metal density of each cell
is determined by averaging the metal densities of the eight
layers at that cell location. The plot of the extracted localized
CTE determined from the MCMC analysis against the metal
density determined for each cell from the Matlabr image
analysis is shown in Fig. 16. Clearly, as the copper density in
the cell increases, the corresponding effective CTE decreases.
This is because the metal layer consists of copper, whose
CTE is 17 ppm/◦C, and ABF material of higher CTE (CTE
> 20 ppm/◦C). Therefore, with a higher metal content, the
volume average of CTE is expected to be lower. A similar
trend is observed at higher temperature as well. However, as
indicated by the large scatter of the datapoints in the plot,
the average copper density is not the only factor governing
the CTE at each cell. Other factors such as copper layer
pattern and the resulting anisotropy of the sample, residual
stresses in the substrate and edge effects, to mention a few,
also contribute to the local CTE of the sample and are not
accounted for explicitly in this work.
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FIGURE 16. Plot of CTE against copper density percentage at room
temperature and at 60◦C, showing similar trends that further confirm the
validity of our approach.

The substrate consists of three materials→ core, ABF and
copper metal. At the central cell of the substrate, the highest
metal density and lowest CTE is found. This is because the
core is significantly thicker than the ABF andmetal layers. At
the substrate center, the low CTE of the core material (CTE
< 10 ppm/◦C) easily dominates the material property of the
cell. The outer cells in the periphery have higher CTEs, as in
those regions, the accumulated effect of the ABF and copper
layers plays a larger role in the deformation.

VI. CONCLUSION AND RECOMMENDATIONS
In this study, a hybrid approach of FEA and MCMC is
proposed and used to calculate the spatially varying material
properties (specifically, CTE) of the electronic substrate at
two different temperatures. When the optimized local val-
ues of CTE from the MCMC routine are used in the FEA,
excellent agreement with experimental measurements using
DIC is obtained, indicating that the CTEs calculated using the
methodology are indeed very accurate. The metal densities
for each cell in the substrate were determined through image
analysis of electrical artwork. It was found that the CTE
is inversely proportional to the metal density. These results
will be very useful for package designers to design future
packages with better spatial planning so as to ensure much
lower warpage. Though accurate, the hybrid approach of
FEA and MCMC is still quite time-consuming, especially for
larger FEA models.

In the future, we will attempt to replace the FEA model
with a neural network as demonstrated by several authors
[20], [21]. The neural network is a computational tool that
learns the weights and biases between the input and output
layers and then uses the learned parameters to make efficient
predictions for other values in the parameter design space
[22], [23], resulting in a significant speed up of simulation
time. This would enable the number of MCMC iterations
to increase well beyond 2000 in a fraction of the time.

In addition, this would also enable us to increase the number
of parameters included in the analysis to better understand
the factors (copper pattern, material property changes in con-
stituent materials, residual stresses, etc.) that affect CTE and
hence the warpage of the package.

The hybrid approach of using the MCMC and neural net-
works is the first step in realizing an inverse design model
for electronic substrates. The next step would be to develop
a model to link substrate characteristics like the number of
layers and the material properties of the constituent materials
to the material properties learned from the MCMC. With
this framework in place, designers would be able to input
a warpage profile and the model would return the necessary
substrate characteristics (and perhaps the stack design, mate-
rial choice and metal pattern density itself) that are required
to achieve the desired warpage contour.
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