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ABSTRACT Road networks are fundamental parts of intelligent transportation and smart cities. With the
emergence of crowdsourcing geographic data, road mapping approaches by using crowdsourcing trajectories
have been developed. Existing roadmap inference algorithms from trajectories can extract relatively accurate
road networks, however, these algorithms are not robust to different trajectory datasets and the parameter
optimization task is tedious and time-consuming. Therefore, we propose an adaptive approach based on
trajectory density. The proposed approach contains two stages. Firstly, the density distribution for each
trajectory is adaptively estimated by the Gaussian fitting approach and the density peak points are extracted
to construct road centerlines corresponding to each trajectory. Secondly, these extracted road centerlines
are incrementally merged by the ‘‘matching-refinement-merging’’ process to generate a road network.
We compare the proposed approach against four representative methods through trajectory datasets that
are completely different in sampling frequency, trajectory density, road density, and noise. The results show
that the proposed approach provides better accuracy in terms of precision and integrity and does not require
additional parameter adjustment.

INDEX TERMS GPS trajectories, map inference, road networks, spatial data.

I. INTRODUCTION
Road networks are a fundamental part of the National Spatial
Data Infrastructure (NSDI). It is widely used in traffic per-
ception [1]–[3], navigation system [4], [5], vehicle behavior
analysis [6], [7], and autonomous driving [8], [9]. With the
rapid development of urban traffic, the coverage of road net-
works is getting wider and wider and the structure of road net-
works is changing frequently. Existing road maps no longer
meet the high requirements for the accuracy, timeliness, and
completeness of road data in the construction of intelligent
transportation and smart cities. Therefore, constructing road
network data with high requirements is a major challenge for
map production departments.

The producing and updating mode of a road map is still
dominated by professional surveying andmapping. Road data
of the surveying and mapping method is collected through
mobile surveying vehicles, remote sensing satellites, and
unmanned aerial vehicles. Then professionals identify the
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shape of roads, extract the attribute information and construct
the topological structure of a road network. The participation
of professionals ensures sufficient quality of the generated
road network. However, there are also problems such as dif-
ficulty in obtaining road network data, low update efficiency,
and high production costs.

With the wide application of positioning systems and
Internet technology in decades, crowdsourcing geographic
data have been produced in daily life. These geographic
data have the advantages of large data volume, timeliness,
wide-coverage, and low cost, which complement the tra-
ditional professional surveying and mapping data. Based
on these data, volunteered mapping has been developed.
OpenStreetMap is the most extensive and effective volun-
teered mapping project [10]. It uses vehicle trajectory data,
remote sensing images and out-of-copyright maps as refer-
ences, produces and updates maps through manual editing by
volunteers. However, the non-professional nature of volun-
teers has resulted in the production of road maps inevitably
containing many errors, such as misaligned roads, wrong
road names, outdated roads and so on. Therefore, additional
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quality checks are needed to ensure the reliability of the
map. Crowdsourcing trajectories not only contain dynamic
information of vehicle behavior but also potentially contain
road network information. Therefore, a road map can also be
automatically extracted by using crowdsourcing trajectories.
The economical, timeliness and automated features of this
method have attracted scholars to carry out many studies.

Robustness and adaptability are important indicators to
measure the pros and cons of algorithms [11], [12]. Existing
map inference algorithms with trajectories have been able to
construct relatively complete road networks after researching
for a decade. However, these algorithms are not adaptive
for different trajectory datasets [13], [14]. Firstly, algorithm
parameters need to be adjusted manually to achieve opti-
mal results according to the trajectory density distribution,
road width, positioning errors and other factors of different
datasets. Improper parameter selection usually has a large
impact on the final results. Secondly, trajectory distribution,
road distribution, and positioning errors in the same dataset
are also uneven. To ensure higher extraction precision, many
algorithms directly discard the lower density trajectories as
noise, thereby losing the integrity of the road network. On the
other hand, although some algorithms can extract a complete
road network, they are more sensitive to trajectory noise.
The spatial heterogeneity of trajectories makes it difficult to
extract road networks accurately and completely. Therefore,
robustness, effectiveness, and flexibility are the main limita-
tions of existing map inference algorithms. How to make full
use of GPS trajectories with spatial heterogeneity to develop a
more powerful and flexible road network generation method
is still necessary.

In this paper, we propose a density-based approach to infer-
ence road network adaptively. Firstly, we assume that GPS
trajectories on the same road follow a Gaussian distribution.
Therefore, we can use local density values around each tra-
jectory sample to fit the trajectory distribution on each road.
Then peak points of the fitted Gaussian distribution are used
to estimate the position of road centerlines corresponding to
each trajectory. Finally, the estimated road centerlines are
incrementally merged to construct a road network. The rest of
the paper is organized as follows. In the next section, related
studies will be introduced. Section 3 presents the details of the
proposed method. In Section 4, the experimental results and
comparative analysis are described. Finally, the conclusion
and future work are given in Section 5.

II. RELATED WORK
The methods for automatically extracting road networks with
crowdsourced GPS trajectories can be classified as four cat-
egories: clustering-based, image-based, intersection linking
and trajectory incremental merging [15], [16].

The clustering-based method was first proposed by
Edelkamp and Schrödl [17]. In their method, K-means clus-
tering is first performed according to the position of tra-
jectory samples. Each cluster center can be regarded as a
node of roads and a complete road network is constructed

by connecting the nodes. Since then, Zhu et al. proposed
a clustering method for low-frequency trajectories based on
line segments [18]. Compared with trajectory samples, the
trajectory segments contain more features such as position,
direction, and length. It can solve the problem of far distance
between adjacent low-frequency trajectory samples. Dørum
further proposed a direction-constrained clustering method
based on a grid. It uses the directional characteristics of
trajectory samples to generate a two-way road network [19].
Stanojevic et al. combined K-means clustering with network
comparison methods and proposed two different road net-
work extraction methods, offline and online [20].

The image-based method converts trajectory data into an
image and uses image processing technologies to extract a
road network. Davies et al. used kernel density estimation
to generate a gray-scale image of the roads. Then they used
image smoothing, binarization, and contour tracking method
to extract road contours and produced Voronoi graph of
points to find the centerlines of these road contours [21].
Considering that it is difficult to determine the threshold
of image binarization, Biagioni and Eriksson proposed a
gray-scale skeletonization approach to find road centerlines
and eliminated redundant lines through density-aware map
matching [22].Wang et al. introduced theMorse theory to the
extraction of road centerlines. Their method achieved good
results in large-scale datasets [23].

In urban road networks, intersections have obvious turn-
ing characteristics. Therefore, Fathi and Krumm trained a
circular descriptor to extract intersections, and then used
trajectory segments connecting the intersections to generate
road networks [24]. Karagiorgou and Pfoser further proposed
an unsupervised intersection extraction method, which iden-
tified and clustered trajectory samples at intersections by
the direction and speed of samples [25]. After that, they
improved the accuracy of road map inference by layering
trajectories according to the speed [26]. Wang et al. clus-
tered trajectories by physical attraction model and extracted
intersections by hotspot analysis. A routable road map was
finally generated by connecting intersections [27]. Given the
difficulty in extracting complex intersections, Deng et al. [28]
and Huang et al. [29] used trajectory segments and turning
angles to extract complex intersections from low-frequency
trajectories, respectively.

The trajectory incremental merging approach assumes that
there is a blank initial road map, and then uses a map match-
ing method to merge trajectories with the road map one by
one. After all the trajectories are processed, a complete road
network can be generated [30]. Aiming at the problem of GPS
error, Cao andKrummproposed the physical attractionmodel
to cluster trajectories to reduce errors [31]. Tang et al. used
Delaunay triangulation to extract road network in a weighted
mergingmanner, which further improved the accuracy of road
network generation [32]. He et al. proposed a trajectory flow
tracking approach to generate high precision road network
under complex road scenes such as overpasses and parallel
sections [33].
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The above methods can effectively extract the road net-
works from trajectory datasets. However, the clustering-
based and the image-based methods ignored the
connectivity between observations in the same trajectory. The
intersection linking method needs to extract accurate location
and coverage of intersections. However, how to ensure the
extraction accuracy in the face of complex scenarios is still
challenging. In the method of trajectory incremental merging,
the error generated by each merging process will gradually
accumulate, which may affect the extraction accuracy of the
final generated road network. Besides, all the above methods
need to manually adjust parameters for different datasets and
wrong parameter settings will have a great impact on the
extraction results.

III. METHODOLOGY
In general, there is a certain deviation between a GPS tra-
jectory and the corresponding road centerline even without
location errors. On the other hand, the peak points of trajec-
tory density tend to be distributed in the center of the road
surface and the position of road centerline can be estimated by
these density peak points. Because of this, unlike the common
method for directly merging GPS trajectories to generate road
network, we propose to use trajectory density to estimate road
centerlines corresponding to each trajectory firstly and then
merge the road centerlines to generate road network. Themap
inference architecture of our method consists of two stages:
road centerline extraction and road centerline incremental
merging.
Road Centerline Extraction: Firstly, the kernel density

analysis is used to estimate trajectory density. Then based
on the assumption that the trajectory density on the same
road follows a Gaussian distribution, we use each trajectory
sample and the density value of their neighborhood to fit a
Gaussian distribution. The peak point of the Gaussian dis-
tribution corresponding to each trajectory samples can be
linked to constructing a road centerline. Since the trajectory
noise may result in wrong fitted peak points, we use a hidden
Markov model (HMM) to eliminate these wrong peak points
and construct road centerline segments corresponding to each
trajectory.
Road Centerline Incremental Merging: The road network

is generated by incrementally merging the extracted road
centerlines with an initial blank road map. Firstly, each road
centerline ismatchedwith the roadmap to find the unmatched
parts. Then we refine the unmatched road centerlines by the
other road centerlines on the same road. After road centerline
refinement, these refined road centerlines are merged with
the road map in geometry and topology. When all of the road
centerlines have been matched, refined and merged, the final
road network is generated.

A. ROAD CENTERLINE EXTRACTION
1) TRAJECTORY DENSITY ESTIMATION
The trajectory density can be calculated by kernel density
estimation (KDE). Similar to the KDE method for point data,

FIGURE 1. Kernel density estimate: (a) original GPS trajectories,
(b) kernel density of the trajectories.

the overall density distribution of trajectories is estimated
by superposing the probability density distribution of each
trajectory. The probability density value of a certain point
on each trajectory will decrease as the distance between that
point and the trajectory increases. We choose a Gaussian ker-
nel function to represent the probability density distribution
of each trajectory. The input trajectories can be represented
by a series of polylines T = {T 1,T 2, . . . ,T n} and each node
on Ti is the GPS observation of a trajectory. After dividing
the area covered by trajectories into a grid, the kernel density
of each cell can be calculated according to the definition of
kernel density [34]:

D (x) =
∑n

i=1
K (di/h)/(nh) (1)

where di is the distance from the center of the cell to trajectory
Ti,K(·) is theGaussian kernel function, and h is the bandwidth
of Gaussian kernel function. After calculating the kernel
density of all cells, a rasterized kernel density distribution
image can be obtained. Fig. 1a shows the original trajectory
data, and the corresponding kernel density estimate is shown
in Fig. 1b. The density value for each cell is mapped to the
color band. Higher values are colored with red while lower
values are colored with green. Besides, blue lines in Fig. 1b
are ground truth of the road network. It can be found that the
peaks of the trajectory kernel density on each road coincide
with the position of road centerlines. In the next section,
we will extract road centerlines based on the trajectory kernel
density distribution calculated here.

2) ROAD CENTERLINE ESTIMATION
Winden et al. conducted a statistical analysis and found that
the distance from trajectory samples on the same road to
the road centerline approximately follows a Gaussian distri-
bution [35]. Therefore, when the density of a point on the
trajectory and the density of its neighbors are known, the posi-
tion of road centerline can be estimated by fitting a Gaussian
distribution. Fig. 2 shows the road centerline estimation for
a given trajectory by Gaussian distribution fitting. As shown
in Fig. 2a, the black vertical lines are trajectories on the same
road. The black point P is a sample on the trajectory. Blue
points are the neighbors of P. Each blue point locates on the
center of the cell which is constructed in trajectory density
estimation. If the density at point P is Dp and the distance
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FIGURE 2. The road centerline estimation: (a) a trajectory sample and its
neighbors, (b) Gaussian distribution fitting for trajectory density,
(c) location of the density peak point, (b) road centerline construction for
the corresponding trajectory.

from P to road centerline is C , Dp and C should satisfy the
Gaussian distribution function (Fig. 2b). It can be represented
as follows:

Dp = A · exp(−C2/B2) (2)

where A and B are parameters of a Gaussian distribution
function. For a point Q in the neighborhood of P, its density
can be expressed as:

Dq = A · exp(− (x + C)2 /B2) (3)

where, x = d · sinθ , d is the distance between P and Q, θ is
the angle between the trajectory direction of P and the vector
PQ(Fig. 2c). We take clockwise rotation as the positive angle,
and counterclockwise as the negative angle.

Take the logarithm of equations (2) and (3) and subtract
them to eliminate A:

B2
(
ln Dp − ln Dq

)
= 2Cx + x2 (4)

Dp andDq in equation (4) can be obtained from kernel density
distribution of trajectories, x is calculated from the positions
and directions of PQ. Therefore, the only unknown variables
in equation (4) are B andC . Using more than two neighboring
points, B and C can be estimated. Then the parameter A
of the Gaussian distribution function can be calculated by
equation (2).

To ensure the accuracy of the fitting process, we select all
cell centers that are less than ε from the point P as neighbor
points in the kernel density image. The Gaussian distribution
is fitted from the density and position of these neighbor points
by the Ransac algorithm [36]. Firstly, we randomly select
two neighbor points to calculate parameters A, B, and C by
equation (2) and (4). The calculated parameters of Gaussian
distribution are used to estimate the density of all cell centers
that are selected. The cell centers with the estimation error

less thanOc are regarded as inliers. Then, we repeat the above
fitting process for N times and the Gaussian distribution
model with the most inliers is selected as the final fitted
model. Reference [36] shows the details of setting parameters
Oc and N .

Since the density peak point R of the Gaussian distribution
corresponds to a point on the road centerline, the spatial
location of R can be calculated by the fitted distance C . It can
be calculated by moving P along the vertical direction of the
trajectory direction of P in a distance C (Fig. 2c). A series of
trajectory density peak points can be extracted by using each
trajectory sample and its trajectory direction to fit a Gaussian
distribution. Each trajectory density peak point corresponds
to a node on the road centerline. By connecting all of the
density peak points extracted from samples on a trajectory
in sequence, a road centerline corresponding to the trajectory
can be extracted (Fig. 2d).

Because sparsely sampled trajectories show large geomet-
ric inconsistency, we resample trajectory points for trajectory
datasets with low sampling frequency. Then, the resampled
trajectory points are fittedwithGaussian distribution and road
centerlines are extracted. Besides, when there is noise in the
trajectory data, it is easy to extract wrong road centerlines.
The reason is that noise trajectory samples may have wrong
trajectory directions. Trajectory peak points estimated by
the noise trajectory samples deviate from the real trajectory
density peaks, which lead to wrong road centerline extrac-
tion. In the next section, these wrong density peaks will be
eliminated.

3) WRONGLY EXTRACTED ROAD CENTERLINE ELIMINATION
There will be a certain error between the density of peak point
estimated by the Gaussian distribution and the kernel density
at that point. False density peak points can be eliminated
by using a fixed error threshold, but the value of the error
threshold is difficult to determine. If the error threshold is
too small, some correctly fitted peaks will be eliminated,
resulting in a large number of shorter road centerlines. On the
other hand, if the error threshold is too large, some false
density peak points will be missed. To eliminate false peak
points as accurately as possible, the accuracy of each density
peak point estimation is regarded as a hidden variable, and a
hidden Markov model is used for modeling.

If the density of a node on a road centerline is accurately
estimated, the error between the estimated density and the
kernel density should be small. Meanwhile, the direction of
the extracted road centerline should be consistent with the
direction of the corresponding trajectory. The direction of a
current node on a road centerline is related to the estimated
position of the next node. Therefore, the accuracy of the den-
sity estimation of all nodes on the road centerline constitutes
a Markov process.

HMM is a Markov process with a set of hidden states
and observations [37]. The state-to-state transition is defined
by the transition probability. Each state has an observation
probability over possible observations. Given a series of
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observations, corresponding hidden states can be generated
by maximizing the overall probability. We take the accu-
racy of density estimation of each node on a road center-
line as the hidden state, which can be expressed as the set
S = {S1, S2}, where S1 represents the accurate estimation and
S2 represents thewrong estimation. Observations correspond-
ing to the hidden states are the density estimation error of each
node, which is expressed by O = {O1,O2, ...,On}, where
n is the total number of nodes on the road centerline. The
observation probability corresponding to each hidden state
can be expressed as:{

b1i = P (oi = Oi | si = S1) = exp(−o2i /δ
2)

b2i = P (oi = Oi | si = S2) = 1− exp(−o2i /δ
2)

(5)

where oi represents the density estimation error correspond-
ing to the ith node, si represents the estimation accuracy
of the ith node, and δ is a parameter for the observation
probability distribution. δ can be determined by using the
critical value of the interior fitting error in the Ransac fitting
results. When the density estimation error is at the critical
valueOc, the probability that it belongs to two different states
should be equal. Therefore, δ can be calculated as follows:

δ =

√
o2c/ln2 (6)

The transition probability between hidden states can be cal-
culated using the difference between the direction of the road
centerline and the direction of the trajectory. If T represents
a GPS trajectory, and ti, ti+1 represent adjacent trajectory
samples on the trajectory. C represents the extracted road
centerline corresponding to the trajectory, and ci, ci+1 are
adjacent nodes on the road centerline corresponding to ti and
ti+1. Then the trajectory direction of ti can be expressed as
a vector titi+1. The road centerline direction of ci is related
to the estimation accuracy of ci+1. When ci+1 is accurately
estimated, the road centerline direction of ci is the vector
cici+1. The transition probability can be expressed as:{

a11 = P (qi = S1 | qi+1 = S1) = 1− |cos (θtc)|

a12 = P (qi = S2 | qi+1 = S1) = |cos(θtc)|
(7)

where θtc represents the angle between the vectors titi+1 and
cici+1. When ci+1 is incorrectly estimated, we cannot use
ci+1 to calculate the road centerline direction of ci. Therefore,
we use the Gaussian distribution parameter corresponding
to ci and the trajectory sample ti+1 to re-estimate the node
ci+1 which can be represented as c′i+1 for convenience. Then,
the road centerline direction of ci is the vector cic′i+1 and the
state transition probability is:{

a21 = P (qi = S1 | qi+1 = S2) = 1− |cos (θtc′)|

a22 = P (qi = S2 | qi+1 = S2) = |cos (θtc′)|
(8)

where θ ′tc represents the angle between the vectors titi+1
and cic′i+1. When the density estimation error and the Gaus-
sian distribution parameters corresponding to each node are
known, hidden states can be solved by using the Viterbi algo-
rithm. Thus, the estimation accuracy of each node on the road

FIGURE 3. Road centerlines constructed by two trajectories.

FIGURE 4. Flowchart of the road centerline incremental merge.

centerline can be calculated and wrongly estimated nodes
are eliminated. After eliminating wrongly estimated nodes,
a road centerline is divided into several sub road centerlines
according to the eliminated nodes. We still refer these sub
road centerlines as road centerlines for convenience in the
following sections.

B. ROAD CENTERLINE INCREMENTAL MERGING
Since we can extract a corresponding road centerline from
each trajectory, road centerlines extracted by multiple trajec-
tories will overlap (Fig. 3). In this section, the road network
is generated by merging road centerlines. We modify the
incremental merging approach for trajectories to merge the
constructed road centerlines. Fig. 4 shows the flowchart of
the incremental merging process. The process begins with an
initial blank road network and merges each road centerline
with the road network iteratively. The difference from origi-
nal incremental merging methods is that we add the step of
road centerline refinement before merging. The refinement
process can ensure the accuracy of road centerlines to be
merged and can reduce the cumulative error during the incre-
mental merging process.

1) ROAD CENTERLINE MATCHING
Map matching method can be used to extract the road sec-
tions that have been merged and the road sections to be
merged. The matching of road centerlines is similar to the
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matching of trajectories. Thus, existing map matching meth-
ods for trajectories can also be used for road centerlines.
We select the progressive matching method proposed by
Brakatsoulas [38]. This method can simultaneously use geo-
metric and topological features of a road network and has high
matching efficiency and accuracy for massive data. To adapt
to the situation that there may be several unmatched segments
on a road centerline, we adjust the node matching process
in the method of Brakatsoulas. A more formal description is
shown in Algorithm 1 below.

Given a road centerline and a road network represented by
straight road segments, the type of current node to bematched
is determined firstly according to the matching result of the
previous node. Then node matching is divided into two cases
according to different node types: initial node matching and
successor node matching.

a: INITIAL NODE MATCHING
If the current node to be matched is the first node on a
road centerline or the previous node is an unmatched node,
the current node is an initial node.We use a distance threshold
Dt to select road segments whose distance from the initial
node is less than Dt as candidate matching segments. If there
are multiple candidates matching segments, the segment clos-
est to the initial node is selected as the matching segment.
Then the projection point of the initial node on the matching
segment is calculated as the matching point. If no candidate
matching segment exists, the node is unmatched. We use
the maximum distance between the road centerline and the
corresponding trajectory as the matching distance threshold
for all nodes on the road centerline.

b: SUCCESSOR NODES MATCHING
If the previous node is a matching node, the current node is a
successor node. Matching segments of the current node can
be dynamically searched by using the matching segment of
the previous node.

As shown in Fig. 6a, the connected solid lines are road
segments, and the dashed line represents a road centerline to
be matched. Among them, p1 is the initial node, p2 and p3
are the successor nodes that have been matched, and p4 is the
successor node to be matched. Then we can match p4 by the
following steps.

a) The candidate road segment set corresponding to the
node p3 is taken as the candidate road segment set of
p4: G = {e2, e3}.
b) A matching path L= {e1} is constructed using matching

segments from node p1 to node p2. Then a candidatematching
path set E = {e1e2, e1e3} is composed of a matching path L
and each candidate matching segments, as shown in Fig. 6b
and Fig. 6c.

c) Calculate the Fréchet distance between each candidate
matching path and the road centerline C = {p1, p2, p3, p4}.
Then the path with the smallest Fréchet distance is selected
as S. If the Fréchet distance between S and C is larger than
Dt, p4 is unmatched. Then continue to match the next node

FIGURE 5. Road centerline matching algorithm.

FIGURE 6. The process of road centerline matching.

on the road centerline. Otherwise, go to step d. In Fig. 6b and
Fig. 6c, the candidate matching path e1e3 is selected.
d) Calculate the closest point from the matching path to

p4. Decide whether it is necessary to continue searching for
candidate matching road segments by using the position of
the closest point on the matching path. If the closest point is
at the tail node of the matching path, go to step e. Otherwise,
go to step f.
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e) The candidate road segment set of p4 is updated to
the segments connected to the matching path: G = {e4, e5},
as shown in Fig. 6d and Fig. 6e. If the candidate segment set
is empty, p4 is unmatched. Otherwise, steps b-d are repeated.

f) If the closest point is not at the tail of the matching
path, the closest point is regarded as the matching point of
p4 and the road segment where the closest point is located
is regarded as the matching road segment. In Fig. 6d and
Fig. 6e, the candidate matching path e1e3e5 is selected and
e5 is the matching segment of p4. Then we check whether
the matching segment of node p3 is on the selected matching
path. If it is not located on the matching path, the matching
point and matching road segment of p3 are updated by the
matching path.

After all the nodes on the road centerline are matched,
we connect the successive unmatched nodes to construct road
centerlines to be merged in the next section.

2) REFINEMENT OF UNMATCHED ROAD CENTERLINES
Aftermatching road centerlines, we canmerge the unmatched
parts with the road map. Considering the estimation error
of extracted road centerlines, we do not directly merge the
unmatched road centerline with the road map. By using all of
the extracted road centerlines on the same road, we can move
the unmatched road centerline to the optimal position. In this
way, the positional error accumulation can be reduced during
the road centerline incremental merging process.

The mean shift algorithm proposed by Comaniciu and
Meer [39] is a non-parametric feature space analysis method
for finding the maximum density. This method iteratively
updates the position of the centroid in the neighborhood.
When the position of the centroid is stable, the stable centroid
is the density maximum point:

pi+1=
∑

pj∈N
pjexp(−

1
2
(
pj − pi
h

)
2
)/
∑

pj∈N

exp(−
1
2
(
pj − pi
h

)
2
) (9)

where N is the neighborhood of the centroid point, pi repre-
sents the position of the centroid point after the ith iteration,
pj is one of the samples in the neighborhood of pi, and h is
the neighborhood radius. We choose the mean shift algorithm
to move unmatched road centerlines to the position with a
maximumdensitywhich is regarded as the optimal position of
road centerlines. Details of the refinement process are shown
in Algorithm 2.

For each node on the unmatched road centerline, it is
regarded as a centroid point and iteratively shifted using
the mean shift algorithm. The iteration stops when the shift
distance of the centroid point is less than 1 meter. To find
neighbor nodes in the mean shift algorithm, we choose the
distance threshold in the road centerline matching process
as the neighborhood radius. Since the road centerlines with
different directions at an intersection will affect each other,
we only select similar nodes in the neighbor nodes to partic-
ipate in the shift step during each iteration. The nodes with a

FIGURE 7. Algorithm of unmatched road centerline refinement.

directional difference less than 45 degrees from the direction
of the current node to move are selected as similar nodes.
Besides, to ensure that the node of a road centerline can iterate
to the optimal position quickly, we only shift the centroid
point along the perpendicular direction of the direction of a
road centerline during each iteration.

3) GEOMETRIC MERGING AND TOPOLOGY MODIFICATION
After the refinement of unmatched road centerlines, these
unmatched parts have high positional accuracy. Therefore,
we merge these unmatched parts with the road map in this
section. The merging process mainly includes two steps:
geometric merging and topology node modification.

a: GEOMETRIC MERGING
Firstly, we select matching nodes adjacent to the head and tail
nodes of the unmatched road centerline. Then the head and
tail nodes of the unmatched road centerline are projected onto
the matching road segments corresponding to the selected
matching nodes. We connect the head and tail nodes with
their corresponding projection points respectively to merge
the unmatched road centerline with the road network. Fig. 8a
shows the process of geometric merging. The road segment
indicated by the red line is the segment integrated into the
road network.

b: TOPOLOGY NODE MODIFICATION
After the geometric merging of unmatched road centerlines,
redundant nodes are easily generated at a road intersection.
As shown in the road network indicated by the black line
in Fig. 8b, the dot and the square in the dashed circle are nodes
representing the same intersection. To improve the location
accuracy of intersections and eliminate redundant nodes, the
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FIGURE 8. Unmatched road centerline merging: (a) geometric merging,
(b) topology node modification.

FIGURE 9. Trajectory datasets: (a) Athens, (b) Chicago, (c) Joensuu.

TABLE 1. Statistics of trajectory datasets.

topological relationship of the road network at intersections
needs to be modified. Firstly, we check whether there is a
topology node in the neighborhood of the connection node
which connects the newly added road segment with the orig-
inal road network. The nodes with a degree of connectivity
not equal to 2 are considered as topological nodes, and the
distance threshold during road centerline matching is selected
as the neighborhood radius. If there are topology nodes,
the median position of the topology nodes is calculated. Then
we move the connection node and the topology nodes to the
median position and delete redundant nodes that overlay in
the same position. As shown in Fig. 8b, the red triangle is the
updated topology node, and the red lines are the adjusted road
segments.

IV. EXPERIMENTAL ANALYSIS
A. DATASETS
We select three different trajectory datasets from Athens,
Chicago, and Joensuu (Fig. 9) to evaluate the proposed road
network generation algorithm. Table 1 shows the statistics

of three trajectory datasets. Among them, the Athens and
Chicago datasets are two different campus shuttle trajectories
with low sampling frequency and high sampling frequency,
respectively. These two datasets can be obtained through the
website http://mapconstruction.org. The Joensuu dataset is
jogging trajectories collected at high frequencies from smart-
phone applications, which is provided by Mariescu-Istodor
and Cellnet [40] (http://cs.uef.fi/mopsi/routes/network). The
coverage areas of three trajectory datasets are similar.
Besides, these trajectory datasets are often used for verifica-
tion of road network generation algorithms.

The roads covered by the trajectories in Athens dataset are
irregularly distributed, whereas Chicago and Joensuu datasets
both contain visible urban block structures. On the other
hand, compared with Athens and Chicago datasets, Joen-
suu dataset contains more road intersections and the roads
are more densely distributed. From the perspective of the
trajectory density distribution, Chicago dataset has a higher
trajectory density, whereasAthens and Joensuu datasets cover
relatively few trajectories on each road. Besides, due to the
influence of high-rise buildings in Chicago dataset, some
areas contain large trajectory noise. Because of the differ-
ences in the road distribution, road structure, road density, and
trajectory density of the three datasets, whether the proposed
approach can adaptively generate the complete road network
from trajectories will be the main verification goal.

B. ROAD NETWORK GENERATION RESULTS AND
ANALYSIS
This section compares the proposed method with four road
network generation methods, i.e. Stanojevic’s method [20],
Biagioni’s method [22], Huang’s method [29], and Ahmed’s
method [30]. The four comparison methods represent the
clustering-based method, image-based method, intersection
linking method, and trajectory incremental merging method,
respectively. To adjust to different datasets, we vary the
parameters based on the original parameter settings in the
four comparison methods and referring to the parameter
settings in Ahmed’s review literature [16]. Then we select
the parameters with the best results for each dataset. Since
this parameter setting process is manual, better quality may
be achieved; however, the optimization task is tedious and
time-consuming. Different from the comparison algorithms,
the proposed algorithm used the same parameter settings for
each dataset. Fig. 10 shows the experimental results of the
proposed method and comparative methods. The parameter
settings of each algorithm are shown in Table 2.

By comparing the road network generation results of each
method in Fig. 10, it can be found that Stanojevic’s method
can extract relatively complete road networks in different
datasets. However, it is easy to generate redundant road seg-
ments, i.e. the generated road network in the Joensuu dataset.
The reason is that the distribution of trajectory samples in
the Joensuu dataset is relatively scattered. It is difficult to
cluster all trajectory samples accurately using the K-means
clustering method. Biagioni’s method performs well in the
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FIGURE 10. Results of road network extraction.

Athens and Chicago datasets. However, it is almost impos-
sible to extract roads from the Joensuu dataset. The main
reason is that trajectory density of adjacent roads in Athens
and Chicago datasets are highly differentiated, whereas the
road distribution is dense and the differentiation of trajec-
tory density on adjacent roads is low in Joensuu dataset.
Therefore, the kernel density of trajectories on adjacent
roads is connected. Using a skeleton extraction approach can
hardly generate accurate road centerlines. Huang’s method
should ensure that the turning characteristics of trajectories at
intersections are obvious, and the turning points need to
be clustered accurately to extract the location and coverage

TABLE 2. Parameter setting of the algorithms.

of intersections. Therefore, it generated a relatively com-
plete road network in the Chicago dataset, while fewer road
segments can be extracted in Athens and Chicago datasets.
Ahmed’s method has well precision and completeness in
extracting road networks, but it is sensitive to trajectory noise.
For example, it generated more incorrect road segments in the
area with densely distributed trajectories in Chicago dataset.
The proposed method can also extract accurate and com-
plete road networks. Compared with the results of Ahmed’s
method, the proposed method has a better tolerance to tra-
jectory noise. Meanwhile, the road networks extracted by the
proposed method contains few redundant road segments.

To compare the road network extraction results of vari-
ous methods quantitatively, the TOPO method proposed by
Biagioni is used to evaluate the accuracy of road network
extraction [22]. The TOPO method takes both geometric
accuracy and topological accuracy of road network extraction
into account. This method first generates a certain number
of random sampling points in the study area. Then it calcu-
lates all the paths that can be reached in the neighborhood
of the sampling points in both the extracted road network
and the real road network. These paths are resampled with
an equal distance. The matching precision and recall are
calculated by matching the resampled path nodes between
the extracted road network and the real road network. Then
F-score of road network extraction is further calculated by
using equation (10). Fig. 11 shows the relationship between
F-score and the matching distance in Athens, Chicago, and
Joensuu datasets for each road network generation method.
Table 3 shows the F-score, recall, and precision of each
method when the matching distance is 20 meters.

FScore = 2 · (precision · recall)/(precision+ recall) (10)

Comparing the F-score of each method, it can be seen
that the proposed method and Ahmed’s method are the most
accurate and followed by Stanojevic’s method and Biagioni’s
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TABLE 3. Evaluation of the algorithms with the matching distance of 20 meters.

FIGURE 11. F-score of the proposed method and comparative methods:
(a) Athens, (b) Chicago, (c) Joensuu.

TABLE 4. Algorithm running time (minutes).

method in Athens dataset. Huang’s method extracts the most
precise road segments, but the F-score is lower due to incom-
pletion of the extracted road network. In Chicago dataset, all
the methods have high accuracy. The road network extracted
by the proposed method and Stanojevic’s method has better
integrity and road segments extracted by Huang’s method
and Biagioni’s method are more precise. In Joensuu dataset,
the proposed method has significant road network extrac-
tion accuracy compared with other methods. This improve-
ment benefits from the high recall of the proposed method,
especially in the densely distributed road regions. However,
the road networks in the Athens and Chicago datasets are
sparsely distributed. Thus, the improvements of the recall
are not significant enough compared with other methods in
Athens and Chicago datasets.

Due to these algorithms being implemented based on
different coding languages (i.e., Java, Python, and C++),
the algorithms’ running times are not comparable in theory.
However, to at least give an impression, Table 4 shows the
respective running times of these algorithms on the three
trajectory datasets. All these algorithms were run on Intel
Core i7 CPUs running at 2.6 GHz with 8 GB of RAM using
a Windows 10 operating system.

C. PARAMETER SENSITIVITY TEST
Parameters involved in the proposed algorithm mainly
include the neighborhood radius ε in the density distribution

FIGURE 12. Parameter sensitivity test on the Athens dataset: (a) the
sensitivity of neighborhood radius, (b) the sensitivity of cell size.

fitting process and the cell size in the kernel density esti-
mation process. To analyze the effect of different parameter
values on the performance of our map inference algorithm,
we used the Athens dataset for a parameter sensitivity test.
Some results of this analysis are shown in Fig. 12.

When the neighborhood radius ε ranges from 5 meters to
50 meters at intervals of 5 meters, we calculate the F-score
of the generated road networks with the matching threshold
ranges from 35 meters to 50 meters. As shown in Fig. 12a,
the curves in the figure represent the F-score with the match-
ing distances of 30, 35, 40, 45, and 50 meters, respectively.
It can be found that the F-score of the generated road networks
is relatively high and stable. Fig. 12b shows the F-score of
the generated road networks at different cell sizes. It can
be found that the proposed algorithm is robustness even if
the value of cell size changes greatly. Although the geom-
etry of the extracted road centerlines is not accurate when
the cell size is large, the road centerline refinement process
can improve the positional accuracy during road centerline
merging.

V. CONCLUSION AND FUTURE WORK
Based on the assumption that trajectories follow a Gaussian
distribution on the road, we propose a two-stage method
that extracting road centerlines and generating road network
by incrementally merging road centerlines. This method can
adaptively extract road centerlines corresponding to each
trajectory according to the trajectory density. Furthermore,
it evaluates the extraction results of road centerlines through
the Hidden Markov model and eliminates the wrongly
extracted road centerline segments. Then the map matching
approach and the road centerline refinement approach are
used to incrementally merge road centerlines to generate
a road network. Compared with the existing road network
generation methods, the proposed method is more robust and
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does not require additional parameter adjustment. We evalu-
ate ourmethod by three trajectory datasets that are completely
different in sampling frequency, trajectory density, road den-
sity, and trajectory type. Compared with four representative
methods, it can be found that our method has advantages in
the precision and integrity of road network extraction.

Although the proposed method can extract relatively com-
plete road networks in different trajectory datasets, there are
still many redundant road segments in the extracted road
networks. In terms of road geometry and topological connec-
tions, the road network generated by our algorithm still has
a large gap compared with the real road network, and it is
difficult to accurately extract details of road networks such as
highway interchanges and overpasses. Therefore, generating
lane-level road networks and highly detailed road networks
will be further researched in future work.
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