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ABSTRACT Predicting enzymes function is an important and difficult problem, particularly when enzymes
may have the multiplex character, i.e., some enzymes simultaneously have two or three function classes.
Most of the existing enzyme function predictor can only be used to deal with the mono-functional enzymes.
Actually, multi-functional enzymes should not be ignored because they usually possess diverse biological
functions worthy of our special notice. By introducing the ‘‘improved Hybrid Multi-label Classifier’’ and
‘‘neighbor score’’, a new predictor, called MF-EFP, has been developed that can be used to deal with the
systems containing both mono-functional and multi-functional enzymes. As demonstration, the jackknife
cross-validation was performed with MF-EFP on a benchmark dataset of enzymes classified into the
following 7 functional classes: (1) EC 1 Oxidoreductase, (2) EC 2 Transferase, (3) EC 3 Hydrolase, (4) EC
4 Lyase, (5) EC 5 Isomerase, (6) EC 6 Ligase, (7) EC7 Translocases, where none of enzymes included has
≥90% pairwise sequence identity to any other in a same subset. The subset accuracy and average precision
thus obtained by MF-EFP was 85.62% and 94.16% respectively. Extensive experiments also show that
MF-EFP can outperform the existing predictors that also have the capacity to deal with such a complicated
and stringent system. As a user-friendly web-server, MF-EFP is freely accessible to the public at the web-site
http:// www.jci-bioinfo.cn/MF-EFP.

INDEX TERMS Multi-functional enzyme, multi-label learning, neighbor score, hybrid method, function
prediction.

I. INTRODUCTION
Enzymes play crucial roles in the catalysis of biological and
chemical reactions and are considered to be one of the most
important biocatalysts in all biological processes. As a biocat-
alyst, many chemical reactions can be accelerated after being
catalyzed. Based on enzyme-catalyzed chemical reactions,
different enzymes were numerically classified by enzymatic
Commission number (EC). Enzyme function prediction is
important as can be viewed from the following four aspects.
(1) It is a significant step toward designing novel enzymes.

The associate editor coordinating the review of this manuscript and
approving it for publication was Leyi Wei.

(2) It can help our understanding of the intricate pathways
that regulate biological processes at the cellular level. (3) It
is very useful for diagnosing enzyme-related diseases. (4) It
can speed up the process of prioritizing drug targets.

Protein sequences growth has spurted in the post-genomic
age, it is highly desired to develop computational methods
for timely and effectively identifying functions for newly
found enzymes, due to both the high costs and time-
consuming nature of wet-lab biochemical experiments.
Actually, the automated prediction the enzymes functions
has been an important topic in the field of bioinformatics.
During the last decade, various predictors have been proposed
for both mono-functional and multi-functional enzymes on
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different datasets. These predictors each had their own advan-
tages and played a role in stimulating the development of
predicting enzyme function although they also each had their
own limitations.

The development of predicting enzyme function has
generally followed five main research directions. Firstly,
based on the fact that structure similarity enzymes have sim-
ilar functions, many researches, such as [1]–[3], focused on
predicting the enzyme function by searching the similar struc-
ture enzymes that their function have been determined by
experiments in the database or the library. However, enzyme
structure prediction is necessary but as a matter of fact struc-
ture prediction is still relatively immature. The errors in the
process of structure prediction and function prediction should
have a negative effect on the final prediction result. Secondly,
based on the fact that enzymes with similar sequence have
similar functions, the most straightforward method is to
use the sequence similarity search-based tools, for example,
BLAST, to search enzyme database for those enzymes with
high sequence similarity to the query enzyme. Subsequently,
the function annotations of the enzymes thus found are used
to deduce the function of query enzyme [4]–[6]. However,
this kind of method failed to work when the enzymes have
the remote homology enzyme means that the enzyme have
same function but these sequences are not similar. Thirdly,
extracting more useful information from enzyme sequences
via different models and predicting the enzyme function
using machine learning algorithms is the universal stud-
ied direction. Various discrete models to represent enzyme
sequences were proposed in hopes to establish some sort
of correlation through which the prediction could be more
effectively carried out, such as from amino acid composition,
to amino acid physico-chemical properties [7], to the various
modes of pseudo amino acid composition [8], and to the
higher-level forms of pseudo amino acid composition by
conjoint triad feature and hierarchical context [9], sequential
evolution information [10], InterPro signatures [11], and
functional domain information. K-nearest neighbor method,
Adaptive fuzzy K-nearest neighbor method [12], support vec-
tor machine [13], Neural network system [14], deep learning
[15] have been proposed for enzyme classification. Fourthly,
Enzyme Commission (EC) system specifies the function of
an enzyme by four digits and has a tree structure, many
researchers predict enzyme functional classes and subclasses
from top to bottom method, Che et al. [10] predicted enzyme
main six classes, corresponding to (1) Oxidoreductase,
(2) Transferase, (3) Hydrolase, (4) Lyase, (5) Isomerase,
(6) Ligase. EzyPrd is a three-layer predictor that can predict
the enzyme main classes and subclasses [16]. Enzml and
EFICAz are four-layer predictor that can predict four EC
digit levels [17]. Fifthly, most of these existing methods were
established based on the assumption that an enzyme can
catalyze only one reaction specifically. Such an assumption
is valid only for mono-functional enzymes but not for multi-
functional enzymes that can catalyze two to six chemical
reactions. Multi-functional enzymes actually constitute a

relatively large part of all the enzymes. With regard to
multifunctional enzyme prediction, Zou et al. [7] proposed
two feature models to make predictions and obtained 99.54%
and 98.73% accuracy by using 20-D and 188-D features,
respectively; however, dataset redundancywas not mentioned
in the paper. Subsequently, Zou and Xiao [18] and Che et al.
[10] predict multifunctional enzyme in the case of taking
redundancy into account. Zou used three feature extrac-
tion algorithms to compare results, the best one is SAAC
with 90.57% accuracy. Che applied feature extraction from
PSSM (position-specific scoring matrix), 91.25% accuracy is
achieved in multi-functional enzyme prediction. Amidi et al.
[3] combined structural and sequence information based on
the ML-KNN and ML-SVM to predict enzyme function on a
specific dataset Zou et al. [19] designed mIDEEPre to predict
multi-functional enzyme function based on deep learning.

However, exiting predictors have following shortcomings.
(1) Only 6 main functional classes can be predicted. In order
to enhance the power of practical application, the coverage
scope should be enlarged, such as from covering only 6 main
functional classes to 7 main functional classes. (2) It was
through an optimal threshold factor to control the prediction
of multiple function, it would be more natural if we could
find a more intuitive approach to deal with such a problem.
The present study was initiated in an attempt to develop a
new andmore powerful predictor by addressing the above two
problems.

II. MATERIALS AND METHODS
A. BENCHMARK DATASET
Enzyme sequences were taken from the Release 2019.4 of
Enzyme nomenclature database at website http: //enzyme.
expasy.org/, which allows one to select enzyme sequence
entries according to their function classes. In order to col-
lect multi-functional enzymes and meanwhile ensure a high-
quality for the benchmark dataset, the following criteria
should be strictly considered: (a) Enzyme sequences with
keyword ‘‘multi-functional’’ were collected; (b) Sequences
annotated with ‘‘fragment’’ were took out; also, sequences
with < 50 amino acid residues were excluded because they
might just be fragments; (c) To reduce the influence of redun-
dancy and homology bias, the program CD-HIT was used to
remove these enzymes that had > 90 % pairwise sequence
identify to any other in a same subset.

Finally, we obtained 4479 different enzyme sequences
which covers 7 different classes and can be formulated as
follows:

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 (1)

where ∪ stands for the symbol for ‘‘union’’ in the set theory,
while S1 represents the subset of oxidoreductases (EC 1), S2
for transferases (EC 2), S3 for hydrolases (EC 3), S4 for lyase
(EC 4), S5 for isomerase (EC 5), S6 for ligase (EC 6), S7
for translocase (EC 7). The particular information about the
above collected dataset is listed in Table 1.
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TABLE 1. Distribution of multifunctional enzymes (release 2019.4) before and after CD-HIT (0.9).

In this study, the same benchmark dataset as investigated
in Che et al. [10] was adopted for demonstration.
It can be directly downloaded from the web-site at
http://server.malab.cn/ MEC/download.jsp. The reasons we
choose it as a compare dataset for the current study are
that che’s dataset contains the multifunctional enzymes
have been well documented and reported in recent papers.
Table 2 shows the distribution of multifunctional enzymes in
the 6 functional classes. Of the 2181 different multifunctional
enzymes sequences, 1983 to two classes, 189 to three classes,
9 to four classes.

B. REPRESENTATION OF ENZYME SAMPLE
Given a query enzyme sequence P as formulated by

P = Q1Q2Q3 · · ·QL (2)

whereQ1 represents the first residue in enzyme sequence,Q2
represents the second residue, . . . , QL the L-th residue. How
can we use its sequence information to predict which func-
tion(s) the enzyme P belongs to? In recent, many methods for
predicting various protein attributes were based on the split
Amino acid composition (SAAC) discrete model [18], [20]
because the SAAC avoids completely losing the sequence-
order information. Afridi and Lee have developed SAAC-
based method and genetic ensemble classifier to predict mito-
chondrial achieved reasonable accuracy [21]. In our research,
the SAAC and PseAAC (pseudo amino acid composition)
hybrid model was proposed to represent the sample of an
enzyme.

In SAACmodel, the enzyme sequences are divided in parts
and compositions of each part are calculated separately. In our
SAAC model, each enzyme is divided into three parts: (i) 25
amino acids of N-termini, (ii) 25 amino acids of C-termini,
and (iii) region between these two terminuses. As can be
expressed by

P1 = Q1Q2Q3 · · ·Q25 (3)

P2 = Q26Q27Q28 · · ·QL−25 (4)

P3 = QL−24QL−23QL−22 · · ·QL (5)

According to PseAAC, P1, P2, and P3 enzyme sequence can
be converted into a 20+3 dimension vector respectively,
among the 20+3 elements, the first 20 represent the amino
acid composition of the 20 native amino acids, while the latter
3 elements represent the sequence-order information. The
sequence-order information can be indirectly represented by
the following expression:

δη =
1

L − η

∑L−η

i=1
�
(
Ri,Ri+η

)
, (η = 1, 2, · · · ,3) (6)

In general,3 should less than the length of the P1, P2, and
P3. The δη is the η-th tier correlation factor with that reflects

the sequence-order information between all the η-th most
contiguous residues separated by η. The correlation function
�
(
Ri,Rj

)
can be defined as follows:

�
(
Ri,Rj

)
=

1
3

{[
F
(
Rj
)
− F (Ri)

]2
+
[
G
(
Rj
)
− G (Ri)

]2
+
[
H
(
Rj
)
− H (Ri)

]2} (7)

where F (Ri) ,G (Ri) and H (Ri) are the evaluated values
of hydrophobicity, hydrophilicity, and mass, respectively.
Before the three types of values were used, a standard
conversion should be conducted using Eq. (7) of [22]

pϕ =


fϕ∑20

i=1 fi + ω
∑3
η=1 δn

(1 ≤ ϕ ≤ 20)

ωδϕ−20∑20
i=1 fi + ω

∑3
η=1 δη

(20+ 1 ≤ ϕ ≤ 20+3)

(8)

where ω is the weight factor, fi (i = 1, 2, 3, · · · 20) represent
the normalized occurrence frequencies of the 20 native amino
acids, and δη is the η-th tier sequence-correlation factor,
which can be computed by Eq. (6). According to Eqs. (3)–(8),
the three parts of enzyme P can be formulated respectively,
the enzyme P can been expressed by integrating three parts:

P =
[
p1, p2, · · · , p60, p60+1, · · · , p60+33

]T (9)

C. PREDICTION ENGINE
A novel multi-label classification algorithm hML-KNN is
proposed by integrating the feature score, neighbor score,
and a self-adapted label assigning threshold, described in the
following sections. hML-KNN is based on hMuLab multi-
label algorithm. The performance of hMuLab is accurate
and stable in biomedical multi-label classification. The main
reason is that there are two complementary scoring methods
for comprehensive modeling. The measurement feature score
f1(e, yj) is calculated to evaluate whether the enzyme e has the
functional class yj based on a regression model. In the feature
scoring method, the linear decision function is calculated
according to the global information in the training data. The
neighbor score f2(e, yj) is used to evaluate how significantly
the neighbors of an enzyme e tend to have the functional label
yj. However, neighborhood scoring method uses the non-
linear aggregation of label information to incorporate label
correlation into the model. The functional class yj whether
belongs to enzyme e is quantified as a weighted sum of
feature score f1(e, yj) and neighbor score f2(e, yj) as

f
(
e, yj

)
= af1

(
e, yj

)
+ (1− a)f2(e, yj) (10)

where 1 ≤ j ≤ 7, a is the weight factor and 0 ≤ a ≤ 1. The
functional classes belong to enzyme e are defined as

h (e) =
{
yj
∣∣f (e, yj) ≥ 0, 1 ≤ j ≤ 7

}
(11)
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Therefore, the hybrid method hMuLab provides a valid
way to integrate different information sources for predicting
multi-label enzyme functional classification problems, which
may be a complementary solution to existing algorithms.
A detailed description about how the classifier works is
clearly described in [23]. The predictor established in this
work has the ability in predicting the functional classes of
both singleplex and multiplex functional enzymes.

In hMuLab, an optimal threshold factor to control the
prediction of multifunctional enzymes is to set a constant as
described in Eq.11. However, the constant threshold does not
consider the difference between different enzymes. It would
be more natural if we could find a more intuitive approach
to deal with such a problem. Now, for a query enzyme e, its
functional classes will be predicted according to the following
steps.
Step 1: The number of how many different functional

classes it belongs to will be determined by its nearest neigh-
bor enzyme in train dataset S. For example, suppose e∗ is
the nearest enzyme to e in S. if e∗ has only one functional
class, then e will also have only one function; if e∗ has
two functional classes, then e will also have two functional
classes; and so forth.
Step 2:However, the concrete functional class(es) to which

e belongs will not be the same as e∗ does, but determined by
the element(s) in Eq.11 that has(have) the highest score(s).
for example, if e is found belonging to only one function
in Step 1, and the highest score in Eq.11 is f (e, y7), then
enzyme ewill be predicted that it has the translocase function.
If e is found belonging to three functional classes in Step 1,
and the first highest scores in Eq. 11 are f (e, y1), f (e, y3),
and f (e, y6), then e will be predicted that it have function
oxidoreductases, hydrolases, and ligase simultaneously.

The entire classifier thus established is called MF-EFP,
which can be used to predict the functional class of both
mono-functional and multi-functional enzymes.

III. MEASUREMENT
In single-label learning, the metrics such as accuracy, recall,
precision, F-measure are frequently used. But in multi-label
learning, each sample is a label set, which makes the evalua-
tion index much more complex.

A test set consisting ofmmultiple label samples expressed
by S = {(xi, yi) | i = 1, 2, 3 · · ·m}, where xi ∈ χ is a feature
vector in sample space and yi ∈ 0 is the label set to which xi
belongs. Here, we employed both example-based and label-
based methods.

TPj = |{xi | li ∈ yi ∧ li ∈ h (xi) , 1 ≤ i ≤ m}| (12)

FPj = |{xi | li /∈ yi ∧ li ∈ h (xi) , 1 ≤ i ≤ m}| (13)

TN j = |{xi | li /∈ yi ∧ li /∈ h (xi) , 1 ≤ i ≤ m}| (14)

FN j = |{xi | li ∈ yi ∧ li /∈ h (xi) , 1 ≤ i ≤ m}| (15)

where h (xi) indicates the set of predicted the labels of
the enzyme xi, and 1 ≤ j≤ 7. B

(
TPj,FPj,TN j,FN j

)
denotes the use of a binary evaluation index B ∈

{Precison,Recall,F− score} for the j − th label, while the

label-based multi-label evaluation index has the following
two modes:

Macro-averaging:

Bmacro =
1
7

∑7

j=1
B
(
TPj,FPj,TN j,FN j

)
(16)

Micro-averaging:

Bmicro=B
(∑7

j=1
TPj,

∑7

j=1
FPj,

∑7

j=1
TN j,

∑7

j=1
FN j

)
(17)

The performance of the learner on each sample is examined
by the evaluation index of the sample, and then the average
results of all samples are taken.

Hamming Loss:

HammingLoss =
1
m

∑m

i=1

|h (xi)1yi|
7

(18)

where1 denotes the symmetric difference between two sets,
|·| is used to find the cardinals of the set (the number of
elements),

Subset Accuracy:

SubsetAccuracy =
1
m

∑m

i=1
I (h (xi) = yi) (19)

where I is the Kronecker delta:
I (h (xi) = yi) = 1, if and only all the labels in h (xi)

are equal to those in yi
I (h (xi) = yi) = 0, otherwise

(20)

One Error:

OneError =
1
m

∑m

i=1
I
([
argmax l∈Y f (xi, l)

]
/∈ yi

)
(21)

where l is a known label of xi. The index of label sorting is
defined according to the sorting relation of the output value of
tag. If themulti-label learner has a real-valued output function
f (·, ·), all the labels can be sorted in order of their output
values from large to small, and the ranking value of the label
l can be represented by r (x, l).

Coverage:

Coverage =
1
m

∑m

i=1
max l∈yir (xi, l)− 1 (22)

Ranking Loss:

RankingLoss =
1
m

∑m

i=1

1

|yi|
∣∣yi∣∣ ∣∣{(l, l ′) |f (xi, l)

≤ f
(
xi, l ′

)
,
(
l, l ′

)
∈ yi × yi

}∣∣ (23)

where yi is the subset of class labels associated with sample
xi, yi is the complementary subset of yi.

Average precision:

AveragePrecision

=
1
m

∑m

i=1

1
|yi|

∑
l∈yi

∣∣{l ′|r (xi, l ′) ≤ r (xi, l) , l ′ ∈ yi}∣∣
r (xi, l)

(24)
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TABLE 2. Distribution of multifunctional enzymes (Che 2016) before and after CD-HIT (0.9).

TABLE 3. The jackknife test result of multifunctional enzymes on dataset I showed in Table 1 based on different representation of enzyme sample.

TABLE 4. The 5-fold cross-validation results of Multi-label classification on dataset II showed in Table 2.

IV. RESULTS AND DISCUSSION
In statistical prediction, independent dataset test, sub-
sampling test (such as five- or ten-fold cross-validation),
and jackknife test have often been used to evaluate the per-
formance of the prediction. Among the three test methods,
the jackknife test was considered as the least arbitrary that can
always yield a unique result for a given benchmark dataset.
However, the more numbers of subsets (functional classes)
a benchmark covers, the more difficult to achieve a high
overall success rate in using the jackknife method for cross-
validation.

The newest multifunctional enzymes (release 2019.4)
in Table 2 as benchmark dataset S which contains 4479 pro-
teins covers 7 functional classes. It is worthy pointing out
that the data are imbalanced, with 2021 belong to one class,
2248 to two classes, 198 to three classes, 12 to four classes.
Using the criteria for multi-label classification algorithm that
have been discussed in section Measurement, we evaluated
MF-EFP and compared it with other feature extraction meth-
ods, obtaining the performance results shown in Table 3.
Among average precision, subset accuracy, one error, cov-
erage, hamming loss, and ranking loss, the higher subset

accuracy and average precision are, the better the multi-label
classification model performance are; and vice versa for the
other four measurements. In general, the subset accuracy and
average precise are deemed to be more strict measurements.
It can be seen from the Table 3. that the average precision is
about 94.16% in identifyingmulti-functional enzymes among
their seven main functional classes, indicating that, even
for the stringent benchmark dataset in which covers seven
functional classes versus many existed predictors only can
predicted six functional classes, MF-EFP predictor can yield
quite reliable results. Meanwhile, we have also noticed that,
the subset accuracy of MF-EFP is 85.62% shows that the vast
majority of enzymes whose predicted label set are identical
with the real label set. The advantage of the algorithm is
obvious.

We also compared our representation of enzyme sample
with other popular protein prediction methods, such as
PseAAC (which is the most commonly used to prediction
diverse protein attributes), SAAC (which has been used in
predicting enzyme functional class) [24], and GM2 proposed
by Xiao et al. (which can catch the essence of a protein
sequence and better reflect its overall pattern by grey dynamic
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TABLE 5. Comparative results of MLKNN, hMuLab and hML-KNN in dataset I and dataset II.

FIGURE 1. Six measurements of MF-EFP averaged over the 30 runs on the dataset I with different number of
neighbors K. The horizontal axis is the number of neighbors, and the vertical axis represents the average
measurement values by five-fold cross-validation.

model) [25]. Table 3 shows the average precision, subset
accuracy, one error, coverage, hamming loss, and ranking
loss for the dataset obtained for each approach in multi-label

enzyme functional classification. All performance measure-
ments of MF-EFP are outperformed other three models.
Our new design compromises the merits of PseAAC and
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FIGURE 2. Six measurements of MF-EFP averaged over the 30 runs on the dataset I with different number of
weights α. The horizontal axis is the weights of the two scores based on features and neighbors, and the
vertical axis represents the average measurement values by five-fold cross-validation.

SAAC increased capacity for predicting enzyme multifunc-
tional classes compared to the using PseAAC, SAAC, and
GM2 only.

To test the classification performance of the multifunc-
tional enzyme further and compare to the existed predictors,
the same benchmark dataset listed in Table 2 as investigated in
Che et al. [10] and exactly the same cross-validation approach
were adopted for demonstration. The results of proposed pre-
dictor and classifiers IBLR_ML, BRkNN, RakEL, HOMER
are presented in Table 4. It is not difficult to find that the
proposed predictor in this paper remarkably outperformed all
those classifiers in all metrics from the Table 4, and outper-
formed those classifiers by about 6% in average Precision
specially.

Our novel multi-label learning algorithm hML-KNN is
designed based on hMuLab and MLKNN, we also com-
pared three algorithm performance in predicting the multi-
functional classes of enzymes. Listed in Table 5 are the
results obtained with hML-KNN, hMuLab and MLKNN on
the aforementioned benchmark dataset I and dataset II by
jackknife test. As we can see form Table 5, for such stringent
and complicated benchmark datasets, the subset accuracy
achieved by hML-KNN is over 85.62% and 89.73% in dataset
I and dataset II respectively, which is 7% and 6% higher than
by hMuLab and 12% and 12% higher than by MLKNN.

There are three parameters in hML-KNN as parameter K
for the neighbor score, parameter α to adjust the weights of
the two scores based on features and neighbors, parameter λ is
the tradeoff of the square of error and regularization term, just
like hMuLab. The parameters were optimized by a standard
five-fold cross-validation based on the subset accuracy in the
dataset I. Fig.1 shows the mean values of different evalua-
tion measurements with K=1, 2, 5, . . . , 25. As we can see,
at the beginning, all the six performance measurements are
improved significantly along with an increasing number of
nearest neighbors. The measurement gets worse after K=5.
Fig.2 shows the mean values of different evaluation measure-
ments with α = 0, 0.25, 0.5, 0.75, 1. When α = 0.25, it
is not difficult to find that the evaluation measurement is the
best. We choose the default parameters λ = 1 just like the
course of choosing parameter K and α. Upon optimization,
the parameters were fixed and remained the same throughout
all experiments.

Why could the proposed model be so powerful? This
is because many key features, which are deeply hidden
in complicated enzyme sequence, can be extracted via the
approach of mixing together PseAAC and SAAC, hMuLab
algorithm utilized both the feature-based information and the
sample-based neighbor information, and a self-adapted label
assigning threshold.
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V. CONCLUSION
In this work, we proposed a new method of multifunctional
enzymes prediction, which is a hybrid model by integrat-
ing the feature and neighbor label information, a query
enzyme is formulated into the general pseudo amino acid
composition (PseAAC) merging split amino acid composi-
tion (SAAC), and adopt a self-adapted label assigning thresh-
old. hML-KNN is unique predictor that can predict sever
functional classes at present.

The jackknife and cross-validation test results indicate
that our method demonstrates better versatility and effec-
tiveness. A user-friendly web-server for the new predictor
has been established at http://www.jci-bioinfo.cn/MF-EFP,
where users can easily get their desired results. It is antici-
pated that predictor will become a very useful high through-
out tool for identifying multifunctional enzymes, and the
novel approach and technique can also be used to investigate
many other protein related problems.
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