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ABSTRACT In this paper, formation keeping control of unmanned aerial vehicles (UAVs) based on
multi-agent system consensus is studied. Firstly, a leader–following model based multiple unmanned aerial
vehicles’ (multi–UAVs’) formation system is proposed. In which, every UAV has a heading keep autopilot
as standard flight controller, and the heading control signal is transmitted by a nonlinear feedback controller
with time delays. Secondly, some criteria of stability and Hopf bifurcation conditions for the equilibrium
point of the leader UAV are established by using the Routh–Hurwitz criterion. Then, the consensus protocol
is designed. A model prediction controller is introduced to make followers predict the leader’s status and
maintain a relative position in the formation, and eventually reach a consensus with the leader. Finally, some
simulation examples are given to verify the correctness of the conclusions.

INDEX TERMS UAV formation, time delay, Hopf bifurcation, multi–agent system, leader-following
consensus.

I. INTRODUCTION
In recent years, UAV technology and its industry have devel-
oped rapidly and have been widely used in various fields.
For example, in military, it can replace human–machines
to accomplish certain tasks in harsh environments and high
risks [1]. In civil applications, it has been widely used in agri-
culture, services and other areas such as spraying pesticides,
geological exploration, archaeological exploration, logistics
and transportation [2], [3]. Regardless of military career or
civilian market, the breakthrough in technical of UAV means
a significant increase in work efficiency [4]–[6].

Normally, a single UAV is autonomous and its motion
control is relatively simple. In order to perform complex tasks
better, there are usually required for UAVs’ formation cooper-
ation. In recent decades, multi–UAVs system has become an
attractive and active topic. The information sharing method
is studied to make full use of the advantages of each sin-
gle UAV [7]–[9]. And in past researches, investigators con-
structed architecture ofmulti–UAVs’ formation by simulating
the cluster characteristics of different biomes [10], [11].
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As we all know, one of the typical UAVs’ formation
methods is ‘leader–following’ model [12]–[14]. Generally,
in multi–UAVs system, a single UAV is designed as leader,
while others are considered as followers [15], [16]. The
role of the leader during formation navigation is to con-
trol the route of the entire formation. The formation can
be controlled by maintaining a certain angle and distance
between the followers and the leader. One of the main tasks
of researching multi–UAVs’ formation system is to keep the
shape of the required formation. This requires a consensus
flight status [10], [13]. Generally speaking, the purpose of
consensus is to synchronize all UAVs into a common state
through a consensus protocol based on the neighbor UAV’s
information exchange. Therefore, with the extensive research
of multi–agent systems consensus problem. A growing num-
ber of interest drivers are multi–UAVs’ consensus [17]–[20],
especially its effects on UAVs’ formation keeping. There are
many findings about the formation of UAVs. For example,
in [21], Karimoddini et al. established a hybrid formation
control of the UAVs. They proposed a new approach of
hybrid supervisory control of UAVs for a two-dimensional
leader–following formation scenario. Hafez et al. solved the
problem of multi–UAVs dynamic encirclement via model
predictive control in [22]. And themodel predictive controller

49000 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2176-1058
https://orcid.org/0000-0002-8992-153X
https://orcid.org/0000-0002-8095-399X


Y. Wang et al.: UAVs’ Formation Keeping Control Based on Multi–Agent System Consensus

is introduced to model and implement controllers for the
problem of dynamic encirclement. Recently, Dentler et al.
in [23] studied the model predictive control of multi–UAVs
by using potential functional sensor constraints. They pro-
posed a model predictive control method for this cooper-
ative positioning scheme to solve the problem of limited
sensor perception space. In [24], Tang et al. proposed an
algorithm of leader–following consensus control of multiple
fixed–wing UAVs’ attitudes with time delays and unknown
external disturbances. And a distributed controller based
on undirected graph for leader–following consensus control
of multi–UAVs’ attitudes is proposed. Furthermore, more
research results produce that model predictive control can
be effectively applied in the leader–following multi–UAVs’
formation problem. It can make the following UAVs advance
estimate the leader’s flight status, and each UAV updates
its flight status that final all UAVs reach to an expectation
formation [25]–[27]. However, few research has been done
for this, so we will focus on this challenging issue in this
paper.

In order to facilitate the study of the position status
of UAVs, its body coordinate and inertial coordinate can be
established. And the body coordinate after translation and
rotation can be converted to inertial coordinate [7], [10].
Thus, the position of UAV can be directly expressed in inertial
coordinate. As shown in FIGURE I. The blue coordinate
system X∗1 − Y ∗1 constitutes the body coordinate system of
follower W1, and the red coordinate system X∗2 − Y

∗

2 consti-
tutes the body coordinate system of followerW2.
Then the flight motion equations of leader (L) and follow-

ers (W1, · · · ,Wn) are expressed as follows:
ẋi(t) = Vi(t) cos(φi(t)),
ẏi(t) = Vi(t) sin(φi(t)),
żi(t) = Viz(t).

(1)

where xi, yi, zi (i = L,W1,W2, · · · ,WN ) are the position
status of the i–th UAV in three–dimensional inertial space,
respectively. And φi is the heading angle of the i–th UAV in
inertial coordinate, Vi is the instantaneous linear velocity of
the i–th UAV in inertial coordinate, Viz is the flight speed of
i–th UAV in vertically of inertial space. The heading angle
rate has no component in the z–axis, and the height is just the
simple height difference between the leader and followers.

Typically, each UAV in the formation is equipped with
flight controllers: heading autopilot and velocity autopilot.
Since there have time delays between the process of controller
receiving signal and making adjustment response [28], [29].
And time delays always lead to complex dynamic behav-
iors such as bifurcations, chaos and many more [30]–[32].
So, the flight status of UAVs become more complicated.
Therefore, we can discuss the UAVs’ complex motions and
formations based on time–delayed heading automatic control
algorithms or velocity automatic control algorithms. After
constructing the controller, in this paper, we are committed
to design a consensus algorithm that makes UAVs to keep a

FIGURE 1. UAV formation relative motion relationship in the inertial
coordinate.

relative position in formation, whether the heading changing
is stable or unstable. Then, a model prediction controller is
introduced tomake followers to estimate the state information
of the leader in case of incomplete communication. Finally,
followers ultimately reach a consensus with the leader, and
all followers stay in relative position. Specifically, the main
contributions of this paper can be summarized as follows:

1) The multi–UAVs system is established based on
leader–following structure, and feedback controller based
heading control signal is designed.

2) Based on geometric formulation, the Routh–Hurwitz
stability criterion, we obtain some criteria of stability and
Hopf bifurcation conditions for the equilibrium point τ0 of
leader UAV.

3) Adopted the information transmission method of neigh-
boring nodes and introduced a state predictive control strat-
egy to formulate a consensus protocol. The above–obtained
results make followers predicts the motion status of leader,
and the UAVs’ formation shape kept in a stable status.
This completes the research of UAVs’ bifurcation consensus
problems.

This paper is organized as follows: Section II gives
some preparatory works, and a leader–following system
based multi–UAVs control model established. In Section III ,
the Hopf bifurcation problem of leader UAV is discussed.
A status predictor is introduced to analyze the consensus
of multi–UAVs, and a consensus protocol then designed.
Simulation examples verify the validity of the status predictor
in Section IV . Finally, Section V gives the conclusions of this
paper.

II. BACKGROUND AND PRELIMINARIES
A. PRELIMINARIES
Let G = (ν, ε,A) a graph consisted by node sets ν =
{ν0, ν1, ν2, . . . , νN } and edge sets ε ⊆ ν × ν [33], [34].
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The adjacency matrix A = (aij)N×N of graph G is introduced
as follows: If there is information transfer between the node i
and the node j, then aij = 1, otherwise aij = 0, which is

aij =

{
1, (νi, νj) ∈ ε,
0, otherwise,

(2)

and the diagonal elements of matrix A are defined by

aii = −
N∑

j=1,j6=i

aij, i = 1, 2, . . . ,N . (3)

The adjacency matrix in undirected graphs is symmetrical,
and digraphs has no such property [34].

Then the corresponding Laplacian matrix L = (lij)N×N
can be defined as

lij =


∑N

j=1,j6=i
aij, i = 1, 2, . . . ,N ,

−aij ≤ 0, i 6= j.
(4)

The Laplacian matrix in undirected graphs is symmet-
ric semi–definite, and does not have such properties with
digraphs [34].

Next, define a diagonal matrix of the connection
relationship between leader and followers as B =

diag(b1, b2, · · · , bN ), and

bi =

{
1, (νi, ν0) ∈ ε,
0, otherwise,

(5)

where ν0 represents the leader, and νi (i = 1, 2, · · · ,N )
represent the followers.
Lemma 1 [34]: The Laplacian matrix L has a simple zero

eigenvalue and all the other eigenvalues have positive real
parts if and only if the diagraph associated with L has a
directed spanning tree.

We need some properties of Laplacianmatrix from [35] as
follows:

(i) 0 is the eigenvalue of matrix L and 1 is its corresponding
eigenvector, where 1 = (1, 1, · · · , 1)T .
(ii) If the directed graph G is strongly connected, then 0 is

a single eigenvector of the matrix L.
(iii) If the digraph G is connected and symmetrical, then

matrix L is symmetric and semi–positive. All feature values
are non-negative real numbers and have following form: 0 =
λ1(L) < λ2(L) ≤ · · · ≤ λN (L).
Definition 1 [35]: A nonsingular matrix Ã is called

M–matrix if Ã ∈ ZN×N and all the eigenvalues of Ã have
positive real parts.

Let

J (Ã) = min1≤i≤n Re(λi(Ã)),

denote the minimum real part among all its eigenvalues [35],
[36]. Then the following statements are equivalent:

(i) The matrix Ã is an M–matrix.
(ii) The matrix Ã can be expressed as Ã = ζTN×N − M̃ ,

where M̃ > 0, ζ > ρ(M̃ )) and IN×N is the N × N identity
matrix.

(iii) All of Ã′ eigenvalues have positive real parts, implying
that J (Ã) > 0.

B. MODEL
In this paper, every UAV equipped with a heading autopilot
and velocity autopilot. The first–order heading autopilot and
velocity autopilot respectively as follows:

φ̇i = −
1
τφi

(φi − φic), (6)

V̇i = −
1
τVi

(Vi − Vic), (7)

where i = 0, 1, 2, · · · ,N , 0 represents leader UAV and
1, 2, . . . ,N represent follower UAVs, φi and φic indicate the
heading angle and heading control signal of the i–th UAV,
respectively. Vi and Vic indicate the velocity and velocity
control signal of the i–th UAV, respectively.
Assuming that the linear velocity is not affected by the

time delay, we only consider the design of heading con-
trol. According to nonlinear feedback control, define φic as
follows:

φic = φi − τφi [k1

∫ t

0
f (φi(s− τ )− φ∗)ds

+ k2

∫ t

0
f (ωi(s))ds], (8)

where k1 and k2 are the feedback gain constant, f (·) ∈ R4

is a delay kernel function satisfies f (0) = 0 and f ′(0) 6= 0,
φ∗ is an expected heading angle, φ̇i(t) = ωi(t) is the heading
angular velocity change rate of the i–th UAV, ui and vi are
the corresponding followers’ control input. Then, from equa-
tions (6) and (8), we have

φ̈i =
1
τφi

(φ̇i − φ̇ic)

=
1
τφi
{φ̇i − τφi [k1f (φi(t − τ )− φ

∗)+ k2f (ωi(t))]− φ̇i}

= −k1f (φi(t − τ )− φ∗)− k2f (ωi(t)). (9)

Next, we introduce the following model prediction
controllers:

φ̇(t)p = −(L + B)φ(t)+ Bφ0(t)1, (10)

ω̇(t)p = −(L + B)ω(t)+ Bω0(t)1, (11)

where

φ(t) = (φ1(t), φ2(t), · · · , φN (t))T ,
ω(t) = (ω1(t), ω2(t), · · · , ωN (t))T ,

and

φ̇p(t) = (φ̇p1 (t), φ̇
p
2 (t), · · · , φ̇

p
N (t))

T ,

ω̇p(t) = (ω̇p1(t), ω̇
p
2(t), · · · , ω̇

p
N (t))

T

Then, i–th UAV only computes φ̇pi and ω̇pi , and passes them
to its neighbors by communication, thereby achieving the
purpose of predicting the state of the system.
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Consider a multi–agent system consisting of N agents
based leader–following model, defined as follows:{

Ẋ0(t) = f (t,X0(t)),
Ẋi(t) = f (t,Xi(t))+ Ui,

(12)

where X0(t) = [x01(t), x02(t), . . . , x0n(t)]T is the state vari-
able of leader agent, Xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T is
the state variable of i–th following agent. And f (·) ∈ Rn is a
continuous vector–valued function, Ui is the following node
control law with i = 1, 2, . . . ,N .

From equation (12), let Ui = (ui, vi)T . Then, based on
equations (10) and (11), the control rate of followers under
the predictive controllers can be designed as follows:

ui = −6aij(φi(t)− φj(t))− bi(φi(t)− φ0(t))

+ η16aij(φ̇
p
i (t)− φ̇

p
j (t))+ η1biφ̇

p
i (t), (13)

vi = −6aij(ωi(t)− ωj(t))− bi(ωi(t)− ω0(t))

+ η26aij(ω̇
p
i (t)− ω̇

p
j (t))+ η2biω̇

p
i (t), (14)

where η1 and η2 are the influence factors of predictors.
From above discussions and based on equation (1),

the leader of multi–UAVs’ formation system can then be
described by the following form:

ẋ0(t) = V0(t) cos(φ0(t)),
ẏ0(t) = V0(t) sin(φ0(t)),
ż0(t) = V0z(t),
φ̇0(t) = ω0(t),
ω̇0(t) = −k1f (φ0(t − τ )− φ∗)− k2f (ω0(t)).

(15)

And the followers of multi–UAVs’ formation system can be
described by the following form:

ẋi(t) = Vi(t) cos(φi(t)),
ẏi(t) = Vi(t) sin(φi(t)),
żi(t) = Viz(t),
φ̇i(t) = ωi(t)−6aij(φi(t)− φj(t))− bi(φi(t)− φ0(t))

+ η16aij(φ̇
p
i (t)− φ̇

p
j (t))+ η1biφ̇

p
i (t),

ω̇i(t) = −k1f (φi(t − τ )− φ∗)− k2f (ωi(t))
−6aij(ωi(t)− ωj(t))− bi(ωi(t)− ω0(t))
+ η26aij(ω̇

p
i (t)− ω̇

p
j (t))+ η2biω̇

p
i (t),

i = 1, 2, . . . ,N .
(16)

III. MAIN RESULTS
In this section, we first discussed the heading control bifurca-
tion problem of leader. Then, studied the consensus of multi–
UAVs’ formation flight state and ensure the UAVs remain
in a relative position, whether the heading state is stable or
bifurcated.

A. HOPF BIFURCATION ANALYSIS OF LEADER
First, give a result proposed by Ruan and Wei [37] can be
employed to analyze equation (15), which is stated as follows.

Lemma 2: Consider the exponential polynomial

ρ(λ, e−λτ1 , . . . , e−λτm )

= λn + ρ
(0)
1 λn−1 + . . .+ ρ

(0)
n−1λ+ ρ

(0)
n

+ (ρ(1)1 λn−1 + . . .+ ρ
(1)
n−1λ+ ρ

(1)
n )e−λτ1 + . . .

+ (ρ(m1 λ
n−1
+ . . .+ ρ

(m)
n−1λ+ ρ

(m)
n )e−λτm ,

where τj ≥ 0 (j = 1, 2, . . . ,m) and ρ(j)i (i = 1, 2, . . . , n; j =
1, 2, . . . ,m) are constants. As (τ1, τ2, . . . , τm) vary, the sum
of the order of the zeros of ρ(λ, e−λτ1 , . . . , e−λτm ) on the right
half plane can change only if zero appears on or cross the
imaginary axis.
Remark 1: In this paper, we designed the heading auto-

matic controller as equation (8). The position of each UAV is
represented by its coordinates (xi(t), yi(t), zi(t)), and which
are determined by the linear velocity Vi(t) and the heading
angular velocity φi(t).
Therefore, under the control of heading automatic con-

troller, we discuss the Hopf bifurcation and stability of the
following controlled equation:{

φ̇0(t) = ω0(t),
ω̇0(t) = −k1f (φ0(t − τ )− φ∗)− k2f (ω0(t)).

(17)

Let (φ∗, 0) be the equilibrium point of system (17). We get
the linearized system of (16) as{

φ̇0(t) = ω0(t),
ω̇0(t) = −k1f ′(0)φ0(t − τ )− k2f ′(0)ω0(t).

(18)

Then, we have the following main conclusion of this paper.

Theorem 1: Let τ0 = 1
α0

arccos(
α20

k1f ′(0)
), we have

(i) The equilibrium (φ∗, 0) of system (18) is stable when τ <
τ0 and unstable for τ > τ0.
(ii) A Hopf bifurcation occurs at the equilibrium point as τ
passes through τ0.

Proof: The characteristic equation associated with sys-
tem (18) is

det
[

λ −1
k1f ′(0)e−λτ λ+ k2f ′(0)

]
= 0. (19)

It can be transformed into the following form:

λ2 + k2f ′(0)λ+ k1f ′(0)e−λτ = 0. (20)

Obviously, when τ 6= 0, λ = iα (α > 0) is a root of
characteristic equation (20) if and only if α satisfies

−α2 + ik2f ′(0)α + k1f ′(0)(cos(ατ )− i sin(ατ )) = 0. (21)

Separating the real and imaginary parts and getting
cos(απ ) =

α2

k1f ′(0)
,

sin(απ) =
k2f ′(0)α
k1f ′(0)

.

(22)

Adding up the squares of the corresponding sides of the above
equations will result in the following result as:

α4 + k22 [f
′(0)]2α2 − k21 [f

′(0)]2 = 0. (23)
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Let β = α2, then

β2 + k22 [f
′(0)]2β − k21 [f

′(0)]2 = 0, (24)

and denote

h(β) = β2 + k22 [f
′(0)]2β − k21 [f

′(0)]2). (25)

Then, equation (24) has two roots as follows:

β1 =
−k22 [f

′(0)]2−
√
k42 [f

′(0)]4+4k21 [f
′(0)]2

2 < 0,

and

β2 =
−k22 [f

′(0)]2+
√
k42 [f

′(0)]4+4k21 [f
′(0)]2

2 > 0.

So, equation (23) has a positive root as α0 =
√
β2. From (21),

we can get

τ0
(j)
=

1
α 0
{arcos

α20

k2f ′(0)
+ 2π j}, j = 0, 1, 2, · · ·. (26)

Therefore, ±iαk are a pair of purely imaginary roots of
equation (20). Define τ0 = τ

(0)
0 , let λ(τ ) = ξ (τ )±iη(τ ) be the

root of (20) during τ = τ0 and meet the conditions: ξ (τ0) =
0, η(τ0) = α0. From (20), in terms of direct calculations,
we have

Re(
dλ
dτ

)|λ=iα0 = Re(
dλ
dτ

)−1|λ=iα0

= Re[
2λ+ k2f ′(0)− τk1f ′(0)e−λτ

λk1f ′(0)e−λτ
]|λ=iα0

= Re[−
τ

λ
+

2
k1f ′(0)e−λτ

+
k2

λk1e−λτ
]|λ=iα0

=
k2f ′(0) sin(α0τ )
α0k1f ′(0)

+
2α0 cos(α0τ )
k1α0f ′(0)

=
2α20 + k

4
2 [f
′(0)]2

[k1α0f ′(0)]2

=
h′(β0)

[k1α0f ′(0)]2
|β0=α

2
0
> 0.

Then, as τ increase that the root passing the imaginary axis
from left to the right, the theorem is proved.

B. CONSENSUS ANALYSIS OF MULTI–AGENT SYSTEM
WITH BIFURCATION
From equations (15) and (16), we get the multi–agent system
based multiple heading control system as follows:{

φ̇0(t) = ω0(t),
ω̇0(t) = −k1f (φ0(t − τ )− φ∗)− k2f (ω0(t)).

(27)

φ̇i(t) = ωi(t)
−6aij(φi(t)− φj(t))− bi(φi(t)− φ0(t))
+η16aij(φ̇

p
i (t)− φ̇

p
j (t))+ η1biφ̇

p
i (t),

ω̇i(t) = −k1f (φi(t − τ )− φ∗)− k2f (ωi(t))
−6aij(ωi(t)− ωj(t))− bi(ωi(t)− ω0(t))
+η26aij(ω̇

p
i (t)− ω̇

p
j (t))+ η2biω̇

p
i (t),

i = 1, 2, . . . ,N .

(28)

Definition 2 [38]: The multi–UAVs’ heading control sys-
tem (28) is said to be consensus if limt→∞ |φi(t)−φ0(t)| = 0
and limt→∞ |ωi(t)− ω0(t)| = 0 for any i = 1, 2, . . . ,N .

Let δi(t) = φi(t) − φ0(t) and θi(t) = ωi(t) − ω0(t)
are the multi–UAVs’ heading control errors with i =
1, 2, · · · ,N , where δ(t) = [δ1(t), δ2(t), . . . , δN (t)]T and
θ (t) = [θ1(t), θ2(t), . . . , θN (t)]T . After some calculations we
get

δ̇i(t) = φ̇i(t)− φ̇0(t)

= ωi(t)+ ui − ω0(t)

= θi(t)−6aij(φi − φj)− bi(φi − φ0)

+ η16aij(φ̇
p
i − φ̇

p
j )+ η1biφ̇

p
i

= −6aij(φi − φj)− bi(φi − φ0)

− η1[6aijbi(φi − φj)+ b2i (φi − φ0)]

− η1[6N
j=16

N
k=1aijaik (φi − φk )+6aijbi(φi − φ0)]

− η1[6N
j=16

N
p=1aijaip(φj − φp)+6aijbj(φj − φ0)],

i = 1, 2, . . . ,N . (29)

And

θ̇i(t) = ω̇i(t)− ω̇0(t)

= −k1f ′(0)[φi(t)− φ0(t)]

− k2f ′(0)[(ωi(t − τ )− ω0(t − τ )]+ vi(t)

= −k1f ′(0)δi − k2f ′(0)θi(t − τ )

−6aij(ωi(t)− ωj(t))− bi(ωi(t)− ω0(t))

+ η26aij(ω̇
p
i (t)− ω̇

p
j (t))+ η2biω̇

p
i (t)

= −k1f ′(0)δi − k2f ′(0)θi(t − τ )

−6aij(ωi − ωj)− bi(ωi − ω0)

− η2[6aijbi(ωi − ωj)+ b2i (ωi − ω0)]

− η2[6N
j=16

N
k=1aijaik (ωi − ωk )+6aijbi(ωi − ω0)]

− η2[6N
j=16

N
p=1aijaip(ωj − ωp)+6aijbj(ωj − ω0)],

i = 1, 2, . . . ,N . (30)

Then, rewrite equations (29) and (30) to the following matrix
form: [

δ̇(t)
θ̇ (t)

]
= 01

[
δ(t)
θ(t)

]
+ 02

[
δ(t − τ )
θ (t − τ )

]
, (31)

where H = L + B and

01 =

[
−(H + η1H2) IN×N
−k1f ′(0)IN×N −(H + η2H2)

]
, (32)

and

02 =

[
0N×N 0N×N
0N×N −k2f ′(0)IN×N

]
. (33)

Remark 2: When solving the block matrix determinant,
we have the following conclusions: when matrix A is an
invertible matrix, then∣∣∣∣ A B

C D

∣∣∣∣ = |A||D− CA−1B|.
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Let ξ1, ξ2, · · · , ξN be the eigenvalues of H . Since H is a
Hermite matrix, there must be an unitary matrix U such that
U−1HU = diag(ξ1, ξ2, · · · , ξN ) = 3H . So, let γij, (i =
1, 2, · · · ,N ; j = 1, 2) are the eigenvalues of equation (31),
we can find the characteristic equation of (31) as shown
in (34), which at the bottom of this page.
Lemma 3 [38]: Equation (31) is globally and asymptoti-

cally stable if and only if

Re(γij) < 0, (i = 1, 2, · · · ,N ; j = 1, 2).

Theorem 2: The leader–following heading controlled sys-
tem (28) is globally and asymptotically consensus with the
leader (27) if

k1f ′(0) > (ξ2i + η1ξ
2
i )

2,

k2f ′(0) > −[2ξi + (η1 + η2)ξ2i ], i = 1, 2, · · · ,N . (35)

Proof: From equation (34), eigenvalue γij determined
by the eigenvalue ξi of H . Then, the following equation is
established

γ 2
+ [2ξi + (η1 + η2)ξ2i ]γ

+ k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )

+ k2f ′(0)(γ + ξi + η1ξ2i )e
−γ τ
= 0. (36)

When τ = 0, we get

γ 2
+ [2ξi + (η1 + η2)ξ2i + k2f

′(0)]γ

+ k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )

+ k2f ′(0)(ξi + η1ξ2i ) = 0. (37)

Let a = 1, b = 2ξi+ (η1+η2)ξ2i + k2f
′(0) and c = k1f ′(0)+

(ξi+η1ξ2i )(ξi+η2ξ
2
i )+k2f

′(0)(ξi+η1ξ2i ). Then, equation (37)
has two roots as follows:

γ1,2 =
−b±

√
b2 − 4ac
2

. (38)

From equation (38), we have Re(γ1,2) < 0, because

2ξi + (η1 + η2)ξ2i + k2f
′(0) > 0,

and

4[k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )+ k2f

′(0)(ξi + η1ξ2i )]

> 4(ξ2i + η1ξ
2
i )

2
+ (ξi + η1ξ2i )(ξi + η2ξ

2
i )

− 4[2ξi + (η1 + η2)ξ2i ](ξi + η1ξ
2
i ) = 0.

When τ 6= 0, γ = i$ , ($ > 0) is a root of characteristic
equation (34) if and only if$ satisfies

−$ 2
+ i[2ξi + (η1 + η2)ξ2i ]$

+ k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )

+ k2f ′(0)(i$ + ξi + η1ξ2i )(cos($τ )− i sin($τ )) = 0.

(39)

After simple calculations we can get
cos($τ ) =

K1$
2
+ K2

F1$ 2 + F2
,

sin($τ ) =
H1$

3
+ H2$

F1$ 2 + F2
.

(40)

where

F1 = k2f ′(0),

F2 = k2f ′(0)(ξi + η1ξ2i )
2,

K1 = ξi + η2ξ
2
i ,

K2 = −(ξi + η1ξ2i )[k1f
′(0)+ (ξi + η1ξ2i )(ξi + η2ξ

2
i )],

H1 = 1,

H2 = (ξi + η1ξ2i )[2ξi + (η1 + η2)ξ21 ]

− k1f ′(0)− (ξi + η1ξ2i )(ξi + η2ξ
2
i ).

According to cos2($τ )+ sin2($τ ) = 1, we obtain

h($ ) = H2
1$

6
+ (2H1H2 − K 2

1 − F
2
1 )$

4

+(H2
2 − 2K1K2 − 2F1F2)$ 2

+ K 2
2 − F

2
2 . (41)

Then,

K 2
2 − F

2
2

= (ξi + η1ξ2i )
2[k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ

2
i )]

2

− [k2f ′(0)]2(ξi + η1ξ2i )
4

= (ξi + η1ξ2i )
2

[k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )− k2f

′(0)(ξi + η1ξ2i )]

[k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )+ k2f

′(0)(ξi + η1ξ2i )]

|γ IN×N − 01 − 02 e−γ τ |

=

∣∣∣∣ γ IN×N + H + η1H2
−IN×N

k1f ′(0)IN×N γ IN×N + H + η2H2
+ k2f ′(0)e−γ τ IN×N

∣∣∣∣
= |(γ IN×N + H + η1H2)(γ IN×N + H + η2H2

+ k2f ′(0)e−γ τ IN×N )+ k1f ′(0)IN×N |

= |U [(γ IN×N + H + η1H2)(γ IN×N + H + η2H2
+ k2f ′(0)e−γ τ IN×N )+ k1f ′(0)IN×N ]U−1|

= |(γ IN×N + UHU−1 + η1UHHU−1)(γ IN×N + UHU−1 + η2UHU−1 + k2f ′(0)e−γ τ IN×N )+ k1f ′(0)IN×N |

= |(γ IN×N +3H + η13
2
H )(γ IN×N +3H + η23

2
H + k2f

′(0)e−γ τ IN×N )+ k1f ′(0)IN×N |

=

N∏
i=1

[(γ + ξi + η1ξ2i )(γ + ξi + η2ξ
2
i + k2f

′(0)e−γ τ )+ k1f ′(0)]. (34)
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> (ξi + η1ξ2i )
2

[k1f ′(0)+ (ξi + η1ξ2i )(ξi + η2ξ
2
i )− k2f

′(0)(ξi + η1ξ2i )]

[(ξi + η1ξ2i )
2
+ (ξi + η1ξ2i )(ξi + η2ξ

2
i )

− ((2ξi + (η1 + η2)ξ2i )(ξi + η1ξ
2
i )] = 0.

Then, h($ ) > 0 for all $ > 0. In summary, all roots
of characteristic equation (34) are negative or have negative
real parts. From Lemma 3, the leader–following controlled
system (28) globally and asymptotically consensus with the
leader (27), the theorem is proved.
Remark 3: It is worth noting that the two inequalities in

equation (35) do not need to hold for all of ξi at the same
time, and the proof process is more complicated, which we
will show in future work. In this paper, we specifically point
out that when ξ = min{ξi, i = 1, 2, . . . ,N }, the conclusion
in Theorem 2 holds, and we will further verify this conclusion
in simulations.
Lemma 4 [39]: For system (12), if there exists a constant

θ > 0 such that

(Y − X )T (f (t,X ))− f (t,Y )) ≤ θ (Y − X )T (Y − X ),

∀X ,Y ∈ Rn, (42)

and the digraph has a directed spanning tree, the leader–
following controlled system (12) globally and asymptotically
synchronizes with the isolated node if

J (L + B) >
θ

c
,

where J (L + B) = min1≤i≤n Re(λi(L + B)) and the constant
c is known as the coupling strength eigenvalues.
Remark 4: If the undirected graph has an spanning

tree and also exists a constant α > 0 such that equa-
tion (42) holds. Then, the conclusion of Lemma 3 still holds.
We will focus on the discussion of undirected graph in this
paper and get an more directed consensus protocol based
on Lemma 3.
Lemma 5 [39]: The matrix H = L + B in (32) is an M–

matrix if and only if graph G has a spanning tree, where G is
the graph of leader (27) and followers (28).
Theorem 3: Let X = (xr (t), yr (t), zr (t)) ∈ R3 and Y =

(xs(t), ys(t), zs(t)) ∈ R3, (r, s = 1, 2, . . . ,N ) for system (16)
if there exists a constant ϑ such that

(Y − X )T (

Vr (t) cos(φr (t))Vr (t) sin(φr (t))
Vrz(t)

−
Vs(t) cos(φs(t))Vs(t) sin(φs(t))

Vsz(t)

)
≤ ϑ(Y − X )T (Y − X ). (43)

and the graph has a spanning tree, the leader–following con-
trolled system (16) globally and asymptotically consensus
with the leader (15) if

J (H ) >
ϑ

c
,

where J (H ) = min1≤i≤N Re(ξi(H )), the constant c =
max{η1, η2} is known as the coupling strength eigenvalues.

FIGURE 2. Multi–UAV system topology diagram with leader–following.

Remark 5: The proof of Theorem 3 can be similar to the
proof of Lemma 4 in [39], which is omitted here.
Remark 6: Specially, if ‖Vi(t)‖ = ‖Viz(t)‖ = ‖V0(t)‖ =

V ∗, (i = 1, 2, . . . ,N ). Let e1i = xi(t) − x0(t), e2i = yi(t) −
y0(t), e3i(t) = zi(t)− z0(t) and ei(t) = [e1i(t), e2i(t), e3i(t)]T ,
we get an error system as follows:

ėi(t) =

Vi(t) cos(φi(t))− V0(t) cos(φ0(t))Vi(t) sin(φi(t))− V0(t) sin(φ0(t))
Viz(t)− V0z(t)


≤ V ∗

 |φi(t)− φ0(t)||φi(t)− φ0(t)|
0

 . (44)

From Theorem 2, we get limt→∞ |φi(t) − φ0(t)| = 0 and
equation (44) is stability. Then it shows that the controlled
followers (16) globally asymptotically consensus to the
leader (15).

IV. NUMERICAL SIMULATION AND ANALYSIS
In order to verify bifurcation consensus conclusions of the
multi–UAVs system, a simple multi–UAVs system topology
diagram is given as FIGURE 2, and simulation examples are
listed.

Then, we can get the adjacency matrix A = (aij)N×N as
follows:

A =



0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0


. (45)
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The corresponding Laplacian matrix L = (lij)(N−1)×(N−1)
can be defined as

L=



2 −1 0 −1 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
−1 0 −1 2 0 0 0 0
0 0 0 0 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 −1 0 −1 2


.

(46)

The diagonal matrix B = diag(bi)(N−1)×(N−1) describing the
interaction between the leader and followers as

B = diag(0, 0, 1, 1, 0, 0, 1, 1), (47)

and let Hermite matrix H is

H = L + B

=



2 −1 0 −1 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 3 −1 0 0 0 0
−1 0 −1 3 0 0 0 0
0 0 0 0 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 3 −1
0 0 0 0 −1 0 −1 3


.

(48)

Let f (·) = tanh(·), k1 = 1, k2 = 0.5 and φ∗ = 2.
We consider the model prediction controller with η1 =
η2 = 5. And for convenience, let Vi = Viz = 50,
i = 0, 1, 2, . . . , 8. Then equations (27) and (28) can be
converted into{

φ̇0(t) = ω0(t),
ω̇0(t) = −f (φ0(t − τ )− 2)− 0.5f (ω0(t)).

(49)

φ̇i(t) = ωi(t)−6aij(φi(t)− φj(t))+ 56aij(φ̇
p
i (t)

−φ̇
p
j (t))− bi(φi(t)− φ0(t))+ 5biφ̇

p
i (t),

ω̇i(t) = −f (φi(t − τ )− 2)− 0.5f (ωi(t))
−6aij(ωi(t)− ωj(t))+ 56aij(ω̇

p
i (t)

−ω̇
p
j (t))− bi(ωi(t)− ω0(t))+ 5biω̇

p
i (t),

(50)

From equations (24) and (26), direct calculation can get
α0 = 0.4551, τ0 = 2.5132. Based on Theorem 1, the equilib-
rium (2, 0) of system (49) is locally stable when τ ∈ (0, τ0)
and undergoes a Hopf bifurcation when τ > τ0. That is,
they are stable when τ1 = 2.2 < τ0 = 2.5132, and
Hopf bifurcation occurs when τ2 = 2.6 > τ0 = 2.5132.
Which waveform plots and phase diagram are illustrated by
the simulation is shown in FIGURE 3 and FIGURE 4.
After some conclusions, the eigenvalues of H are ξ1 =

0.382, ξ2 = 2.382, ξ3 = 2.618 and ξ4 = 4.618. FIGURE 3. Waveform plots of system (49) with ω0 and φ0.

VOLUME 8, 2020 49007



Y. Wang et al.: UAVs’ Formation Keeping Control Based on Multi–Agent System Consensus

FIGURE 4. Phase diagrams of system (49) at ω0–φ0 phase plane.

From Theorem 2 and Remark 3, we know when ξ = 0.382 =
min{ξi, i = 1, 2, 3, 4}, there have

k1f ′(0) = 1 > (ξ2 + η1ξ2)2 = 0.875544,

k2f ′(0) = 0.5 > −[2ξ + (η1 + η2)ξ2] = −2.22324.

Then, system (50) is globally and asymptotically syn-
chronizes with the leader (49). And some simulation results
of heading control system bifurcation consensus shown
in FIGURE 5 and FIGURE 6. φi and ωi are stable when
τ1 = 2.2 < τ0 = 2.5132, and Hopf bifurcation occurs
at (2, 0) when τ2 = 2.6 > τ0 = 2.5132.

And FIGURE 7 shows the heading control system errors
graph for multi–UAVs’ consensus corresponding to leader
and followers. Which further demonstrates the effectiveness
of the model prediction controller for consensus control of
multi–UAVs’ formation system.

From equations (15) and (16), the leader of multi–UAVs’
formation system can be rewritten as follows:

ẋ0(t) = 50 cos(φ0(t)),
ẏ0(t) = 50 sin(φ0(t)),
ż0(t) = 50,
φ̇0(t) = ω0(t),
ω̇0(t) = −f (φ0(t − τ )− 2)− 0.5f (ω0(t)),

(51)

FIGURE 5. Waveform plots of heading velocity bifurcation consensus with
system (50).
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FIGURE 6. Phase diagrams of heading bifurcation consensus with
system (50).

And the followers can then be written as follows:

ẋi(t) = 50 cos(φi(t)),
ẏi(t) = 50 sin(φi(t)),
żi(t) = 50,
φ̇i(t) = ωi(t)−6aij(φi(t)− φj(t))+ 56aij(φ̇

p
i (t)

−φ̇
p
j (t))− bi(φi(t)− φ0(t))+ 5biφ̇

p
i (t),

ω̇i(t) = −f (φi(t − τ )− 2)− 0.5f (ωi(t))
−6aij(ωi(t)− ωj(t))+ 56aij(ω̇

p
i (t)

−ω̇
p
j (t))− bi(ωi(t)− ω0(t))+ 5biω̇

p
i (t),

(52)

From Theorem 3 and Remark 6, we can choose ϑ = 1.75.
Then,

J (H ) = min
1≤i≤n

Re(γi(H )) = 0.382 >
1.75
5
= 0.35.

And the consensus simulation of the multi–UAVs’ position
state can be seen in the FIGURE 8 and FIGURE 9. It shows
that when the leader’s heading control system (49) undergoes
Hopf bifurcation, leader and followers all exhibit a peri-
odic motion state. But whether (49) is stable or bifurcated,
the shape of formation is maintained.

FIGURE 7. Plots of heading control system consensus error for
multi–UAVs.

VOLUME 8, 2020 49009



Y. Wang et al.: UAVs’ Formation Keeping Control Based on Multi–Agent System Consensus

FIGURE 8. Position state consensus diagrams of multi–UAVs system (52). FIGURE 9. Position state consensus diagrams of multi–UAVs system (52).
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V. CONCLUSION
This paper discusses the bifurcation consensus problem of
a multi–UAVs’ formation control system. The heading rate
controller is introduced with discrete delay, and a model pre-
diction controller for followers can predict the state change
of the leader. This research reduces the time of achieving
consensus and has great important for keeping the shape
of UAVs’ formation. Non-linear systems also exist widely
in practice, it is necessary to extend the method proposed
in this paper to nonlinear systems. For the sake of discus-
sion, the discussion in this article has omitted the vertical
direction controller. The research related to the challenges
of increasing the computational complexity and spatial com-
plexity of extending the two–dimensional configuration to
three–dimensional space, in subsequently. Further research
on the control and consensus convergence speed of such a
multi–UAVs system with added disturbance is also a new
problem worth exploring.
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