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ABSTRACT In the era of 10T, the world of connected experiences is created by the convergence of multi-
ple technologies including real-time analytics, machine learning, and commodity sensors and embedded
systems. However, with the proliferation of these IoT technologies and devices, there are challenges in
integrating, indexing and managing time-series data from multiple sources to optimize the storage of those
data and/or retrieve the information from them in real-time. Many researchers have addressed the data
integration issue through developing time-series data compression techniques; however, they focused mainly
on the application of integer value compression to IoT data. Moreover, existing work does not focus on
the issues of data and information retrieval without decompression. In this paper, we solve these issues by
constructing an indexing framework within a lossless compression for floating point time-series data, where
an index is based on the time-stamp from the compressed data that facilitates the search for data without
full decompression. We conduct several sets of experiments and quantify the performance of our proposed
approach. The experimental results, performed on IoT datasets, show a reduction in storage compared with
existing compression techniques. The experimental study also demonstrates the capability of time-series data
indexing and integration in real-time.

INDEX TERMS Data integration, indexing, time-series data compression, floating point compression,

decompression, IoT streaming data, window-based compression and integration.

I. INTRODUCTION

Due to the rapid advancement of big data platforms, the need
to integrate data and then improve data access from multiple
time-series data sources, such as in data analysis and decision
support systems, has grown significantly over the last few
years. However, with the unprecedented expansion of IoT
streaming data [1], efficient access to the data for a compre-
hensive and in-depth analysis has become more critical. This
is due to the nature of data being non-static and continuously
generated, which is even more challenging to access and
store. This kind of data is referred to as streaming data or time
series data, and in the context of IoT data, it is a sequence of
real numbers in time order.

It is critical to be able to react and respond to queries from
clients accurately in a timely manner by accessing time-series
data. Factors that should be considered in improving data
access are: how the data is accessed and how it is processed
in real time from multiple sources. Hence, to adopt the idea
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of quick response queries from streaming data sources, there
should be a mechanism for pre-processing streaming data
including storage efficiency and efficient indexing. A char-
acteristic of streaming data is potentially unbounded in size,
so there is a need to improve data compression in relation to
storage. Also, it is necessary to index from the compressed
time-series data without decompression, which facilitates
much better performance in queries. Hence, we develop a
framework to integrate time-series data from multiple IoT
sources by using compression and indexing techniques for
streaming data.

Data compression is a reduction in the numbers of bits
that represent the data, and it can save storage capac-
ity, speed up file transfer, and decrease costs for storage
hardware and network bandwidth. Compression techniques
were developed last century but since the expansion of
IoT data, many researchers again focused on compressing
time-series data techniques, for example, Blalock et al. with
Sprintz [1], Wegener with signal data compression [2] and
Diffenderfer et al. with ZFP [3]. However, these techniques
are merely compression approaches, which only focus on

VOLUME 8, 2020


https://orcid.org/0000-0002-1399-2585
https://orcid.org/0000-0002-2421-2214
https://orcid.org/0000-0002-6924-1772
https://orcid.org/0000-0001-8116-4733

Q.-T. Doan et al.: Integration of loT Streaming Data With Efficient Indexing and Storage Optimization

IEEE Access

saving storage capacity. In our work, we introduce an
improvement to compression, not only for storage saving
but for the ability to indexing from compressed time-series
data.

In the recent years, there has been much research on sim-
ilarity searches and the subsequent data indexing [4]-[6].
In the context of time-series data indexing, an example query
related to a similarity search can include finding past days
in which the temperature recording is similar to today’s pat-
tern. In different aspects, in our research, we propose an
indexing framework that features easy-to-find results based
on timing requirements but not based on the similarity pat-
terns. In particular, we observe that clients not only focus
on finding a trend (up or down) or a similar pattern in
time-series data in a period of time, they also expect to
obtain summarized information on such time series. The
term ‘summarized information’ that we refer in this paper is
not likely “summarizations” that proposed in [6], which are
representations of time-series data segments. Our term means
summarized outcomes extracted from a segment of data by
relevant user-defined functions. For example, with the ability
to keep tracking time-series data based on time-stamps, our
framework can summarize information such as the average,
maximum or minimum of temperatures in a certain period of
time.

A. THE CONTRIBUTIONS
Based on the above-mentioned investigations, the main con-
tributions of this work are as follows.

1) We introduce a mechanism of time-series data integra-
tion with efficient indexing and storage optimization.
Thus, at first, we discuss the research motivation of IoT
data integration including compression techniques and
indexing issues compared with existing work.

2) We propose an indexing model including a lossless
compression technique for IoT data along with the
benefits of bit-padding, bit-blocking and Huffman
coding. We adopt an existing bit-padding technique
and improve it by reducing the number of bits dur-
ing the compression process. For instance, traditional
bit-padding algorithms align bits in fixed 8-bit streams,
whereas our proposed technique does not need fixed
8-bit streams.

3) For indexing, in this work, we do not focus on con-
structing a new data structure but introduce an index
based on time-stamps which supports to access to
compressed data without full decompression. This
index utilizes the time-stamp attached during the com-
pression process. The relevant algorithms are also
discussed.

4) Through different experimental setups, we demonstrate
that our solution can reduce space during the compres-
sion process. In addition, we show that our framework
has the capability of integrating IoT time-series data
in real-time from multiple data sources, and access-
ing those data to facilitate the information retrieval,
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for example, performing queries effectively based on
time-stamps.

5) We highlight possible directions for future work that
have not been well covered in current state-of-the-
art time-series data integration and data compression
research.

B. THE ORGANIZATION OF THE PAPER

The rest of this paper is organized as follows. The related
work is discussed in Section 2. In Section 3, we propose a
new indexing framework to integrate and manage [oT stream-
ing data from multiple sources in real-time. We introduce
our compression mechanism and data indexing in Section 3.
In Section 4, we conduct several sets of experiments and
demonstrate the benefits of our proposed framework, includ-
ing the relevant algorithms and an overall discussion. Finally,
we conclude the paper in Section 5, along with several future
research directions.

Il. RELATED WORK

As previously mentioned, our research work focuses on con-
structing a model of time series data integration, and we
find a mechanism to store and access [oT efficiently. Hence,
in this section, we discuss some existing work related to data
compression, time-series data indexing and some streaming
data integration techniques.

A. DATA COMPRESSION TECHNIQUES

Time series data has a special structure, which the gaps
between the values of the two adjacent time-stamps are are
taken into account. For example, in financial time series
data, the price of WOOLWORTHS GROUP LIMITED at
time T is very close to its price at time T+ 1. This structure
can be exploited by many floating-point compression tech-
niques. These approaches are very popular when analysing
floating-point representations with three main components,
namely sign, exponent and mantissa. Wegener [2] pro-
posed a typical floating-point compression and decompres-
sion method by removing the least significant bits (LSBs)
of a component (mantissa) based on similar consecutive
floating-point values and grouping values into blocks to facil-
itate the compression. An important process for this method
is creating a function of quantization before encoding the
data. Using blocks in another way, [7] invented blocks of
49 values (d is the number of dimensions). In this work,
the lossy compression, ZFP, groups values into a block and
converts floating-point values to a fixed-point representation.
It then de-correlates the values by applying an orthogonal
block transform and encodes the ordered transform coeffi-
cients. Also, based on the binary representations of compo-
nents, [3] improved ZFP by establishing a bound which is a
well-know limitation of ZFP.

In addition, compression techniques rely on the small dif-
ference of consecutive values and make predictions for the
next values. For example, the approach in [8] takes advan-
tage of the correlation of the subsequent data and earlier
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data. Recurring difference patterns are identified and then
recorded in a hash table which supports the predictions of
the next similar patterns. It compresses values by encoding
the differences between the predicted and the true values.
Similarly, FPC [9] compresses data in sequences by predict-
ing the next value in the sequence and using hash tables as
predictors. Lindstrom and Lindstrom and Isenburg [10] also
provide a method based on coding prediction within a plug-in
scheme. However, this work performs a floating-point quan-
tization process before encoding integer data. Similar to [2],
Sprintz [1] removes LSBs to reduce the number of redundant
bits to store values. This work focuses only on compress-
ing the integer data, and it recommends the compression of
floating-point data using floating point quantization.

Our method extends time-series integer data compression
which also exploits the nature of time-series data, the similar-
ity between consecutive values, and greatly reduces storage
requirements.

B. DATA INDEXING TECHNIQUES

In terms of data indexing, SmallClient [11] improves query
execution and search performance for big datasets and min-
imises the overhead of indexing. The framework is imple-
mentable on any distributed file system. Basically, the main
part of the SmallClient consists of three processes, namely
block creation, index creation and query execution. The sys-
tems create blocks so that no records are broken and then
they use <key,value> pairs as the content of records and
the location of a data block to add in a BTree structure.
Also, based on <key,value> pairs to make a basic structure,
Elsayed et al. [12] proposed a framework to address doc-
ument similarity problems. They used MapReduce because
it has same-structure tasks which perform a computation on
a chunk of data to obtain partial results and then is aggre-
gated to obtain the last outcome. The indexing mechanism
of the framework is used as a mapper, taking <key, value>
pairs as inputs to generate intermediate ones. The reducer
produces the output based on all the values associated with
the same key. In particular, each term and its weight (the
importance of a term in a document) is associated with a
document (docid) so that the term is considered as the key,
and a tuple containing docid and term weight are values.
The reducer is responsible for summing all the scores of
the compared individuals. Likewise, Lee et al. [13] apply
indexing methods and MapReduce into the area of digital
forensics which requires big data processing. They proposed
the distributed text processing system (DTPS) for searching
which can support the identification of relevant evidence in
a trial from very large-scale data in a quick and accurate
manner. The index method used in the system is the doc-
ument indexer and MapReduce is used to manipulate the
<key,value> based on <docld, term>. Hadoop is applied to
solve problems involving massive amounts of incoming data
as its inputs. Several comments have noted that the authors
need to improve the accuracy of this in the future.

47458

For indexing work, we also investigate other indexing sur-
veys. According to Mamta [14], indexing splits data into frag-
ments so that they can be in a query, based on certain criteria.
An example of a popular indexing technique is the Cracking
Database (Selection cracking). Indexes in Hadoop include
Hadoop++-, HAIL (Hadoop Aggressive Indexing Library),
and LIAH (Lazy Indexing and Adaptivity in Hadoop). Mamta
summarises the challenges of big data from a different per-
spective. These challenges are representation, redundancy,
storage, heterogeneity and scalability; process challenges
include acquisition, alignment (ER), transforming and filter-
ing, modeling, understandable output and visualizing data;
management challenges are privacy, ethics, security and legal.
In another survey, the authors [15] identified the 6V require-
ments for big data indexing, namely volume, velocity, vari-
ety, veracity, variability and value. They categorized index-
ing techniques into three methods, namely non-Al, Al and
collaborative Al. Non-Al methods are traditional indexing
techniques (index construction and query responses). These
methods are mostly based on bitmap, hashing, B-Tree and
R-Tree. All the data/patterns in these methods are known and
implemented following rule-based techniques. Al methods
use a knowledge base to index a large number of moving
objects. The data in this case is variable, so the index needs
to be updated frequently; whereas, collaborative Al methods
improve accuracy and search efficiency by collaborative Al
(collaborative ML and knowledge representation and reason-
ing methods). For example, it can adopt multiple indexing
algorithms along with KRR to achieve a high detection rate
for the prediction of missing user preferences.

C. DATA INTEGRATION TECHNIQUES
Data integration, which addresses the issue of data dupli-
cation and data fusion, has been the focus of a lot of
research. For instance, using record linkage, the authors
in [16], [17] combine and consolidate data from different
sources. They create blocks to merge identical objects in a
big data-set. Another technique to integrate data from multi-
ple sources is schema mapping and matching [18]. Schema
matching implements a ““match” operator which is often the
first step to determine schema mappings for data integration.
In [19], the authors create a global schema and show that
it is needed to specify a mediated schema and supply the
descriptions of data sources. A source description contains
a source schema that describes the content of the source, and
a mapping between the corresponding elements of the source
schema and the mediated schema. In later work with respect
to data integration, techniques for automating the schema and
tasks as much as possible are needed to simplify and speed up
the development, maintenance and use of metadata-intensive
applications. As such, ontology matching was developed as
powerful schema matching prototypes and applied to a large
variety of match problems [20]-[22].

However, these traditional blocking techniques are not
adequate to deal with the challenges and issues of big
data in general and streaming data integration in particular.
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Regarding ontology-based research, some work focused on
streaming data integration [23]-[25]. From this perspective,
the authors proposed an approach to OBDM (Ontology-
Based Data Management) in order to provide a shared or uni-
fied vision to process/integrate data from different sources.
This ontology-based shared vision works as a global schema
for all data sources. In a different way, Pareek et al. [26]
introduced a streaming analytics platform (simply, the Striim
engine) for real-time data integration with respect to struc-
tured data from multiple sources. The Striim engine extracts
data from sources to transform into SQL-based data so that
it can integrate time-series data with different structured
data [27]. Nevertheless, both ontology-based approaches and
the Striim engine do not focus on dealing with the timing
conflict for time-series data, which is one of the critical issues
while integrating data from multiple sources. In this paper,
we extend our previous work [28] to integrate [oT streaming
data from multiple sources in real-time and deal with the time
alignment. In addition, to the best of our knowledge, there is
no existing streaming data integration work which considers
the issues of information retrieval and data storage, which are
our contributions in this paper. We propose a novel technique
for time-series data compression to optimize storage, and we
introduce a timestamp-based index for compressed data to
facilitate the later work of information retrieval, and querying
compressed data without full decompression.

Ill. PROPOSED DYNAMIC INDEXING FRAMEWORK

In this section, we introduce our dynamic indexing frame-
work for streaming data from multiple IoT sources, which
comprises two main contributions, time-series data compres-
sion and time-stamp indexing. In the framework, we also
attach the process of time alignment which was introduced
in our previous work [28].

Figure 1 illustrates our compression model to store data
with the ability of data searching based on users’ queries.
In particular, the scope of queries, as mentioned previously,
are timestamp-based requirements. Their responses can be

—
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FIGURE 1. Indexing model for loT Data.
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searched from an index of the compressed data in the storage.
Our model comprises the following steps:

o The model can extract data from multiple sources
continuously through our windowing technique which
defines every batch of processed data with a size which
equals a window length (a period). This step utilizes our
previous work on window extractions [28].

o Asmost IoT data are floating points, we compress them
using our floating-point compression technique, which
is an improvement on the integer compression tech-
nique (Sprintz). The trace of data is stored in our times-
tamp index. Our data structure is <key,value> pairs,
whereas keys are meta-data and store all attributes of
eachrecords. This step is implemented in the algorithm 1
in subsection 3.3.

o The floating-point compressed data can be compressed
again by applying a lossless compression (e.g. Huff-
man compression [29], run-length encoding [30]), which
improves the compression ratio to enhance our storage
capability. The results of this step are presented in our
experiment (indicate subsection).

o The timestamps index are refined so that it is easy to
search the index based on the timestamps and users’
queries.

A. THE COMPRESSION MECHANISM FOR
FLOATING-POINT DATA

The compression process consists of six steps. In this section,
we describe these steps through examples, in which each
window has 7 records and each record has 3 attributes. When
processing a window, we also maintain a reference record,
which is the last record of the previous window. An exam-
ple of a window’s data and a reference record is shown in
Table A - Figure 3.

Delta Encoding
Splitting
Zigzag Encoding

Aggregating

Padding Aggregate
Record

FIGURE 2. Real number bitblocking technique overview.
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N . MA- . . MA- . .
e | ey | inons | Zotoe e nows | mons | T T
Bearing Bearing 01/08/2016 0
01/08/2016 0:00 2152057 | 44.3325 71 Delta 01/08/2016 0:00 0 0 Split 0:00 0000
01/08/2016 0:01 215.2767 | 44.30975 71 0.071| -0.02275 0 0071
01/08/2016 0:02 215.1366 | 44.30571 71 -0.1401 | -0.00404 0 0 -1401
01/08/2016 0:03 215.2379 44.3438 71 0.1013 0.03809 0 0 1013
01/08/2016 0:04 215.2708 | 44.33261 71 0.0329 -0.01119 0 0 0329
01/08/2016 0:05 215.333 | 44.32332 71 0.0622 -0.00929 0 0 0622
01/08/20160:06 | 215.3248 |  44.3077 71 -0.0082 | -0.01562 0 0 -0082
Table A Table B Table C
FIGURE 3. Real number bitblocking - Phase 1.

date Air Compr Lub Oil 1 date Air Compr Lub Oil 1 date Air Compr Lub Oil 1
Partl Part2 Partl Part2 Count Partl Part2

0 0000 0 0 significant 00000000 | 0000000000000000

0 0071 Zigzag 0 1420 bits 00000000 | 0000010110001100

0 -1401 0 2799 ,:{> 00000000 | 0000101011101111

0 1013 m— 0 2026 00000000 | 0000011111101010

0 0329 0 758 00000000 | 0000001011110110

0 0622 0 1244 00000000 | 0000010011011100

0 -0082 0 163 00000000 | 0000000010100011

0 bits 12 bits
Table D Table E Table F

FIGURE 4. Real number bitblocking - Phase 2.

STEP 1: DELTA ENCODING
In this step, for each record in the window, we compute
the difference between the reference record’s attributes. The
result is shown in Table B - Figure 3.

It is obvious that the delta operation is reversible. That
is, given the full data in Table B, we can retrieve Table A
in Figure 3.

STEP 2: SPLITTING
In this step, instead of working with real numbers, we do the
following.

1) We split each entry value into two parts: the whole
number part and the fractional part.

2) If an entry is negative, we make the fractional part
negative.

3) We store both parts as integers. And because, we store
the second part as an integer, we also maintain a signif-
icance factor for its column.

For example, the value —1.0082 is split into 1 (the whole
number part) and -0082 (the fractional part), and the frac-
tional part is stored as 82 with the significance factor 4 for
its column. The three ‘components’ allows us to retrieve the
original value as —(1 + 82 x 10™%).

Applying this operation to Table B, we get the result shown
in Table C - Figure 3. As shown above, this steps is reversible.

STEP 3: ZIGZAG ENCODING

In Table D - Figure 4, some of the entries are positive and
some negative. It would be convenient to work with positive
numbers only. The zigzag operation allows us to do that. The
calculation is as follows.
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1) If an entry is positive, we double it.
2) If an entry is negative, we double absolute value and
subtract 1 from the result.
Applying this operation to the data in Table D, we get the
result shown in Table E - Figure 4. It is obvious that this
Zigzag step is reversible as well.

STEP 4: BIT CONVERSION
Now, we convert each integer value in Table E into a 16-bit
binary representation. And we count the maximum number
of significant bits for each column (not to be confused with
the column’s significant factor in Step 2).

The result is shown in Table F. Note that this step is
reversible.

STEP 5: AGGREGATING
In this step, we take the data in Table F and put them in one
record, made up of a series of bits. This aggregate record
contains the data of reference record and all the records in
a window.
To describe the construction of this aggregate record, let us
take the case where we have.
1) 7 records in the window.
2) Each record has three attributes X, Y and Z.
3) Each field (being a real number) is split into the whole
number and the fraction part, denoted by W (part 1) and
F (part 2).
The aggregate record has two parts: the header and the data.
The header has the follows.
1) Number of significant bits for <attribute X, part W>
(which is 0 bits or 000 in the table in Figure 5)
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date Air Compr Lub Oil 1 Air Compr Lub Oil 2 MA-2701 DE Bearing
Partl Part2 Partl Part2 Partl Part2

00000000 | 0000000000000000 | 00000000 | 0000000000000000 | 00000000 | 0000000000000000

00000000 | 0000010110001100 | 00000000 | 0000000111000111 | 00000000 | 0000000000000000

00000000 | 0000101011101111 | 00000000 | 0000000001001111 | 00000000 | 0000000000000000

00000000 | 0000011111101010 | 00000000 | 0000001011111010 | 00000000 | 0000000000000000

00000000 | 0000001011110110 | 00000000 | 0000000011011111 | 00000000 | 0000000000000000

00000000 | 0000010011011100 | 00000000 | 0000000000000110 | 00000000 | 0000000000000000

00000000 | 0000000010100011 | 00000000 | 0000000100110111 | 00000000 | 0000000000000000

‘ =000 =1100 =000 =1010 =000 =000 ‘
[ HEADER (Part1s + Part2s) [ Real Payload [ Align |
| 000 [ 000 [ 000 [ 1100 ] 1010 [ 0000 | 000000000000 | 010110001100 [ 101011101111 0000000110 [ 0100110111 | <8b |

FIGURE 5. Real Number BitBlocking - Phase 3.

HEADER (Part1s + Part2s) Align Real Payload (Byte-Algned)
000 [ 000 | 000 [ 1100 | 1010 [ 0000 [3*8=21=3b | 000000000000 [4b | 010110001100 [4b | 101011101111 [4b] .. [ 0000000110 [4b | 0100110111 [6b
FIGURE 6. An example of traditional bit padding.
TimeStamp HEADER (Part1s + Part2s) Real Payload Align
125D03A0AC40 | 000 | 000 [ 000 | 1100 | 1010 | 0000 | 000000000000 [ 010110001100 | 101011101111 | | 0000000110 | 0100110111 [ <=8b

FIGURE 7. Time-stamp attachment.

2) Number of significant bits for <attribute Y, part W>
(which is 000 in the table in Figure 5)

3) Number of significant bits for <attribute Z, part W>
(which is 000 in the table in Figure 5)

4) Number of significant bits for <attribute X, part F>
(which is 12 bits or 1100 in the table in Figure 5)

5) Number of significant bits for <attribute Y, part F>
(which is 1010 in the table in Figure 5)

6) Number of significant bits for <attribute Z, part F>
(which is 0000 in the table in Figure 5)

As for the data segment (Real Payload), the contents
consists of the data for record 1, record 2, ...record 7.
For record 1, the data is arranged in the following order
(logically).

1) <record 1, attribute X, part W>

2) <record 1, attribute Y, part W>

3) <record 1, attribute Z, part W>

4) <record 1, attribute X, part F>

5) <record 1, attribute Y, part F>

6) <record 1, attribute Z, part F>

Similarly, the above six logical sequences will be same for
record 2 to record 7.

To save space, however, any part with O significant bits (as
we can tell from the header) can and will be omitted from the
aggregate record, without loss of information. An example of
an aggregate record, to its structure, is presented in the record
under the table in Figure 5. Note that this aggregation step is
reversible. From the aggregate record, we can retrieve data in
the table in Figure 5.
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STEP 6: PADDING AGGREGATE RECORD

We need to store the aggregate record as a sequence of bytes.
But the last byte may only partially filled, i.e., some bits are
not part of the actual data. We will refer to this byte as the last
data byte.

Figure 6 is an example of aligning bits in a traditional
way. In this case, bytes are aligned by adding bits whenever
a byte is created without adding more values. This leads to
a lot of redundant bits and takes up storage space. In our
improvement, as we manage data in window, we control and
know the number of bits in a window. Hence, we develop a
method for a byte-align mechanism by adding bits only at the
end of each window. To take this into account the ““partially
filled” possibility, we add one more byte to the aggregate
record to indicate how many bits in the last data byte are
part of the data. We will refer to this additional record as the
padding byte.

A value 1 in the padding byte means that the first bit of
the last data byte is part of the data, a value of 2 means the
first two bits are part of the data, etc. A value of 0 means
that there is no partially-filled record, and all the bits of the
last data byte are part of the data. An example of aggregate
record, with partially filled data, is shown in Figure 7. This is
the actual compressed record that we are going to store.

Note that this padding operation is clearly reversible in the
sense that from a padded aggregate record, we can retrieve the
data, and we do not need to reconstruct the record of Step 5:
Aggregating.

As acritical overall feature, because each step is reversible,
the whole compression process is reversible, i.e., we can
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decode final aggregate record of Step 6 to retrieve the original
data of the window in Figure 3.

B. AN INDEXING TECHNIQUE BASED ON TIME-STAMPS
In addition to compression, the time-stamp index is another
main contribution of our model. Assuming a given index
structure, we need to denote each entry of the index by a
time-stamp. Hence, in this subsection, we define an entry of
the index as a time-stamp and find a mechanism to attach a
time-stamp to the window-bit blocks. In our model, the key
for a window is a pair of time-stamps and window size. As a
result, it is trivial to extract the time-stamp for each window.
In order to attach it to the block, we also have to transfer the
DateTime format to the bit blocks. To save storage, we trans-
fer them to a hexadecimal and fix the number of first bytes to
store these time-stamps in each block. Figure 7 demonstrates
an example time stamp attachment.

For example, we normalize the time-stamps into the format
’YYYYMMDDhhmmss’ which can be parsed into a long
variable. We then convert them into a binary or a hexadecimal.
Notice that, the attachment of time-stamp is only performed
at the first record of each block which is the encoding of a
window.

C. COMPRESSION AND INDEXING ALGORITHMS

Algorithm 1 is used to encode a batch of data into a real num-
ber bit block. This algorithm is enhanced from Sprintz (time
series compression for the IoT) which is mainly applied for
compressing multivariate integer time series. Our improve-
ment can be used for real-industry data, and floating-point,
and it can ignore the floating-point quantization process sim-
ilar to other floating-point compression techniques. In par-
ticular, the algorithm takes inputs including a set of data
(a window), the set of keys or attributes as users’ require-
ments, and a referenced record which is the last record of
the previous window. The referenced record supports the
delta encoding of the first record of the data-set/window.
First, we identify the first parts and the second parts of the
floating point values for each attribute after delta encoding
(see phase 1 - Figure 3). Therefore, we need two-dimension
arrays to store these values. The first dimension is the index
of the record, and the second is the index of the attributes or
keys. This work is presented in the loop from line 2 to line 19.
In this loop, we first delta-encode (line 10). We then split the
results into two integer parts (in front of and after the dot).
Each part is transferred into binary; and the sign is moved
to the second part if the first part has a zero value. Again,
we apply delta encoding for the integer parts and then zigzag
encoding for all the values. An example for this implemen-
tation is presented in Figure 4. The BinaryComponents() in
line 12 performs all of these operations; and it transfers the
result to the components array with a size of two. The first
element is converted into an 8-bits representation to become
a value of the first part, and the second element is converted
into a 16-bits representation which is the value of the second
part. The loop from line 20 to line 30 is used to identify
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Algorithm 1 Window-Bit-Block Compression

Input: window, setOfKeys, referencedRecord
Output: integratedWindows

1 Let firstPart be a two-dimension array;

2 Let secondPart be a two-dimension array;

3 for i = 1,...,window.getRecords().size() do

4 keyIndex = 0;

5 refRecord = referencedRecord;
6 if i>7 then
7 refRecord = window.getRecords().get(i—1);
8 end
9 for each key in setOfKeys do
10 valueF = r.getValue(key) -
refRecord.getValue(key);
11 Let components be an array with the size 2;
12 components = BinaryComponents(ValueF);
13 // 8bits
14 firstPart[keyIndex][i] =

BitsRepresentation(components[0], 8);
15 // 16bits

16 secondPart[keyIndex][i] =
BitsRepresentation(components[1], 16);

17 keyIndex ++ ;

18 end

19 end

20 fori = I,... ,keylndex do

21 significant] =
NumberOfSignificantBits(firstPart[i]);

22 significant2 =

NumberOfSignificantBits(secondPart[i]);

23 //3bits + 4bits per a header of a value

24 hearderl 4= BitsRepresentation(significantl,3);
25 hearder2 4= BitsRepresentation(significant2,4);
26 for j = 1,...,w.getRecords().size() do

27 payLoadl 4+=
BitsRepresentation(firstPart[i][j],significant1);
28 payLoad2 += BitsRepresenta-

tion(secondPart[i][j],significant2);

29 end

30 end

31 return BitPadding(headerl 4 hearder2 + payLoadl +
payLoad?2)

all components for the bit block of a window including the
headers and the payloads (real values) of the two integer parts.
Finally, we block all the parts together by using a function
BitPadding() in line 31. An illustration for these steps is
shown in Figure 5.

Algorithm 2 is our processing step (Index Generation) after
the compression step (Figure 1). First, we extract data in com-
pression version from each source. The data is stored in the
array compressedData (line 1 to line 4). Then, a granularity
is identified from all sources in line 6. Lastly, we obtain data
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Algorithm 2 Time-Series Indexing Generation

Input: dataSources, timelndex,startingTime
Output: time-seriesIndex-base
1 Let compressedData be an array with the size equals
number or sources
fori=1,...,dataSources.size() do
‘ compressedData[i] < — Window-Bit-Block();
end
/l TimeAlignment:
granularity = getMaxSize(compressedData);
for i = 1,...,dataSources.size() do
dataEntry < —
compressdata[i].getData(startingTime, granularity) ;
9 add dataEntry to timelndex ;
10 startingTime + = granularity;
11 end

- IEN B L7 I NS 8

with a period of granularity and add them as entries to the
index (Line 7 to line 11).

IV. EXPERIMENT RESULTS

In our experiment, we use the same real streaming dataset
as the experiment in our previous work [28]. This dataset is
from a distributed manufacturing company, which is designed
with many machines along with IoT sensors. Table 1 contains
streaming data from two IoT sources, namely small dataset
and big dataset within second and minute-based time-series
data. In particular, the small dataset contains IoT Source 1 of
having 368,199 records of 94 MB in size and IoT Source 2
of having 2592,200 records of 62.8 MB; whereas, the big
dataset contains IoT Source 3 and IoT Source 4 of hav-
ing 1,472,800 records and 6,480,000 records with the sizes
of 376 MB and 1.5 GB, respectively. We perform our exper-
iment on both the small and big datasets.

TABLE 1. Set of streaming data.

IoT IoT IoT IoT
Details Source 1 Source 2 Source 3 Source 4
. 1024

Duration 256 days 3 days days 75 days
No of 1 368,199 || 259200 || 1.472.800 || 6.480.000
Records

Frequency record/min || record/sec || record/min|| record/sec
Size 94 MB 62.8 MB 376 MB 1.5 GB

A. STORAGE SPACE REDUCTION

Table 2 illustrates the compression ratios and storage sav-
ing abilities of our compression techniques within the time-
stamp. The formulas for the compression ratio and storage
saving are defined as follows.

. . sizeUsingCompression
compressionRatio = — - - (1)
sizeWithoutCompression

sizeUsingCompression

storageSaving 2)

sizeWithoutCompression
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TABLE 2. Compression ratio using different techniques.

. Storage . Storage
Compression Saving Compression Saving
Ratio (IoT (IoT Ratio (IoT (IoT
Technique sources 1 & sources 3 &
2) sources 1) sources
1&2) 3&4)
SprintZ [1] 3.68% 96.32% 3.72% 96.28%
Real
number 27.24% 72.76% 27.5% 72.5%
bit-blocks
Real
number
bit-blocks 4.94% 95.06% 5.05% 04.95%
& Byte
transfer
Real
Eﬁﬁ?ﬁiks 2.12% 97.88% || 2.15% 97.85%
& Huffman

In formulas (1) and (2), sizeUsingCompression is the size
of the data storage needed when we apply our compression
technique; sizeWithoutCompression is the size of the data
storage needed when we implement the model of ISDI (IoT
Streaming Data Integration) from our previous work [28]
with the same data. In particular, in ISDI, we extract data
in windows (blocks) and then integrate data from sources
by using a user-defined function attached in the integrator
(in Figure 8), for example, calculating the average of tem-
peratures in each window. The storage in this case includes
semantic information. In this experiment, we test data on one
source (the data in IoT source 1 in Table 1) with different
compression levels to investigate the compressionRatio and
the storagSaving.

Table 2 provides details on four compression techniques.
Real number bit blocks technique, which is our contribution
in this paper, is illustrated in the figure 2; byte transfer is
the technique that transfers all bits into bytes, and Huffman
coding is an algorithm for performing data compression [31].
These techniques are different levels of our compression.
In order to apply Huffinan coding, we transfer bits presen-
tation into symbols (or characters), so Byte transfer is always
performed before applying Huffman coding. Last but not
least, we compare them with an existing time series com-
pression technique, SprintZ [1]. With small dataset, in the
first level of our technique which applies bit blocks only,
the compression ratio is 27.24% and the storage saving is
72.76%. However, the compression ratio is much better when
we transfer all the bits of blocks into bytes, this being only
4.94%. This compression ratio again reduces when Huffman
coding is applied, being half the previous level at only 2.12%,
and the storage saving is 97.88% which is the best result.
In comparison with SprintZ [1], our comprehensive technique
gives a better storage saving, 96.32% vs 97.88%. Notice that,
with the big dataset, our results are similar with those with
small dataset, for example, 2.15% vs 2.12% of compression
ratio. This shown that our system is scalable. It is because we
process data in partitions and the compression technique is
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ISDI Our Compression

Source 1

Windows

Windows

Integrator

Semantics/information:

A2 The avg of w1: 23.4

“ The avg of w2: 25

The avg of w256: 22.7

-

Computed from dData:

The avg of w1: 23.4
The avg of w2: 25

De-compress -
> dData

The avg of w256: 22.7

FIGURE 8. Our ISDI [28] vs our compression.

applied for each window into those partitions. The outcome
will be the same with a data partition or multiple partitions.
For a different observation, the same results are presented in
a bar chart in Figure 9.

Real number bit-blocks & Huffman |_
Real number bit-blocks & Byte I_

transfer

Real number bit-blocks
sprinez (1] |

0 20 40 60 80 100 120

B Compression ratio M Storage saving

FIGURE 9. Compression ratio using different techniques with big dataset.

Figure 8 illustrates the process of extracting summa-
rized information from the ISDI and this current work
to obtain data with sizeWithoutCompression (uncompressed
data - uData) and sizeUsingCompression (compressed data -
cData), respectively. As previously discussed, uData contains
semantic information which we set as the average of the
temperatures for each window in the experiment. For the
compression version, we compress data on each window and
combine them into cData. We then uncompress the cData and
calculate the average of temperature for each window. The
two results are exactly the same, which means the semantic
information will not be lost when applying our compression.
Hence, we can conclude that our compression technique is
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a lossless compression and offers a very good compression
ratio.

B. TIME-SERIES DATA PROCESSING CAPABILITY

In this subsection, we measure the capability of on-the-
fly processing time-series data through using our model
(Figure 10). Our model includes SourceManagers, Compres-
sion and Indexing. While SourceManagers or source con-
trollers convert IoT data to different structures (including
semi-structured and non-structured data) into key-value pairs
(<k,v>) and send these data to the distributed streaming plat-
form Apache Kafka, our model of compression and index-
ing processes receives data to facilitate a quick response to
clients’ queries as previously discussed. In particular, we set a
streaming data processing pipeline which transfers data from
IoT sources to the model. We compare the time to transfer
data (each window) from a source to our model (Ty,) versus
the processing time of our model including compression and
building the index (Tp); whereas, Ty is measured by the time

PRODUCER COMSUMER
Compression
Data Data
‘[ | <k, v> <k, v>
‘ KAFKA
SourceManagers

FIGURE 10. On-the-fly processing for time-series indexing.
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it takes to convert the data into <key, value> pairs and transfer
it through the distributed platform Apache Kafka, and T,
is the elapsed time for the processes of compressing and
building the data index. If T}, is less than Ty, we confirm that
our model satisfies the condition of processing time-series
data on the fly.

Figure 11 shows processing time Ty, and T, with different
volumes of data. Typically, the time to process both steps
increases linearly if the volume of data grows up as well.
In addition, the figure shows that T}, is less than Ty, if the
data volume is less than 25200 records, which means that our
model can process data completely before other data arrives
from sources through Kafka. In contrast, if the data volume
is too big (>25200 records), T}, is greater than Ty, so the
arriving data must wait for the framework to process its job.
However, in streaming processing data, the volume of on-the-
fly processed data is normally small enough to run through a
streaming pipeline. To conclude, in good conditions, when
streaming data are processed as usual, our framework can
definitely be deployed in a streaming pipeline processing.

e

= TW

Runing Time (seconds)

3600 7200 10800 14400 18000 21600 25200 28800 32400 36000
—=@—Tw 1.61 4.67 582 6.81 7.87 895 1061 11.21 12.85 13.34
Tp 021 0826 1.78 3.45 535 7.67 10.23 13.47 1825 21.04

Data Volume/Window Size (records)

FIGURE 11. On-the-fly Processing Time based on the volume of data from
one source.

In practical, Ty, is determined by the slowest rate of
in-coming data (for example, 1 record per hour), and the
critical volume (from 3600 to under 25200 in the figure 11)
for a window is determined by the fastest rate (for example,
1 record per second) and the slowest rate.

C. TIME-SERIES DATA INTEGRATION THROUGH TIMING
ALIGNMENTS AND DE-DUPLICATION
In this subsection, we conduct the same experiment as
described in the previous subsection but we perform it on two
sources in our recommended algorithms, time alignment and
de-duplication.

Figure 12 illustrates our experiment for multiple sources.

As discussed in the previous section, windows are
extracted from each source. The volume of data which is pro-
cessed on-the-fly is the size of the window (from one source).
The results are shown in Figure 11. We observe that their tim-
ing performance depends much on the size of the window or
the number of records in a window. In addition, there are dif-
ferences in the data volume of each window from the sources,
for example, there are 60 records in a window with a 1-hour
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SourceManagers
e Time Alignment
e De-duplication

Q0| | [
» LU  AQuaing/ |
D D Distributed

Streaming Platform

Our Model

Compression

FIGURE 12. Time-series compression and index from multiple sources.

size from source 1, but there are 3600 records from source 2
with the same size (refer to frequency in Table 1). Thus,
when applying timing alignment (Algorithm 2), we define
the volume granularity of the on-the-fly processed data as
the maximum number of records from different windows of
multiple sources. In other words, this granularity depends on
the source having the minimum base (to calculate the number
of records) and the source having the maximum base (to
decide the window size). For example, with source 1 (second-
based, data is generated every second) and with source 2
(minute-based) in the framework, the granularity is 60 records
corresponding to 1 minute (window size). Hence, in this
experiment, we discuss different scenarios, which effect the
volume granularity. We refer to them as an ‘extreme case’ and
a ‘realistic case’.

In the ‘extreme case’, source E; is milisecond-based and
source E» is 24-hour-based (day-based). This means the gran-
ularity for on-the-fly processed data is 1000*60*60*24 =
86,400,000 records, which violates the framework’s perfor-
mance as analysed in the previous subsection. We cannot
generate a result in this case.

In the ‘realistic case’, source C; is second-based and
source C, is minute-based (day-based) (the same dataset
in Table 1). This means the granularity for on-the-fly pro-
cessed data is 60 records. The number is too small, so we can
define the window size as bigger (1 hour or 3600 records).
In this case, the volume of the on-the-fly processed data is
3600 (from source 1) + 60 (from source 2) = 3660 records.
This is a very good condition when deploying our model in
a streaming pipeline. The performance in this case is shown
in Figure 13.

25
20
15

L

10

Runing Time (seconds)

Tp

3660 7320 10980 14640 18300 21960 25620 29280 32940 36600
——Tw 1.61 4.7 5.82 6.83 8 9.05 10.82 1146 13.05 13.94
Tp 021 0.83 1.78 35 5.5 8.05 10.5 13.8 19.25  22.02

Data Volume/Window Size (records)

FIGURE 13. On-the-fly processing time based on the volume of data from
two sources (S;) and S,.
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D. OVERALL DISCUSSION

During the implementation of the proposed compression
technique, we attach time-stamps so that when constructing
an index, we can utilize these time-stamps to obtain data with-
out decompression. Hence, with this indexing framework,
we can reduce the storage of time-series data and retrieve the
data in real-time. The experiment results in Table 2 demon-
strate that our proposed indexing technique outperforms the
other two techniques by saving 97.88% of storage space
compared with the other two techniques, which save 72.76%
and 95.06% storage space, respectively.

The result for the ‘realistic case’ (Figure 13) shows that our
model can be scalable when integrating data from different
sources. This can also be inferred from the scenario and what
we have analyzed in subsection 4.2. The performance and
the standard threshold (the maximum volume of records that
model can process on-fly) are determined by the slowest rate
and the fastest rate of incoming data. Hence, in this case,
the fastest rate is 3,600 records per hour (second-based), so if
the slowest rate is hour-based, it will be a ‘realistic case’; and
if the slowest rate is 24-hour-based, it will be an ‘extreme
case’. In addition, in our implementation to integrate data
from the sources (Figure 14), we use temporary buffers to
store the data from different sources and then merge and
combine them into a mediated buffer before transferring them
into the model. In this way, in the ‘realistic case’, because
there are not many differences between the volume of records
(3,600) in the case of the single source with the fastest rate and
the volume of records (3,660) in the case of the integrated
ones, the performance of the single-source case with the
fastest rate and the performance of the multiple-source case
is quite similar (Figure 11 vs Figure 13).

Window buffer S1

3600 records

Window midiated buffer

3660 records
Window buffer 2

FIGURE 14. The implementation of integrating windows from 2 sources
(second-based and minute-based).

S2
(minute-
based)
N~

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed a new indexing framework for
IoT streaming data. We introduced a time-series data com-
pression technique in which an index is formed according
to the time-stamps on the compressed data. Our proposed
compression technique is a lossless compression technique
for floating point time-series data, which has the advan-
tage of binary-bit representation, bit-padding and bit-block.
We improved the existing technique of bit-padding, and opti-
mized it by adding less bits to get multiples of 8-bit for
bit-block creation.
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We conducted several sets of experiment with single IoT
data source and demonstrated the capability of our storage
reduction. Using our proposed indexing technique (based on
the real number of bit blocks and Huffman coding), we opti-
mise 97.88% of the storage space, whereas earlier techniques
can only save 95.06% storage space at best.

We built a streaming pipeline to demonstrate the applica-
bility of our framework with multiple IoT sources in real-
time. The results of the experimental setup using the Apache
Kafka streaming environment show that our framework can
be effectively used in practice. Overall, our new indexing
framework can be applied to integrate different time-series
data from streaming data sources.

In our future work, we will optimize our indexing tech-
nique by experimenting with different sizes and speeds of
IoT streaming data, as well as focusing on the query inputs
and outputs. We can also improve our proposed framework
by dealing with timing alignments and de-duplication issues
while IoT streaming data come from multiple sources. Last
but not least, we will explore our research in big data to adapt
real industrial areas.
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