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ABSTRACT This paper proposes a nonsingular terminal sliding mode control scheme with fast fixed-time
convergence for a class of second-order nonlinear systems in the presence of matched uncertainties and
perturbations. First, based on fixed-time stability theory, a novel stable system is proposed. Then, using the
fixed-time stable system, a fast fixed-time nonsingular terminal sliding surface is derived. The settling time is
independent of the initial system state and can be set in advance with the design parameters; the upper-bound
of convergence time is derived from the Lyapunov theory. Moreover, the proposed control scheme has an
advantage in convergence rate over existing results and achieves better control performance with low control
energy cost. The simulation results for a tracking system with a single inverted pendulum are presented to
validate the effectiveness and superiority of the proposed control method.

INDEX TERMS Fixed-time stability, nonsingular terminal sliding mode control, nonlinear system.

I. INTRODUCTION
Sliding mode control (SMC) is a nonlinear control method
that alters the dynamics of a system by using a discontin-
uous control signal and forces the system to slide along a
prescribed switchingmanifold [1]. Compared to other control
methods, SMC has attracted significant interest due to its
simplicity, low sensitivity to system parameter variations and
high robustness to external disturbances [2]. Therefore, SMC
has been developed and applied widely in many applications,
including robot manipulators [3], cable-driven manipulators
[4], [5], power systems [6], multiagent systems [7] and guid-
ance law design [8].

It is notable that in standard SMC schemes for nonlinear
systems, a linear hyperplane-based SM manifold is used to
drive the system states to the equilibrium point. However,
the standard SMC approach can only guarantee that the sys-
tem asymptotically converges. To achieve finite-time stability
[9], some other kinds of SMC methods are developed, such
as terminal sliding mode control (TSMC), integral sliding
mode control (ISMC) [10], [11], discrete-time sliding mode
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control (DSMC) [12] and so forth. The TSMC [13]–[16] was
developed by adopting a nonlinear sliding hyperplane to
achieve fast finite-time convergence in the sliding phase, it
has a good control performance for a class of nonlinear sys-
temswith uncertainties. Nevertheless, standard TSMC suffers
a singularity problem in some areas of the state space due to
the use of negative fractional power terms. Hence, various
control strategies were developed to solve this problem.

In [17], an indirect approach is adopted to transform the
system trajectory to a prespecified region where no singu-
larity occurs. In [18], a modified sliding surface is proposed
for second-order systems to avoid the singularity domain. To
achieve a faster convergence rate, Yang and Yang [19] con-
structed the new concept of nonsingular fast TSMC, whose
convergence time is smaller than that of the conventional
TSM in [16]. Feng et al. [20] introduced a saturation func-
tion into TSM controller design for nonlinear systems to
avoid the singularity phenomenon. A new adaptive nonsin-
gular integral terminal sliding mode control method is devel-
oped to avoid the singularity phenomenon and guarantee fast
transient convergence for the trajectory tracking control of
autonomous underwater vehicles in [21], [22]. In [23] and
[24], a fractional-order nonsingular terminal sliding mode
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manifold was proposed to ensure fast dynamical response
and overcome the singularity problem. However, explicit esti-
mates of the settling time for the NTSMC design were not
given in the above mentioned schemes.

One of the key issues with finite-time stability is the
estimation of the settling time, which is a function of the
initial conditions of the system. Generally, different initial
values result in different estimations of convergence time. In
addition, the initial conditions of practical systems may be
difficult to accurately obtain in advance, whichmakes settling
time inaccessible and deteriorates the system performance.

In addition to the finite-time stability, a fixed-time sta-
bilization concept has been proposed [25]. In contrast to
finite-time stability, fixed-time stability provides an explicit
estimation of the settling time independently of initial con-
ditions. Reference [26] revealed the essence of finite-time
stability and fixed-time stability. Polyakov and Fridman [27]
surveyed the mathematical tools required for fixed-time sta-
bility and convergent analysis of modern SMC systems, and
the generalized Lyapunov theorems for stability analysis and
the convergence time estimation were presented. In [28],
theorems on implicit Lyapunov functions (ILF) for finite-
time and fixed-time stability analysis of nonlinear systems
were presented, which define Lyapunov functions implicitly
as solutions to an algebraic equation. The control design
problem for finite-time and fixed-time stabilizations of linear
multi-input systems with nonlinear uncertainties is discussed
in [29]. Zuo and Tie [30] proposed a fixed-time TSMC
surface, which suffers from a singularity problem, and the
control input cannot be guaranteed to be bounded during
the reaching phase. In [31], a fixed-time nonsingular TSMC
approach for a class of second-order nonlinear systems was
proposed and then applied in the consensus protocol of a
multiagent system [32]. Based on [31], Li et al. [33] proposed
a singularity-free terminal sliding mode control scheme with
fast fixed-time convergence. However, the convergence time
of the nonsingular fixed-time terminal sliding mode con-
troller in [31] and [33] is not optimal, and the methods of
circumventing the singularity are complicated. In [34], a
fixed-time NTSM approach is proposed that uses a modified
fixed-time stable system to improve the convergence rate.
However, the designed control law does not consider external
disturbances. Hu et al. [35] presented a new theorem of fixed-
time stability by reductio ad absurdum, and a high-precision
estimation of the settling time is given. Yang et al. [36]
proposed a nonrecursive fixed-time convergence observer
to deal with state estimation and tracking differentiation.
Fixed-time stabilization control has also been investigated
for high-order regulators [37], synchronization problems in
neural networks [38], double integrator systems [39], group
tracking problems for multiagent systems [40] and so forth.
Inspired by this attractive feature, some applications of fixed-
time stabilization in engineering have also been developed.
In [34], a fixed-time NTSM controller for chaos suppression
in power systems was proposed. Fixed-time SMC surfaces
were developed for the attitude control of a rigid spacecraft in

[41] and [42]. Zhang et al. [43] proposed an adaptive NTSM
guidance law with a terminal angle constraint based on the
fixed-time convergence theory.

Motivated by the above discussion, a novel fast fixed-
time nonsingular terminal sliding mode (FFNTSM) control
scheme is proposed in this paper, which is for second-order
nonlinear systems with matched uncertainties and external
disturbances, and the preset settling time is independent of
initial conditions. The proposed control scheme has an advan-
tage in convergence rate and control energy cost over the
existing results of fixed-time stable control methods.

The main contributions of this paper are as follows:
(1) Based on fixed-time stability theory, a novel fixed-time
stable system is presented; (2) The fixed-time stability is
guaranteed with the proposed FFNTSM; (3) By using the
saturation function method, the FFNTSM structure is non-
singular; and (4) The convergence time is independent of the
initial state and can be preset by the design parameters.

The organization of the paper is as follows. In Section II,
the problem statement is given. In Section III, the main
algorithm is derived. In Section IV, numerical simulations
are presented to evaluate the performance and superiority of
the proposed control scheme. Finally, a brief summary of this
work is given in Section V.

II. PROBLEM STATEMENT
A. PRELIMINARIES
Consider the system defined by

ẋ (t) = F (t, x) , x (0) = x0 (1)

where x ∈ Rn is the vector of system states and F (t, x) :
R+ × D → Rn is a continuous nonlinear function that is on
an open neighborhood D ∈ Rn of the origin. The solutions of
(1) are understood in the sense of Filippov [44], assume the
origin is an equilibrium point of (1).
Definition 1 [9]: The origin is a ‘finite-time stable’ equilib-

rium of eq. (1) if the origin is Lyapunov stable and there exists
an open neighborhood N ⊆ D of the origin and a positive
definite function T (x0) : N → R called the settling time
function such that, for all x (0) ∈ N\ {0}, lim

t→T (x0)
x (t, x0)→ 0

x (t, x0) = 0 ∀t > T (x0)
(2)

Furthermore, the origin is a ‘globally finite-time stable’ equi-
librium if it is finite-time stable with N = Rn. Additionally,
finite-time stability of the origin implies asymptotic stability
of the origin.

However, the finite settling time T in Definition 1 depends
on the initial state x0 of the system. The initial conditions
of many practical systems may be unavailable or difficult
to obtain accurately, which restricts its practical applica-
tion. Moreover, a fixed-time stability concept is developed
by Polyakov [25]. In contrast to finite-time stable systems,
fixed-time stable systems can guarantee stabilization within
bounded time independent of the initial condition.

VOLUME 8, 2020 60445



Y. Tian et al.: Fast Nonsingular TSMC Method for Nonlinear Systems With Fixed-Time Stability Guarantees

Definition 2 [25]: The origin is a ‘fixed-time stable’ equi-
librium of system (1) if it is globally finite-time stable and
the settling time function T (x0) is bounded by a constant
Tmax > 0, s.t. T (x0) ≤ Tmax,∀x0 ∈ Rn.

B. CONTROL OBJECTIVE
In this paper, a second-order nonlinear system with matched
lumped perturbations is considered:

ẋ1 (t) = x2 (t)
ẋ2 (t) = f (t, x)
+b (t, x) u (t)+ d (t, x)

x (0) = x0 (3)

where x = [x1, x2]T ∈ R2 is the system state, f and b 6= 0 are
sufficiently smooth nonlinear functions, u ∈ R is the control
input and d denotes the model uncertainty, which satisfies the
following assumption.
Assumption 1:Themodel uncertainty d (t, x) is assumed to

be bounded. For all x ∈ R2 and t ≥ 0, there exists a constant
D > 0 such that |d (t, x)| ≤ D.
Remark 1: It should be pointed out that plenty of practical

dynamical systems, such as the mechanical systems, power
systems, and missile-target engagement dynamics model,
can be expressed in (3) satisfying the above conditions. For
example, the robotic manipulator system mentioned in [16],
engagement dynamics in [45] are not exactly in the form
of (3), but they were transformed into such a form by the
coordinates’ change. In the transformed robotic manipulator
system in [16], x and ẋ denote the vectors and angular position
of joint, respectively. Therefore, the proposed control algo-
rithm in the work can be applied to such plant, which can be
transformed to (3).

The objective is to design a control law u (t) such that the
origin of (3) is a fixed-time stable equilibrium.

III. MAIN RESULT
A novel fixed-time nonsingular terminal sliding mode control
methodology is proposed in this section.

A. A NOVEL FAST FIXED-TIME CONVERGENCE SYSTEM
To further improve the convergence rate, a novel fast fixed-
time stable system is designed in this subsection, to be used
in the controller design, whose settling time is smaller than
that of existing fixed-time stable systems.
Lemma 1 [31]: Consider a scalar dynamic system

ẏ = −l1signm1y− l2signm2y, y (0) = y0 (4)

where signm1y = |y|m1 · sign (y), l1 > 0, l2 > 0, m1 > 1, and
0 < m2 < 1. Then, the equilibrium of (4) is fixed-time stable
and the settling time T is bounded by

Tf < Tmax =
1

l1 (m1 − 1)
+

1
l2 (1− m2)

(5)

Lemma 1 provides a fixed-time stable system whose pre-
defined global settling-time estimate Tmax does not rely on
the system initial state y0 but only on the design parameters

l1, l2, m1, and m2. This implies that the convergence time can
be guaranteed through selecting appropriate parameters. The
fixed-time stable system (4) is used to construct the fixed-
time nonsingular terminal sliding mode surface and control
law in [31] and [33].

In addition to Lemma 1, a different fast fixed-time stable
system is proposed in this paper, and the convergence time of
the system is smaller than Tf in eq. (5). Moreover, the upper
bound of the system convergence time is given.
Theorem 1: Consider the following scalar system

ż = −l1signk1z− l2signk2z, z (0) = z0 (6)

where l1 > 0, l2 > 0, k1 =
m1+1
2 +

m1−1
2 sign (|z| − 1),

k1 =
m2+1
2 +

1−m2
2 sign (|z| − 1), signk1z = |z|k1 · sign (z),

and m1 > 1, 1/2 < m2 < 1. Then, system (6) is fixed-time
stable, and the settling time T is bounded by

T ≤ Tmax =
1

l2 (m1 − 1)
ln
(
l1 + l2
l1

)
+

1
l1 (1− m2)

ln
(
l1 + l2
l2

)
(7)

Proof: Eq. (6) can be rewritten as{
ż = −l1signm1z− l2z, |z| > 1
ż = −l1z− l2signm2z, |z| ≤ 1

(8)

Let y = 1 + ln |z| for |z| > 1 and y = |z|1−m2 for |z| ≤ 1.
Then, eq. (8) can be written as{

ẏ = −l1e(m1−1)(y−1) − l2, y > 1
ẏ = − (1− m2) l1y− (1− m2) l2, 0<y ≤ 1

(9)

Therefore, the upper bound of the convergence time can be
estimated by solving eq. (9).

Tmax = lim
z(0)→∞

T (z (0))

= lim
y0→∞

(∫ y0

1

1
l1e(m1−1)(y−1) + l2

dy

+

∫ 1

0

1
(1− m2) (l1y+ l2)

dy
)

= lim
y0→∞

∫ y0

1

1
l1e(m1−1)(y−1) + l2

dy

+
1

l1 (1− m2)
ln
(
l1 + l2
l2

)
(10)

Let T1 = lim
y0→∞

∫ y0
1

1
l1e(m1−1)(y−1)+l2

dy and ρ = e(m1−1)(y−1);

then

T1 =
1

(m1 − 1)
lim
ρ0→∞

∫ ρ0

1

1
ρ (l1ρ + l2)

dρ

=
1

(m1 − 1)
lim
ρ0→∞

∫ ρ0

1

(
1
l2ρ
−

l1
l2 (l1ρ + l2)

)
dρ

=
1

l2 (m1 − 1)
ln
(
l1 + l2
l1

)
(11)

60446 VOLUME 8, 2020



Y. Tian et al.: Fast Nonsingular TSMC Method for Nonlinear Systems With Fixed-Time Stability Guarantees

That is,

Tmax =
1

l2 (m1 − 1)
ln
(
1+

l2
l1

)
+

1
l1 (1− m2)

ln
(
1+

l1
l2

)
The proof is completed.
Remark 2: Compared with eq. (4), since ln (1+ (l2/l1)) ≤

(l2/l1) and ln (1+ (l1/l2)) ≤ (l1/l2), the fixed-time stable
system (6) achieves a faster convergence rate than the system
presented in Lemma 1. In detail, the proposed system uses
the variable power terms yk1 and yk2 , which can be adjusted
according to the system states, instead of ym1 and ym2 in
eq. (4); thereby, it achieves a fast convergence rate both far
from and at a close permissible range to the origin.

B. FAST FIXED-TIME NONSINGULAR TERMINAL SLIDING
MODE CONTROL
First, the singularity problem for the conventional FTSM is
discussed to clarify the motivations for this work.
Lemma 2: Consider the FTSM surface [19]

s = x2 + k̄1signā1x1 + k̄2signā2x1 (12)

where k̄1 > 0, k̄2 > 0, ā1 > 1, and 0 < ā2 < 1. Let the
control input be

u = −b−1(f + k̄1ā1 |x1|ā1−1 x2 + k̄2ā2 |x1|ā2−1 x2
+αsignγ1s+ βsignγ2s+ ksigns) (13)

The FTSM dynamics can be obtained as

ṡ = −αsignγ1s− βsignγ2s− ksigns+ d (14)

where α > 0, β > 0, γ1 > 1, 0 < γ2 < 1 and k = D is the
switching gain.

It can be concluded from [19] that the FTSM (12) is finite-
time convergent, and the convergence time is smaller than that
of the conventional TSM [16].Moreover, by applying Lemma
1 twice, it can be shown that the origin of (3) is fixed-time
stable and the settling time is bounded by

T < Tmax = T1 + T2 (15)

where

T1 =
1

α (γ1 − 1)
+

1
β (1− γ2)

and T2 =
1

k̄1 (ā1 − 1)
+

1

k̄2 (1− ā2)

Unfortunately, the negative fractional power term |x1|ā2−1 in
the control input (13) may cause a singularity when x1 = 0
and x2 6= 0. Therefore, the control input cannot be guaranteed
bounded during the reaching phase.

Inspired by [20], the saturation function method is adopted
to construct the control input to avoid the singularity problem.
Based on Theorem 1 and Lemma 2, a novel fast fixed-time
nonsingular terminal sliding mode (FFNTSM) is constructed
as

s = x2 + α1signk1x1 + β1signk2x1 (16)

where α1 > 0, β1 > 0, k1 =
m1+1
2 +

m1−1
2 sign (|x1| − 1),

k2 =
m2+1
2 +

1−m2
2 sign (|x1| − 1), m1 > 1, and

1/2 < m2 < 1.
The dynamics can be obtained as

ṡ = −α2signγ1s− β2signγ2s− ksigns+ d (17)

where α2 > 0, β2 > 0, γ1 =
n1+1
2 +

n1−1
2 sign (|s| − 1),

γ2 =
n2+1
2 +

1−n2
2 sign (|s| − 1), n1 > 1, and 1/2 < n2 < 1.

According to (17), the control law can be designed as

u = −b−1[f + α1k1 |x1|k1−1 x2 + sat
(
β1k2 |x1|k2−1 x2, h

)
+α2signγ1s+ β2signγ2s+ ksigns] (18)

In the controller design, the saturation function is applied to
limit the amplitude of the singularity term |x1|k2−1 x2 in the
control input. The saturation function is defined as

sat (x, y) =

{
x if |x| < y
ysign (x) if |x| ≥ y

(19)

It can be concluded from (16) that when the system
state is far from the equilibrium, α1signk1x1 dominates over
β1signk2x1, which guarantees a high convergence rate; when
the system state is close to the origin, the dominant term
β1signk2x1 determines fixed-time convergence. Thereby, the
dynamics converge very quickly in the whole FFNTSM (16),
and the form of the control law is concise.
Theorem 2: Consider the second-order system (3). The

states will converge to the origin within fixed time if the
sliding-mode surface is chosen as the proposed FFNTSM (16)
and the control law is taken to be (18); in this case, the settling
time T is bounded by

T < Tmax = T1 + T2 (20)

where

T1 =
1

β2 (n1 − 1)
ln
(
1+

β2

2(n1−1)/2α2

)
+

1
α2 (1− n2)

ln
(
1+

α2

2(n2−1)/2β2

)
T2 =

1
β1 (m1 − 1)

ln
(
1+

β1

2(m1−1)/2α1

)
+

1
α1 (1− m2)

ln
(
1+

α1

2(m2−1)/2β1

)
Proof: Consider the Lyapunov candidate function

V =
1
2
s2 (21)

whose time derivative along (3) yields

V̇

= sṡ = s(f + bu+ d + α1k1 |x1|k1−1 x2 + β1k2 |x1|k2−1 x2)

= s(d − ksigns+ β1k2 |x1|k2−1 x2 − sat(β1k2 |x1|k2−1 x2, h)

−α2signγ1s− β2signγ2s) (22)

According to Theorem 2.2 in [16], it follows that

V̇ ≤ s((D− k) |s| − α2 |s|γ1 − β2 |s|γ2 )
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≤ −α2 |s|γ1+1 − β2 |s|γ2+1

= −α2 (2V )(γ1+1)/2 − β2 (2V )(γ2+1)/2 (23)

when |s| ≥ 1, one has

V̇ ≤ −α2 (2V )(n1+1)/2 − β2 (2V ) (24)

when |s| < 1, (23) becomes

V̇ ≤ −α2 (2V )− β2 (2V )(n2+1)/2 (25)

Note that V = 0 implies s = 0. It follows from Theorem
1 that the system states can reach the sliding surface s = 0
within a fixed time:

t1 < T1 =
1

β2 (n1 − 1)
ln
(
1+

β2

2(n1−1)/2α2

)
+

1
α2 (1− n2)

ln
(
1+

α2

2(n2−1)/2β2

)
(26)

It can be concluded that the sliding surface s = 0 can be
reached from anywhere in the phase plane within a fixed time
t1 < T1. Then, when the system reaches the sliding surface
s = 0, the ideal sliding motion of the system satisfies the
following nonlinear differential equation:

ẋ1 = x2 = −α1signk1x1 − β1signk2x1 (27)

Similarly, according to Theorem 1, the settling time is
bounded by

t2 < T2 =
1

β1 (m1 − 1)
ln
(
1+

β1

2(m1−1)/2α1

)
+

1
α1 (1− m2)

ln
(
1+

α1

2(m2−1)/2β1

)
(28)

When state variable x1 settles to the origin, the state vari-
able x2 also converges to the origin.
Hence, the settling time T for system (3) can be estimated

by T < Tmax = T1 + T2. The proof is completed.
Remark 3: The situation of

∣∣β1k2 |x1|k2−1 x2∣∣ > h is
ignored in the proof process. Define the singularity area as
the region where

∣∣β1k2 |x1|k2−1 x2∣∣ > h. According to system
(3), the solution of x1 can be expressed as x1 (t) = x1 (0) +
t∫
0
x2 (τ ) dτ . Therefore, if x2 (t) > 0, x1 (t) will increase

monotonically until it leaves the singularity area. Similarly, if
x2 (t) < 0, x1 (t) will decrease monotonically until it leaves
the singularity area. From the above, it can be concluded
that the system states will not stay in the singularity region
forever, but will leave the area within finite time. Therefore,
as pointed out in [20], the existence of a singularity region
does not influence the results of the stability analysis, and
the time to travel through the singularity area is a very small
proportion of the total settling time. It can be concluded in
[20] that the introduction of the saturation function does not
significantly degenerate the control performance. Therefore,
an upper bound of settling time exists and can be estimated
by (20).
Remark 4: To guarantee that s = 0 lies outside

the singularity area, h should be selected according to

FIGURE 1. Design flow of the FFNTSM scheme.

β1k2 |x1max|
k2−1

(
α1signk1x1max + β1signk2x1max

)
< h,

where |x1| < x1max.
Remark 5: To determine the sliding manifold and achieve

good control performance, the parameters α1, β1,m1,m2, α2,
β2, n1, n2 and h can be selected based on the trade-off between
the convergence time and the steady-state tracking precision.
According to Theorem 2, parameter values should be selected
in the following ranges m1 > 1, n1 > 1, 1/2 < m2 < 1, and
1/2 < n2 < 1.
Remark 6: There exists a chattering phenomenon because

of the discontinuity of the sign function in the control
law (18). To alleviate chattering, the sign function is replaced
by

ρ (λ, s) =
eλs − 1
eλs + 1

(29)

where λ is a small positive constant. The function is used to
approximate the sign function, if λ is given properly, and then
the better approximating effect will be obtained.

In order to better understand the proposed control scheme,
a block diagram of the FFNTSM scheme is exhibited as
follows:

IV. SIMULATION RESULTS AND ANALYSIS
In this section, numerical simulation results are presented to
evaluate the performance of the proposed FFNTSM.
Simulation 1:
To investigate the effect of the design parameters on the

performance of FFNTSM, we consider the following four
settings of the sliding surface parameters with the same initial
state x1 (0) = 1: Case 1. α1 = β1 = 1, m1 = 9/5,
m2 = 5/9; Case 2. α1 = β1 = 2.5, m1 = 9/5, m2 = 5/9;
Case 3. α1 = β1 = 1, m1 = 11/5, m2 = 5/9; and Case 4.
α1 = β1 = 1, m1 = 9/5, m2 = 7/9.
Figure 2 shows how the convergence rates of FFNTSM

are influenced by the different sliding surface parameters.
By comparing case 1 with case 2, it is noted that when
α1, β1 increase, the convergence time decreases. By compar-
ing case 1 with case 4, it is noted that the smaller m2 is, the
faster the convergence rate becomes. The curves for case 1
and case 3 are almost the same, which means the controller
is more sensitive to the parameter m2 than to m1.Through the
above analysis, we can conclude that the parameters can be
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TABLE 1. SIP parameters.

FIGURE 2. Convergence rate with different sliding surface parameters.

selected according to the requirements of speed or control
effort.
Simulation 2:
A single inverted pendulum (SIP) system is considered to

verify the effectiveness of the proposed FFNTSM controller.
The dynamic system is formulated as{

ẋ1 = x2
ẋ2 = f + bu+ d

(30)

where

f =
g sin x1 − mlx22 cos x1 sin x1/(mc + m)

l
[
4/3− m cos2 x1/(mc + m)

]
and b =

cos x1/(mc + m)

l
[
4/3− m cos2 x1/(mc + m)

] .
x1 and x2 denote the angular position and velocity, respec-
tively. u denotes the applied force, and d denotes the external
disturbance. The SIP parameters are listed in Table 1. The
objective is to design a control law such that the SIP motion
tracks the given desired trajectory x1d. The system is control-
lable only if b 6= 0. Hence, the conditions |x1 (0)| ≤ π/2− ξ
and |x1d (t)| ≤ π/2− ξ are necessary, where ξ > 0 is a small
constant.

The trajectory tracking can be converted to a regula-
tion problem, and then we can apply the fixed-time control
methodology proposed in this paper. Define e1 = x1 − x1d
and e2 = x2 − ẋ1d; then{

ė1 = e2
ė2 = f − ẍ1d + bu+ d

(31)

FIGURE 3. Tracking error of each fixed-time controller.

The FFNTSM surface is defined by

s = e2 + α1signk1e1 + β1signk2e1 (32)

The fixed-time controller for SIP can be constructed as

u=−b−1[f − ẍ1d+α1k1 |e1|k1−1 x2+sat
(
β1k2|e1|k2−1 x2, h

)
+α2signγ1s+ β2signγ2s+ kρ (λ, s)] (33)

In the simulation, the external lumped disturbance is cho-
sen as d (x1, x2) = sin (10x1) + cos (x2) to demonstrate the
robustness of the proposed controller. The desired trajectory
is x1d (t) = sin (0.5π t) and the initial state is x1 (0) = 1,
x2 (0) = 0.5.
To verify the effectiveness of the proposed FFNTSM sur-

face and controller for enhancing control performance, three
typical fixed-time controllers are selected for comparison:
(1) Polyakov’s fixed-time controller [25], (2) Zuo’s fixed-
time controller [31], and (3) Li’s fixed-time controller [33].

Polyakov’s fixed-time controller for SIP can be expressed
as

u = −b−1[f − ẍ1d +
α1 + 3β1e21 + 2γ

2
signs

+signs0.5(α2s+ β2sign3s)] (34)

with the sliding surface

s = e2 + sign0.5(sign2e2 + α1e1 + β1sign3e2) (35)

Without any retuning of the well-designed control parameters
in [25], the settling time of the system is bounded by the
constant 8 s.

In addition, Zuo’s fixed-time controller can be expressed
as

u = −
f − ẍ1d + γ sign(s)

b
+

1
bk

×

[
α1

(
m1

n1
−
p1
q1

)
e
m1
n1
−
p1
q1
−1k2e22 −

p1
q1
k1−

q1
p1 e

2− q1
p1

2

]
−
1
b
p1
q1
k−

q1
p1 µτ e

1− q1
p1

2

(
α2s

m2
n2 + β2s

p2
q2

)
(36)

VOLUME 8, 2020 60449



Y. Tian et al.: Fast Nonsingular TSMC Method for Nonlinear Systems With Fixed-Time Stability Guarantees

FIGURE 4. Angular position and velocity of the inverted pendulum for (a) The proposed fixed-time controller. (b) Polyakov’s
fixed-time controller. (c) Zuo’s fixed-time controller. (d) Li’s fixed-time controller.

with the sliding surface

s = e1 + (ke2)q1/p1 (37)

where k (e1) = 1/
(
α1 |e1|m1/n1−p1/q1 + β1

)
> 0,

µτ

(
eq1/p1−12

)
=

sin
(
π

2
·
eq1/p1−12

τ

)
if eq1/p1−12 ≤ τ

1 otherwise
(38)

Without any retuning of the well-designed control parameters
in [31], the settling time of the system is bounded by the
constant 6.142 s.

In addition, Li’s controller can be formulated as

u = −b−1 [f − ẍ1d + k1a1 |e1|a1−1
(
φ

k1
+ e2

)
+αsignγ1s+ βsignγ2s+ kψ (ρ, s)

]
(39)

with the sliding surface

s = signa1e1 +
k2a2

2a2 − 1
sign2−1/a2

(
e2 + k1signa1e1

)
(40)

where

φ=
1
k2
sign1/a2

(
e2+k1signa1e1

)
+

k1a2
2a2 − 1

(
e2 + k1signa1e1

)
Without any retuning of the well-designed control param-

eters in [33], the settling time of the closed-loop system is
bounded by the constant 6.076 s.

The design parameters of the fixed-time controllers (34),
(36) and (39) have been selected properly in these refer-
ences to achieve good performance of the control scheme.
Therefore, these fixed-time controllers are chosen without
any retuning of the control parameters in the references, and
then their settling time are given.

In order to achieve good control performance and make
the comparison fair, the design parameters of the proposed
controller should be selected appropriately. According to the
requirements of the sliding surface parameters in Theorem 2,
parameter values should be selected within the following
ranges: m1 > 1, n1 > 1, 1/2 < m2 < 1, and 1/2 < n2 < 1.
From the conclusion of simulation 1, we can get that the
proposed controller is more sensitive to the parameter m2
than to m1. The appropriate m2 is selected firstly, and then
m1 is properly selected within the specified range. It is noted
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FIGURE 5. Phase portraits for (a) The proposed fixed-time controller. (b)Polyakov’s fixed-time controller. (c) Zuo’s fixed-time
controller. (d) Li’s fixed-time controller.

that when α1, β1 increase, the convergence time decreases.
However, faster convergence speed may cause the curves of
the angular position and the trajectories of phase portraits to
be non-smooth, and it will lead to the degeneration of the
control performance. Therefore, these parameters should be
determined based on the requirements for the fastness or the
steady-state tracking precision of the system. Analogously,
the value of h is determined according to remark 4, λ is
selected according to remark 6.

In summary, the design parameters of controller (33) are
selected as α1 = β1 = 1, α2 = β2 = 1,m1 = 9/5,m2 = 5/9,
n1 = 9/5, n2 = 5/9, k = 2, h = 0.1 and λ = 100. The
estimate of settling time T in (20) is 4.881 s.

The simulation results of tracking error under controllers
(33), (34), (36) and (39) are shown in Figure 3. All the
controllers can ensure good control performance under
bounded time-varying disturbance. The convergence time of
the closed-loop system under controller (33) is approximately
1.3 s, which is the shortest time; the convergence times of
different approaches are listed in Table 2. The effective-
ness of the upper-bound estimates in Theorem 2 is verified.
Moreover, the transient response under our controller (33) is
also the fastest. The settling time of the proposed controller

TABLE 2. Comparison of tracking error convergence time.

achieves the best control performance. The trajectories of
the angular position and velocity of the SIP are presented
in Figure 4. It can be observed from Figure 4(a)-4(d) that
these controllers achieve good control performances in the
steady state, and the angular position tracks the time-varying
reference input quickly under all the controllers. Meanwhile,
the angular position in Figure 4(a) tracks the reference input
faster than the others. Figure 5 displays the phase plots of the
four closed-loop systems, and it is obvious that the proposed
controller has the fastest rate of convergence to equilibrium
and retains a relatively high tracking precision. The curves
of the control input are shown in Figure 6. Due to the
introduction of the discontinuous sign function, a chattering
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FIGURE 6. Control inputs for (a) The proposed fixed-time controller. (b)Polyakov’s fixed-time controller. (c) Zuo’s fixed-time
controller. (d) Li’s fixed-time controller.

phenomenon occurs in Figure 6(b) and Figure 6(c). On the
other hand, the control input curve of the proposed controller
is smoother than those of the other three. It is notable that the
oscillation amplitude and the control force in Figure 6(a) are
smaller than those in Figure 6(b) - Figure 6(d).

The total variation (TV) [46] of the input u (t) is introduced
to evaluate the control input performance, which can indicate
the smoothness of the control input signal.

TV =
N−1∑
i=1

|ui+1 − ui| (41)

The effort of the control input is calculated by the 2-norm
method. For the desired control performance, the control
energy should be as small as possible.

The comparison of the TVs and efforts are listed in Table 3.
It can be observed that the controller proposed in this paper
has the minimum input variation and achieves the least con-
trol energy.

From the above simulation results and analyses, it can
be observed that the proposed controller is effective against
matched lumped time-varying disturbance. Moreover, it
has a bounded settling time and achieves better control

TABLE 3. Input performance comparison for the four controllers.

performance than the other three controllers with low control
energy cost. The control signals of the proposed controller
are continuous, without a chattering phenomenon, and the
singularity problem is avoided. Therefore, the proposed con-
troller can guarantee a fast convergence rate and relatively
high precision.

V. CONCLUSION
In this paper, an FFNTSM control problem for second-order
nonlinear systems in the presence of matched model uncer-
tainty and external disturbance is investigated. First, a novel
fixed-time convergence system is developed, and then, the
FFNTSM surface is derived based on this fixed-time system.
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With the proposed control law, the closed-loop settling time
is independent of the initial state and can be estimated in
advance. The singularity problem can be avoided, and the
control scheme achieves good control performance with low
control energy cost, which greatly facilitates practical appli-
cations. Simulations validate the effectiveness of this method.
In future work, a less conservative upper-bound estimation
for the settling time and the extensions of the obtained results
for higher-order nonlinear systems will be considered; based
on the proposed fixed-time nonsingular terminal slidingmode
control scheme, we will further carry on research of the fixed-
time guidance in aerospace engineering and the fixed-time
consensus for second-order multi-agent systems.

REFERENCES
[1] V. Utkin, ‘‘Variable structure systems with sliding modes,’’ IEEE Trans.

Autom. Control, vol. AC-22, no. 2, pp. 212–222, Apr. 1977.
[2] A. Sabanovic, ‘‘Variable structure systems with sliding modes in motion

control—A survey,’’ IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 212–223,
May 2011.

[3] Y. Wang, L. Gu, and Y. Xu, ‘‘Practical tracking control of robot manipula-
tors with continuous fractional-order nonsingular terminal sliding mode,’’
IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194–6204, 2016.

[4] Y. Wang, K. Zhu, and B. Chen, ‘‘Model-free continuous nonsingular fast
terminal sliding mode control for cable-driven manipulators,’’ ISA Trans.,
to be published, doi: 10.1016/j.isatra.2019.08.046.

[5] Y. Wang, F. Yan, K. Zhu, B. Chen, and H. Wu, ‘‘A new practical robust
control of cable-driven manipulators using time-delay estimation,’’ Int. J.
Robust Nonlinear Control, vol. 29, no. 11, pp. 3405–3425, 2019.

[6] P. K. Ray, S. R. Paital, A.Mohanty, F. Y. S. Eddy, and H. B. Gooi, ‘‘A robust
power system stabilizer for enhancement of stability in power system
using adaptive fuzzy sliding mode control,’’ Appl. Soft. Comput., vol. 73,
pp. 471–481, Dec. 2018.

[7] H. Ye, M.-M. Li, W.-G. Luo, and Y.-X. Qin, ‘‘Finite-time consensus of
heterogeneous multi-agent systems without velocity measurements and
with disturbances via integral sliding mode control,’’ IEEE Access, vol. 6,
pp. 62255–62260, 2018.

[8] Q. Hu, H. Tuo, and M. Xin, ‘‘Sliding-mode impact time guidance law
design for various target motions,’’ J. Guid., Control, Dyn., vol. 42, no. 1,
pp. 136–148, 2018.

[9] S. P. Bhat and D. S. Bernstein, ‘‘Finite-time stability of continu-
ous autonomous systems,’’ SIAM J. Control Optim., vol. 38, no. 3,
pp. 751–766, Jan. 2000.

[10] H. Zhang, J. Hu, and X. Yu, ‘‘Adaptive sliding mode fault-tolerant control
for a class of uncertain systems with probabilistic random delays,’’ IEEE
Access, vol. 7, pp. 64234–64246, 2019.

[11] L. Qiao and W. Zhang, ‘‘Double-loop integral terminal sliding mode
tracking control for UUVs with adaptive dynamic compensation of uncer-
tainties and disturbances,’’ IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 29–53,
Jan. 2018.

[12] J. Hu, H. Zhang, and X. Yu, ‘‘Design of sliding-mode-based control for
nonlinear systems with mixed-delays and packet losses under uncertain
missing probability,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be pub-
lished, doi: 10.1109/TSMC.2019.2919513.

[13] S. T. Venkataraman and S. Gulati, ‘‘Control of nonlinear systems using
terminal sliding modes,’’ in Proc. Amer. Control Conf., Chicago, IL, USA,
1992, pp. 891–893.

[14] Z. Man, ‘‘A robust MIMO terminal sliding mode control scheme for
rigid robotic manipulators,’’ IEEE Trans. Autom. Control, vol. 39, no. 12,
pp. 2464–2469, Dec. 1994.

[15] X. H. Yu and Z. H. Man, ‘‘Multi-input uncertain linear systems with
terminal sliding-mode control,’’ Automatica, vol. 34, no. 3, pp. 389–392,
1998.

[16] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, ‘‘Continuous finite-time control
for robotic manipulators with terminal sliding mode,’’ Automatica, vol. 41,
no. 11, pp. 1957–1964, Nov. 2005.

[17] Y. Wu, X. Yu, and Z. Man, ‘‘Terminal sliding mode control design
for uncertain dynamic systems,’’ Syst. Control Lett., vol. 34, no. 5,
pp. 281–287, 1998.

[18] Y. Feng, X. Yu, and Z. Man, ‘‘Non-singular terminal sliding mode control
of rigid manipulators,’’ Automatica, vol. 38, no. 12, pp. 2159–2167, 2002.

[19] L. Yang and J. Yang, ‘‘Nonsingular fast terminal sliding-mode control for
nonlinear dynamical systems,’’ Int. J. Robust Nonlinear Control, vol. 21,
no. 16, pp. 1865–1879, Nov. 2011.

[20] Y. Feng, X. Yu, and F. Han, ‘‘On nonsingular terminal sliding-mode
control of nonlinear systems,’’ Automatica, vol. 49, no. 6, pp. 1715–1722,
Jun. 2013.

[21] L. Qiao and W. Zhang, ‘‘Trajectory tracking control of AUVs via
adaptive fast nonsingular integral terminal sliding mode control,’’ IEEE
Trans Ind. Informat., vol. 16, no. 2, pp. 1248–1258, Feb. 2020, doi:
10.1109/TII.2019.2949007.

[22] L. Qiao and W. Zhang, ‘‘Adaptive non-singular integral terminal sliding
mode tracking control for autonomous underwater vehicles,’’ IET Control
Theory Appl., vol. 11, no. 8, pp. 1293–1306, May 2017.

[23] Y. Wang, L. Liu, D. Wang, F. Ju, and B. Chen, ‘‘Time-delay control
using a novel nonlinear adaptive law for accurate trajectory tracking of
cable-driven robots,’’ IEEE Trans Ind. Informat., to be published, doi:
10.1109/TII.2019.2951741.

[24] Y. Wang, F. Yan, J. Chen, F. Ju, and B. Chen, ‘‘A new adaptive time-delay
control scheme for cable-driven manipulators,’’ IEEE Trans Ind. Informat.,
vol. 15, no. 6, pp. 3469–3481, Jun. 2019.

[25] A. Polyakov, ‘‘Nonlinear feedback design for fixed-time stabilization of
linear control systems,’’ IEEE Trans. Autom. Control, vol. 57, no. 8,
pp. 2106–2110, Aug. 2012.

[26] W. Lu, X. Liu, and T. Chen, ‘‘A note on finite-time and fixed-time stabil-
ity,’’ Neural Netw., vol. 81, pp. 11–15, Sep. 2016.

[27] A. Polyakov and L. Fridman, ‘‘Stability notions and Lyapunov functions
for sliding mode control systems,’’ J. Franklin Inst., vol. 351, no. 4,
pp. 1831–1865, Apr. 2014.

[28] A. Polyakov, D. Efimov, and W. Perruquetti, ‘‘Finite-time and fixed-time
stabilization: Implicit Lyapunov function approach,’’ Automatica, vol. 51,
pp. 332–340, Jan. 2015.

[29] A. Polyakov, D. Efimov, and W. Perruquetti, ‘‘Robust stabilization of
MIMO systems in finite/fixed time,’’ Int. J. Robust Nonlinear Control,
vol. 26, no. 1, pp. 69–90, Jan. 2016.

[30] Z. Zuo and L. Tie, ‘‘Distributed robust finite-time nonlinear consensus
protocols for multi-agent systems,’’ Int. J. Syst. Sci., vol. 47, no. 6,
pp. 1366–1375, Apr. 2016.

[31] Z. Zuo, ‘‘Non-singular fixed-time terminal sliding mode control of non-
linear systems,’’ IET Control Theory Appl., vol. 9, no. 4, pp. 545–552,
Feb. 2015.

[32] Z. Zuo, ‘‘Nonsingular fixed-time consensus tracking for second-order
multi-agent networks,’’ Automatica, vol. 54, pp. 305–309, Apr. 2015.

[33] H. Li and Y. Cai, ‘‘On SFTSM control with fixed-time convergence,’’ IET
Control Theory Appl., vol. 11, no. 6, pp. 766–773, Apr. 2017.

[34] J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, ‘‘Fast fixed-time nonsingular
terminal sliding mode control and its application to chaos suppression in
power system,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2,
pp. 151–155, Feb. 2017.

[35] C. Hu, J. Yu, Z. Chen, H. Jiang, and T. Huang, ‘‘Fixed-time stability of
dynamical systems and fixed-time synchronization of coupled discontinu-
ous neural networks,’’ Neural Netw., vol. 89, pp. 74–83, May 2017.

[36] F. Yang, C.-Z. Wei, R. Wu, and N.-G. Cui, ‘‘Non-recursive fixed-time
convergence observer and extended state observer,’’ IEEE Access, vol. 6,
pp. 62339–62351, 2018.

[37] M. Basin, Y. Shtessel, and F. Aldukali, ‘‘Continuous finite- and fixed-time
high-order regulators,’’ J. Franklin Inst., vol. 353, no. 18, pp. 5001–5012,
Dec. 2016.

[38] Y. Huang, S. Qiu, S. Ren, and Z. Zheng, ‘‘Fixed-time synchronization of
coupled Cohen–Grossberg neural networks with and without parameter
uncertainties,’’ Neurocomputing, vol. 315, pp. 157–168, Nov. 2018.

[39] B. Tian, Z. Zuo, X. Yan, and H. Wang, ‘‘A fixed-time output feedback con-
trol scheme for double integrator systems,’’Automatica, vol. 80, pp. 17–24,
Jun. 2017.

[40] Y. Shang and Y. Ye, ‘‘Fixed-time group tracking control with unknown
inherent nonlinear dynamics,’’ IEEE Access, vol. 5, pp. 12833–12842,
2017.

[41] B. Jiang, Q. Hu, and M. I. Friswell, ‘‘Fixed-time attitude control for rigid
spacecraft with actuator saturation and faults,’’ IEEE Trans. Control Syst.
Technol., vol. 24, no. 5, pp. 1892–1898, Sep. 2016.

[42] J. Gao, S. Zhang, and Z. Fu, ‘‘Fixed-time attitude tracking control for rigid
spacecraft with actuator misalignments and faults,’’ IEEE Access, vol. 7,
pp. 15696–15705, 2019.

VOLUME 8, 2020 60453

http://dx.doi.org/10.1016/j.isatra.2019.08.046
http://dx.doi.org/10.1109/TSMC.2019.2919513
http://dx.doi.org/10.1109/TII.2019.2949007
http://dx.doi.org/10.1109/TII.2019.2951741


Y. Tian et al.: Fast Nonsingular TSMC Method for Nonlinear Systems With Fixed-Time Stability Guarantees

[43] Y. Zhang, S. Tang, and J. Guo, ‘‘Adaptive terminal angle constraint inter-
ception against maneuvering targets with fast fixed-time convergence,’’ Int.
J. Robust Nonlinear Control, vol. 28, no. 8, pp. 2996–3014, 2018.

[44] A. Filippov, Differential Equations With Discontinuous Righthand Sides:
Control Systems. Dordrecht, The Netherlands: Academic, 1988.

[45] S. R. Kumar and D. Ghose, ‘‘Three-dimensional impact angle guidance
with coupled engagement dynamics,’’ Proc. Inst. Mech. Eng., G, J. Aerosp.
Eng., vol. 231, no. 4, pp. 621–641, Mar. 2017.

[46] X. Liu and Y. Han, ‘‘Finite time control for MIMO nonlinear system based
on higher-order sliding mode,’’ ISA Trans., vol. 53, no. 6, pp. 1838–1846,
Nov. 2014.

YE TIAN was born in Shanxi, China, in 1986.
He received the B.E. degree in automation engi-
neering from the Beijing Institute of Technology,
Beijing, China, in 2008, and the M.E. degree in
automation engineering from Northwestern Poly-
technical University, Xi’an, China, in 2015. He is
currently pursuing the Ph.D. degree in control sci-
ence and engineering with Xi’an Jiaotong Univer-
sity, Xi’an. His current research interests include
guidance, control and dynamics for flight vehicles,
and nonlinear control theory.

YUANLI CAI (Member, IEEE) was born in
Guizhou, China, in 1963. He received the B.S.,
M.S., and Ph.D. degrees in aerospace engineering
from Northwestern Polytechnical University, in
1984, 1987, and 1990, respectively.

From 1991 to 1993, he was with the State Key
Laboratory of Structure and Vibration forMechan-
ical Systems as a Research Fellow. He joined the
Department of Automatic Control, Xi’an Jiaotong
University, as an Associate Professor, in 1993,

where he became a Full Professor, in 1999. He has served as the Department
Chair of Automatic Control, from 1994 to 1998, and the President of the
Xiamen Institute of Technology, from January 2014 to February 2019. He
was a Guest/Visiting Professor with California University at Riverside, CA,
USA, Yuan-Ze University, Taiwan, and the Chinese Academy of Science,
China. He is currently a Full Professor, the Deputy Director of the Shaanxi
Provincial Laboratory for Digital Technologies and Intelligent Systems,
and the Chairman of the Institute of Control Engineering, Xi’an Jiaotong
University. His main research interests are in the areas of guidance, control,
and dynamics for flight vehicles, nonlinear control theory, signal processing,
and intelligent systems. He is the author or coauthor of six books and more
than 260 journal and conference papers and held several patents.

Dr. Cai is also a Senior Member of the AIAA. He currently serves as an
Editor for several transactions.

YIFAN DENG was born in Jiangxi, China, in 1990.
He received the B.S., M.S., and Ph.D. degrees in
aerospace engineering from Northwestern Poly-
technical University, in 2009, 2012, and 2016,
respectively. He is currently holding a postdoctoral
position at Xi’an Jiaotong University. His current
research interests include guidance, control, and
dynamics for flight vehicles and spacecrafts.

60454 VOLUME 8, 2020


	INTRODUCTION
	PROBLEM STATEMENT
	PRELIMINARIES
	 CONTROL OBJECTIVE

	MAIN RESULT
	A NOVEL FAST FIXED-TIME CONVERGENCE SYSTEM
	FAST FIXED-TIME NONSINGULAR TERMINAL SLIDING MODE CONTROL

	SIMULATION RESULTS AND ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	YE TIAN
	YUANLI CAI
	YIFAN DENG


