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ABSTRACT Reducing the cross-modality gap between two different domains is a challenging problem for
heterogeneous face recognition (HFR). The current visual domain face recognition system is not easy to solve
the discrepancy of cross-modality when two comparing domains are heterogeneous. Moreover, the amount
of HFR dataset is significantly insufficient, making it considerable difficulty in training. This paper proposes
a novel two-step framework that consists of the image translation module and the feature learning module to
obtain an enhanced cross-modality matching system for heterogeneous datasets. First, the image translation
module consists of a Preprocessing Chain (PC) method, CycleGAN, and the Siamese network. It enables to
meet the conditions for preserving contents along with changing the styles from the source domain to the
target domain. Second, in the feature learning module, the training dataset and its translated images are used
together for fine-tuning the pre-trained backbone model in the visual domain. This allows for discriminative
and robust feature matching of the probe and gallery test datasets in the visual domain. The experimental
results are evaluated with two scenarios, using the CUHK Face Sketch FERET (CUFSF) dataset and the
CASIANIR-VIS 2.0 dataset. The proposed method achieves a better recognition performance in comparison
to the state-of-the-art methods.

INDEX TERMS Cross-modality gap, heterogeneous face recognition (HFR), image preprocessing, image-
to-image translation, NIR-VIS face matching, sketch-VIS face matching, supervised feature learning.

I. INTRODUCTION
Face recognition (FR) is one of the important research topics
in machine learning and pattern recognition. FR has been
regarded as a relatively accessible and reliable technology in
comparison to other biometric technologies. In recent years,
FR research has been further improved with the develop-
ment of deep learning technique. Deep neural network archi-
tectures [1], [2], creating novel loss functions [2]–[4], and
large-scale face datasets [5]–[7] are the factors that made
it possible to increase performance. Despite these improve-
ments, there are still many challenging tasks in face recog-
nition topic. Conventional face recognition systems identify
people by comparing the visual images under homogeneous
conditions. However, recent intelligent security and criminal
investigation scenarios demand matching cross domains in
heterogeneous environments [8]–[10]. This cross-modality
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gap occurs in various cases, such as various camera sen-
sors, camera resolution differences, and comparing sketch
and photo. Therefore conventional face recognition systems
generally do not guarantee a high recognition rate for Hetero-
geneous face recognition (HFR).

In most cases, HFR involves a gallery dataset consisting of
visual images (VIS). Probe images can be from any modality,
such as near infrared (NIR), thermal infrared (TIR), and
sketch images. Many types of research have attempted to
address the problem of reducing the modality gap between
cross-modality face pairs using handcraft approaches and
deep learning-based approaches. Conventionally, handcraft
approaches are classified as synthesis-based methods, com-
mon subspace projection-based methods, and invariant local
feature-based methods. The handcraft approaches show an
excellent performance in situations like the well-aligned
frontal images along with the small changing conditions of
texture and lighting. However, if these conditions are not
met, this approach does not provide an optimal solution.
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FIGURE 1. Illustration of the flow chart of the proposed framework consisting of the image translation module and the feature learning module. In the
first step, the image translation module is used to maintain the contents of the translated image and to find the optimal style change to each target
domain for the visual and non-visual images. In the second step, the feature learning module enables extracting the discriminative embedding vector
through the backbone network and feature matching of the probe and gallery test datasets in the visual domain.

The recent deep learning-based approach has suggested a
discriminative and robust learning method; however, there
are limitations when relying on large-scale training data that
cannot be applied to HFR datasets with less training data.

This paper proposes a two-step framework consisting of
the image translation module and the feature learning mod-
ule to improve the recognition performance by reducing
the cross-modality gap for heterogeneous face recognition.
There are two forms of motivation in this framework. First,
the image-to-image translation enables the transformation
of different domain images in the unpaired setting. Second,
when the translated images are obtained from cross different
domains, they can be used to provide additional information
by fine-tuning the pre-trainedmodel of the visual domain face
recognition system. Therefore, we can acquire a discrimina-
tive model that can reduce modality gaps between domains.
Then, feature matching is performed to between the probe
images translated from non-visual to visual and the visual
gallery images.

Concretely, the overall of our proposed framework is
shown in Fig. 1. Also, a detailed illustration of each module
is presented in Fig. 2 and Fig. 5, respectively. For the first
step, the image translationmodule consists of a Preprocessing
Chain (PC) method [11], CycleGAN [12], and the Siamese
network. The start of the image translationmodule is applying
the PC method to minimize the illumination variations for
the HFR dataset. This preprocessing method facilitates image
translation by normalizing images of different domains.
Then, the preprocessed images in the cross domains are
used in image translation to the target domain, respectively.
The training process of image translation is carried out by

integrating the proposed Siamese network into CycleGAN.
The training sequence is carried out as follows. A training
image is first used to train the generator of CycleGAN, fol-
lowed by the discriminator of CycleGAN, and the layers of
the Siamese network. And we used contrastive loss [13] in
the Siamese network. The basic ideas of contrastive loss are
to wide the inter-class distance and to narrow the intra-class
distance. Since contrastive loss requires image pairs as inputs,
the proposed Siamese network receives the image pairs as
follows: In other words, the translated image and the positive
sample image are pulled together in the target domain, and
the translated image and negative sample are pushed to each
other in the target domain.

The feature learning module is the second step of the
framework. The same class of translated images and their
corresponding target domain images are labeled as the same
label. Then, the training dataset and its translated images are
used to fine-tune the pre-trained backbone model to obtain
discriminative embedding vector. Therefore, this can not only
reduce the difference of cross-modality but also carry out
feature matching of the probe and gallery test dataset in
the visual domain. The experimental results demonstrate that
the proposed framework shows a better recognition perfor-
mance than the state-of-the-art methods in the CUHK Face
Sketch FERET (CUFSF) dataset and the CASIA NIR-VIS
2.0 dataset.

In this paper, the contributions of our proposed framework
are as follows. First, by applying PCmethod to HFR datasets,
the illumination variations are minimized in cross-domain
images. Second, we additionally implement the Siamese net-
work to reduce the gap between the translated image and

VOLUME 8, 2020 50453



H. B. Bae et al.: Non-Visual to Visual Translation for Cross-Domain FR

its corresponding pair in the target domain. The Siamese
network is integrated with CycleGAN and is trained simulta-
neously. Therefore, preprocessed translated images can pre-
serve contents while transforming style more appropriate for
target images. Lastly, translated images are used to provide
additional information by fine-tuning the pre-trained back-
bone model. By doing so, we can acquire a discriminative
embedding vector and this enables us to carry out feature
matching of the probe and gallery test dataset in the visual
domain.

The rest of this paper is organized as follows: Section II
provides a review of works related to HFR. Section III details
the proposed framework. This section starts with introducing
the network architecture of the framework, describing how
to reduce the gaps of cross-modality and how to improve
performance. Section IV describes the experimental setup,
datasets, and presents an analysis of the results of the experi-
ment. Finally, the conclusion is described in Section V.

II. RELATED WORK
This section briefly reviews the literature for the following
three categories of methods minimizing the cross-modality
gap: the common subspace projection based methods, invari-
ant feature descriptor based methods, and the synthesis based
methods.

A. COMMON SUBSPACE PROJECTION BASED METHODS
Common subspace projection based methods that belong
to this approach aim to learn the mapping function that
minimizes the cross-modality discrepancy by projecting
cross-modality images into a common subspace as close as
possible. Lin and Tang [14] proposed a common discriminant
feature extraction method, which is used to extract features
from cross-modality images and this features are projected
into a common feature space. Yi et al. [15] proposed canon-
ical correlation analysis (CCA) for face matching between
NIR and VIS images. Later, Li extends this approach in [16].
Regression based methods [17]–[20] are proposed to enable
learning of mapping functions that connect cross-modality
domains and common spaces. Sharma and Jacobs [21] pro-
posed a method to allow linear mapping of cross-modality
images with a common subspace where the mutual covari-
ance is maximized. To demonstrate the four heterogeneous
scenarios, Klare and Jain [10] proposed a prototype random
subspace (P-RS) method.

B. INVARIANT FEATURE DESCRIPTOR BASED METHODS
Invariant feature descriptor based methods focus on
extracting invariant features that are not affected by the
discrepancy between cross-modality images. Liao et al. [22]
proposed a method applying multi-block binary patterns
(MB-LBP) after difference-of-Gaussian filtering to match
the NIR and VIS face images. Klare et al. [23] proposed a
local feature-based discriminant analysis (LFDA) framework
by extracting scale-invariant feature transform (SIFT) [24]
and multiscale local binary pattern (MLBP) [25] feature

descriptors as a patch unit from sketch and VIS face images.
Zhang et al. [26] proposed a feature descriptor based on cou-
pled information-theoretic encoding (CITE). CITE captures
discriminative local face structures for effective matching
between VIS and sketch images. Galoogahi and Sim [27]
proposed a local radon binary pattern (LRBP) that applies
the local binary pattern after conducting Radon transform of
the VIS face images and the sketch face images. Galoogahi
and Sim [28] also proposed histogram of averaged oriented
gradients (HAOG) to reduce the discrepancy between the VIS
and sketch face images. Recently, Gong et al. [29] proposed
a common encoding feature discriminant (CEFD) approach
to extract discriminative common features by transforming
the cross-modality face images into a common encoding
space. Roy and Bhattacharjee [30] proposed the local max-
imum quotient (LMQ) to extract the invariant features in
the cross-modality face images. Peng et al. [31] proposed
a graphical representation-based HFR (G-HFR). In other
studies [32]–[35] used convolutional neural network (CNN)-
based architecture to find invariant feature space of HFR
datasets.

C. SYNTHESIS METHODS
The synthesis method is a method transforming the dif-
ferent modality images into the same modality. Tang and
Wang [36], [37] first proposed the method transforming the
photo to sketch using the eigenface method. Liu et al. [38]
proposed a Locally Linear Embedding (LLE) method for
transforming the pictures into sketches based on image
patches. A series of Markov model-based approaches have
been proposed to consider the relationship between the adja-
cent local patches [39]–[41]. Wang et al. [42] proposed
the transductive learning method to reduce the high loss
in training samples. To reduce the loss of high-frequency
information, Gao et al. [43] proposed a sparse neigh-
bor selection and spare-representation-based enhancement
(SNS-SRE). Later, Wang et al. [44] proposed sparse fea-
ture selection and supporting vector revision (SFS-SVR).
Additionally, Wang et al. [45] proposed a quick method
to generate a sketch. Peng et al. [46] proposed a Markov
model-based framework learning the weights of the can-
didate for multi-representation and target image patches
adaptively. Recently, many approaches [12], [47] based on
the generative adversarial networks (GANs) proposed by
Goodfellow et al. [48] made it possible to obtain a more
photo-realistic synthesis image than the existing methods.
Additionally, other researchers [49], [50] have employed the
GANs to generate VIS face images from TIR face images.
Song et al. [51] proposed domain-invariant feature learning
by generating a VIS face image from a NIR face image
using GANs. Cao et al. [52] used GANs to augment the
intra-class data in the proposed framework. The advantage
of the synthesis-based approach is that it can apply the
conventional visual domain face recognition system. How-
ever, this approach shows less detail on non-facial areas
and requires a lot of training data. Therefore, the purpose
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FIGURE 2. Illustration of the proposed image translation module consisting of the Preprocessing Chain (PC) method, CycleGAN, and the Siamese
network. CycleGAN learns mapping functions (GXY and GYX ) between two domains (X , Y ), and the Siamese network simultaneously learns a latent
space adding constrains in the learning procedure of mapping functions. The network and loss flows used to learn the network are presented in the
illustration.

FIGURE 3. Illustration of the proposed Siamese network structure. The
weights of each network in the Siamese network are shared by each
other.

of the proposed method is to preserve the contents suit-
able for the target domain while enabling visual-to-visual
matching using the existing visual domain face recognition
system.

III. PROPOSED METHOD
This section presents the proposed framework to improve the
recognition performance by reducing the cross-modality gap
in the HFR datasets. We first explain the baseline overview,
then the image translation module and the feature learning
module.

A. BASELINE OVERVIEW
The purpose of our proposed framework is to reduce
cross-modality gap between different domains to perform dis-
criminative and robust feature matching between probe and
gallery test dataset in the visual domain as illustrated in Fig. 1.
The framework consists of two steps: the image translation
module and the feature learning module. Various types of

image translation methods [12], [47], [53], [54] that use
GANs have recently produced impressive results. The GANs,
which consists of a generator and a discriminator network,
is used to train the generator to produce the most realistic
image in order to prevent the discriminator network from
distinguishing between the real and fake images. Meanwhile,
the discriminator is trained to distinguish between the real
and fake images. This paper adopted the unpaired uni-modal
image translation to overcome the constraints due to the lack
of paired data and to transform the images into the effective
target domain. CycleGAN [12] is used as the baseline for
image translation, which is the first step of the framework
as illustrated in Fig. 2. Zhu et al. proposed CycleGAN by
adopting a cycle consistency loss for the translated image.
The translated image should recover to the original image
after a cycle of translation and reverse translation. Therefore,
CycleGAN needs two generator-discriminator pairs. Since
CycleGAN learns mapping functions by separating the latent
space of the two generators, the translated image makes it
possible to follow a specific style in the target domain. How-
ever, if the structural variation between the source domain
and the target domain is significant, there is no guarantee
that the translated image preserves the contents of the input
image. For example, when looking at the HFR datasets such
as the VIS-NIR and VIS-sketch, it is not easy to preserve the
contents if the image is highly exaggerated or if the spec-
trum range of the camera sensor is too different. Therefore,
the Siamese network is added to the image translation module
to preserve the contents of the translated image in the target
domain as illustrated in Fig. 2. The basic idea of the Siamese
network was first proposed to solve the verification problem
in [55], [56]. The Siamese network extracts 128-dimensional
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FIGURE 4. (a) The quantization level results according to the presence or absence of the Preprocessing Chain (PC) method in the translated
image and its corresponding target image. (b) The stages of the PC method; gamma correction, Difference of Gaussian (DoG) filtering,
masking, and equalization of variation.

embedding vector through the CNN-based network and uses
contrastive loss [13]. Positive and negative pairs are required
to calculate the contrastive loss of the translated image.
To satisfy these conditions, we place the translated image
of the target domain and their positive and negative pairs
in the Siamese network inputs. Also, the weights of each
network in the Siamese network are shared with each other,
as shown in Fig. 3. CycleGAN and the Siamese network are
trained together in the following order: the training dataset is
first used to learn the generators, then the discriminators, and
finally, the layers in Siamese. However, the translated image
cannot guarantee that the range of intensity is similar between
the translated image and the target domain images. Therefore,
the Preprocessing Chain (PC) method proposed by Tan and
Triggs [11] is also applied to the dataset before image trans-
lation is carried out. Results depending on quantization level
and stages of the image preprocessing method are depicted
in Fig. 4. When comparing the result images according to the
quantization level, the intensity level difference between the
target image and translated image ismuch smaller in the result
of applying PC method. After the image translation module
step, the same class of translated images and their corre-
sponding target domain images are labeled as the same label.
The second step, the feature learning module, is then per-
formed as demonstrated in Fig. 5. The residual networks [57]
are chosen as the CNN-based backbone model. After back-
bone network is pre-trained on the large-scale dataset [7],
the recombined training dataset are used to fine-tune the
pre-trained backbone model. This allows the acquisition of
discriminative and robust embedding vector to enable feature
matching of probe and gallery test datasets in the visual
domain.

TABLE 1. The generator, discriminator architecture of CycleGAN [12].

B. IMAGE TRANSLATION MODULE
1) NOTATION AND NETWORK ARCHITECTURE
Image translation is performed between different domains
as the first step to reduce the modality gap in the cross-
domain, as illustrated in Fig. 1 and Fig. 2. The goal of this
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FIGURE 5. Illustration of the proposed feature learning module. A CNN-based residual networks is selected and
this is pre-trained with a large-scale dataset to carry out supervised feature learning. The same class of translated
images and their corresponding target domain images are labeled as the same label and used as fine-tuning data.
Feature matching between the probe and gallery images in the visual domain is performed with this fine-tuned
backbone model.

step is to learn mapping functions between two domains,
X and Y , when given training samples xi ∈ X and yi ∈ Y .
The data distribution is denoted as x ∼ pdata(x) and
y ∼ pdata(y). To transform images to the style of the
target domain, two generator-discriminator {GXY ,DY } and
{GYX ,DX } are required for two domains: X and Y . The
GXY : X → Y indicates mapping from the X domain to
the Y domain, and GYX : Y → X indicates mapping from
the Y domain to the X domain. Additionally, the adversar-
ial discriminators {DX ,DY } distinguish whether the inputs
are real images or fake images. The network architecture
is same as CycleGAN [12], and its details are represented
in Table 1. The generators consist of the convolution layers,
nine residual blocks, and the deconvolution layers. Moreover,
PatchGAN [47] is used for the discriminators. CycleGAN can
generate the translated images to the style of the target domain
because they are separated from each other without sharing
latent space in each translation process. Additionally, since
there are no ground truth images for the translated images,
the guide for maintaining the contents of the target domain
does not exist. This drawback is solved by the CycleGAN
through the cycle consistency loss. In this process, the trans-
lated image should be recovered to original image after a
cycle of translation and reverse translation. However, when
the discrepancy of the cross-modality is large, like the HFR
dataset, the cycle consistency loss is not enough to maintain
the contents of original image. Thus, the additonal siamese
network is integrated with CycleGAN and both are trained
simultaneously. The goal of the Siamese network is to learn a
general similarity function. By measuring and comparing the
similarity of the embedding vectors between the translated

image and their corresponding pair in the target domain, this
network preserves the contents of the translated image in
the target domain. The architecture details of a CNN-based
Siamese network are represented in Table 2. Each translated
image and their corresponding pair go through a network con-
sisting of two branches during training as presented in Fig. 3.
The outputs of these branches are used for optimization using
a contrastive loss [13]. The loss tries to minimize the squared
Euclidean distance between the embedding vectors of posi-
tive image pairs and to maximize that of the negative pairs.
However, the difference from the conventional contrastive
loss is that the conventional one does not check with the
binary labels whether the pair is positive or negative. Datawas
inputted along with their corresponding positive and negative
pair to supply the consistency through the contrastive loss.
In other words, the contrastive loss Lcon pulls a translated
image and its positive pair in the target together, and push
the translated image and negative pair in the target apart,
according to the following equations:

Lcon(x1, x2, x3) = Lnegative paircon (x1, x2)

+Lpositive paircon (x1, x3),

Lnegative paircon (x1, x2) = {max(0,m− De(x1, x2))}2,

Lpositive paircon (x1, x3) = De(x1, x3)2. (1)

where x1 is the embedding vector of input image. x2 and
x3 are embedding vectors of corresponding pair images of
input image. De denotes the Euclidean distance between two
embedding vectors. m is the margin that defines the separa-
bility in the embedding space. Here, the Euclidean distance
metric between two embedding vector is defined, according
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TABLE 2. The Siamese network architecture.

to the following equation:

De(S(GXY (x)), S(yxp)) = ‖S(GXY (x))− S(yxp)‖2. (2)

where yxp is defined as the x corresponding positive pair in
the Y domain and yxn is the x corresponding to the negative
pair in Y domain. S is the Siamese network.

2) LOSS FUNCTION
As illustrated in Fig. 2, the image translation module
is optimized by three objectives: the adversarial loss,
the cycle consistency loss, and the contrastive loss. Two
generator-discriminator pairs, {GXY ,DY } and {GYX ,DX }, are
required to enable the image translation of the unpaired
cross-domain images. Using the adversarial loss [48],
the generators learn the style of the target domain to prevent
the discriminators from distinguishing the images generated.
In contrast, the discriminators learn to classify the images
in their each domain. The adversarial loss can be expressed
according to the following equation:

Ladv(GXY ,GYX ,DY ,DX ) = LYadv(GXY ,DY )

+LXadv(GYX ,DX ). (3)

For generator GXY and its corresponding discriminator
DY , the adversarial loss is expressed with the following
equation:

LYadv(GXY ,DY ) = Ey∼pdata(y) [logDY (y)]
+Ex∼pdata(x) [log(1− DY (GXY (x)))]. (4)

For the generator GYX and its corresponding discrimina-
tor DX , the adversarial loss is determined by the following
equation:

LXadv(GYX ,DX ) = Ex∼pdata(x) [logDX (x)]
+Ey∼pdata(y)[log(1− DX (GYX (y)))]. (5)

For the minmax optimizaiton, {GXY ,GYX } aim to minimize
this objective against {DX ,DY }, while {DX ,DY } tries to max-
imize it, i.e.,

G∗XY ,G
∗
YX ,D

∗
Y ,D

∗
X =argmin

G
max
D

Ladv(GXY ,GYX ,DY ,DX ).

(6)

However, the above general adversarial GAN loss need some
changes. Since general adversarial GAN loss is a form of
cross-entropy, the valuable gradient feedback may not be

delivered to the generator. Therefore, to stabilize the training
procedure, we replace Eq.(4) and Eq.(5) with Least Square
GAN objective [58], as the following equations:

LYadv(GXY ,DY ) = Ey∼pdata(y) [(DY (y)− 1)2]

+Ex∼pdata(x) [DY (GXY (x))
2], (7)

LXadv(GYX ,DX ) = Ex∼pdata(x) [(DX (x)− 1)2]

+Ey∼pdata(y)[DX (GYX (y))
2]. (8)

Next, in the loss function Lcyc [12], the L1 norm is used in the
following equation:

Lcyc(GXY ,GYX ) = Ex∼pdata(x) [‖GYX (GXY (x))− x‖1]
+Ey∼pdata(y) [‖GXY (GYX (y))− y‖1]. (9)

Adding this cycle consistency loss, the range of
possible mapping functions gets reduced and it prevents the
network from falling into the mode collapse state. As men-
tioned above, we integrate CNN-based Siamese network with
the CycleGAN. A similarity comparison is made between
the embedding vectors using the contrastive loss in Eq.(1).
A more effective and intuitive approach is used by always
exploiting both positive and negative pairs. In this regard,
Eq.(1) is changed as the following equation:

Lcon(GXY ,GYX , S)

= Lnegativecon (GXY ,GYX , S)+ Lpositivecon (GXY ,GYX , S),

Lnegativecon (GXY ,GYX , S)

= Ex∼pdata(x) [max(0,m− De(S(GXY (x)), S(yxn)))
2]

+Ey∼pdata(y) [max(0,m− De(S(GYX (y)), S(xyn)))
2],

Lpositivecon (GXY ,GYX , S)

= Ex∼pdata(x) [De(S(GXY (x)), S(yxp))]
+Ey∼pdata(y) [De(S(GYX (y)), S(xyp))]. (10)

where yxp is defined as the x corresponding positive pair in the
Y domain and yxn is the x corresponding to the negative pair
in Y domain. xyp is defined as the y corresponding positive
pair in the X domain and xyn is the y corresponding to the
negative pair in X domain. S is the Siamese network. Finally,
the full objective of image translation module can be defined,
which consists of three objectives and can be expressed as
follows:

LTotal(GXY ,GYX ,DY ,DX ) = Ladv(GXY ,GYX ,DY ,DX )

+ λLcyc(GXY ,GYX )+ γLcon(GXY ,GYX , S), (11)

where λ and γ are the weights that control the three
objectives.

C. FEATURE LEARNING MODULE
The feature learning module is the second step of the frame-
work as depicted in Fig. 1 and Fig. 5. The feature learning
module enables feature matching in the visual domain. After
the image translation process, the first step of framework,
the translated images are generated in each target domain.
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FIGURE 6. Some sample images in datasets. (a) CHUK Face Sketch FERET (CUFSF), (b) CASIA NIR-VIS 2.0, (c) Cleaned
MS-Celeb-1M, (d) Labeled Faces in the Wild (LFW).

The same class of translated images and their correspond-
ing target domain images are labeled as the same label.
We employ the ResNet-101 [57] as the pre-trained backbone
model. We make pre-trained models with cleaned Celeb-1M
dataset [7] as backbonemodel. Then, the recombined training
dataset is used to fine-tune the pre-trained backbone model
for obtaining discriminative embedding vector. To get the
best backbone model, we use the additional angle margin
loss (ArcFace) proposed by Deng et al. [4].

LArcFace = −
1
N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j6=yi e
scosθj

,

(12)

where N and n are the batch size and the class number,
respectively. θyi is the target (groud truth) angle. m is the
angular margin penalty and s is the feature scale.

As such, we obtain the backbone network that extracts
512-dimensional embedding vector. Therefore, we can per-
form discriminative and robust feature matching of probe and
gallery test dataset in the visual domain.

IV. EXPERIMENTS
To verify and evaluate the proposed method, two datasets
are adopted. These datasets are the CUHK Face Sketch
FERET (CUFSF) Dataset [26] and the CASIA NIR-VIS
2.0 Face Dataset [59]. Both datasets are the most general
and widely used datasets that are open to public. For this
paper, the cleaned MS-Celeb-1M dataset [7] is used as a
training dataset in second step of the framework to create
the backbone model. Additionally, the Labeled Faces in the
Wild (LFW) dataset [5] is used as validation dataset to vali-
date these models.

A. DATASETS
1) CUHK FACE SKETCH FERET (CUFSF) DATASET
CUHK Face Sketch FERET (CUFSF) Dataset [26] is widely
used among viewed sketch datasets. There are 1,194 subjects
in the FERET dataset [60] and every image is a frontal face.
Photos have illumination variations and exaggerated sketches
were drawn along with the photos as illustrated in Fig. 6(a).

2) CASIA NIR-VIS 2.0 DATASET
The CASIA NIR-VIS 2.0 Face dataset [59] is the largest and
most challenging NIR-VIS dataset due to the large varia-
tions in lighting, expression, and pose as shown in Fig. 6(b).
The CASIA NIR-VIS 2.0 consists of 5,093 VIS images and
12,487 NIR images. There are four sessions with 725 iden-
tities, each with 1 to 22 VIS and 5 to 50 NIR images. And
this is organized for a 10-fold of experiments. For the training
set, there are about 2,500 VIS and 6,100 NIR images from
360 identities. For the test set, the probe set consists of about
6,000 NIR images from 358 identities, and the gallery set
consists of only one VIS image from 358 identities.

3) CLEANED MS-CELEB-1M AND LABELED FACES IN THE
WILD (LFW) DATASET
The cleaned MS-Celeb-1M dataset proposed by Xu et al. [7]
is used as a training dataset in the second step of the frame-
work to create the backbonemodel. The performance is tested
with the Labeled Faces in the Wild (LFW) dataset [5], which
is used as a validation set. Guo et al. [6] produced the MS-
Celeb-1M dataset as one of the most popular datasets in
large-scale datasets. Guo et al. used one million celebrities
for the dataset and released 99,892 celebrities for the original
training dataset; however, the released dataset contains a lot
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of noise. For example, some images labeled as one celebrity
are actually belonged to other celebrities. Some images are
blur and others do not contain human faces. Additionally,
the distribution of the original training data is unbalanced.
Therefore, to compensate for these problems and tomaximize
the efficiency of the dataset, Xu et al. refined the MS-Celeb-
1M dataset. The MS-Celeb-1M dataset refined by Xu et al.
consists of 100K classes and 5,084,127 images.

The LFW dataset is one of the most popular benchmark
dataset. The LFW dataset includes 13,233 face images from
5,749 different identities and provides 6,000 face pairs for the
verification protocol under unrestricted conditions. Fig. 6(c)
and Fig. 6(d) show examples of the cleaned MS-Celeb-1M
and LFW.

B. EXPERIMENTAL SETUP
1) IMPLEMENTATION DETAILS
In experiments, our networks were implemented using Ten-
sorFlow and PyTorch. The experiments were carried out
on a desktop computer with Intel(R) Core(TM) i7 CPU @
3.20 GHz and 16.0GB RAM. And all of the networks in
this paper were learned using NVIDIA GTX1080-TI GPU.
Before performing this method, all images of the datasets
were cropped as a 128 x 128 size using the multitask cas-
caded convolutional networks (MTCNN) detector [61]. For
images that cannot be processed by MTCNN, we manually
cropped those images based on the position of eyes, nose,
and mouth. These cropped images were then subsequently
normalized using Preprocessing Chain (PC)1 method [11] to
reduce illumination variations.

In the first step, the image translation module were trained
based on the following fixed parameter settings in Eq.(11):
λ = 10, γ = 2, m = 2. The network weights of each
layer were initialized by a Gaussian distribution with a zero
mean and a standard deviation of 0.001. For optimization,
Adam [62] was employed where β1 = 0.5, β2 = 0.999,
and the batch size was set to 1. The initial learning rate was
0.0002, and wasmaintained for the first 100 epochs; however,
it linearly decayed to zero over the next 100 epochs. To satisfy
the requirement of the image size of the image translation
module, the input images were resized to 256 x 256. The
embedding size used for the Siamese network was set to the
128-dimension.

In the second step, feature learning module, after the
cleanedMS-Celeb-1M and LFW dataset are used to make the
pre-trained backbone model, HFR training dataset were used
to fine-tune the pre-trained backbone model, and all images
of datasets were resized to 112 x 112. The ResNet-101 [57]
is employed as the pre-trained backbone model. Additionally,
the backbone network was integrated with the ArcFace [4] as
a classifier network to find the best model. The LFW dataset
was also used as a validation set for selecting the optimal
model. The model obtained an accuracy of 99.3% on the

1Source code is available at http://lear.inrialpes.fr/people/triggs/src/
amfg07- demo- v1.tar.gz..

TABLE 3. Confusion matrix.

LFW dataset. The hyper-parameters of the ArcFace, s and m,
were set to 30 and 0.5, respectively, in Eq.(12). The network
weights of each layer were initialized by a Gaussian distribu-
tion with a zero mean and a standard deviation of 0.001. For
optimization, the stochastic gradient descent was employed
where the momentum was 0.9, the weight decay was 0.0005,
and the batch size was set to 128. The learning rate initially set
as 0.001 and maintained for the first 50 epochs,. Afterwards,
the step decayed, i.e., the learning rate was multiplied by
0.1 over the next 50 epochs. The generated backbonemodel in
the network was used in the same structure, when fine-tuned
with the ArcFace. The embedding size used for the feature
matching was set to the 512-dimension.

2) EVALUATION METHODS
We divided the HFR database and used it in the experi-
ment for training data and test data. For CUFSF dataset,
we divided 500 subjects as training dataset and the remaining
694 subjects as test dataset. For CASIA NIR-VIS 2.0 dataset,
we followed View 2 evaluation protocol, which consists of
sub experiments. For the performance test of the proposed
method, all of the experiments were repeated ten times, and
their average was taken as a result of this experiment.

The evaluation of translated image was conducted as a
qualitative evaluation because the translated image has no
ground truth image in target domain. The evaluation of recog-
nition performance is conducted by the identification rate
using cosine similarity. The cosine similarity function was
defined as shown in Eq.(13). Also, the additional evaluation
of recognition performance is conducted by the verification
rate of the specific false acceptance rate (FAR) in Eq.(14) and
is calculated by using the confusion matrix as demonstrated
in Table 3.

Cosine Similarity (A,B) =
A · B
‖A‖‖B‖

. (13)

FAR (False Acceptance Rate) =
FP

FP+ TN
. (14)

C. RESULTS
1) QUALITATIVE EVALUATION
The translated images of the visual and non-visual domain
obtained from the first step, image translation module, are
used as important information for reducing cross-modality
gaps in the second step, feature learning module. There-
fore, the translated image must not only conform to the
style of the target domain but also maintain its contents.

50460 VOLUME 8, 2020



H. B. Bae et al.: Non-Visual to Visual Translation for Cross-Domain FR

FIGURE 7. Qualitative evaluations of the image translation modules in (A) CUHK Face Sketch FERET (CUFSF) dataset and (B) CASIA NIR-VIS
2.0 dataset, respectively.

FIGURE 8. Comparison of qualitative evaluations according to whether Preprocessing Chain (PC) is applied or not for image translation modules in
(A) CUHK Face Sketch FERET (CUFSF) dataset and (B) CASIA NIR-VIS 2.0 dataset, respectively.

However, the evaluation methods for the Peak-Signal-
to-Noise Ratio (PSNR) and the Structural Similarity
(SSIM) [63] are not available since the ground truth of the
translated image does not exist. Thus, a qualitative eval-
uation of the translated images was conducted. Because
most HFR datasets have a large discrepancy between visual
and non-visual domain, cycle consistency loss [12] is
not sufficient to maintain contents suitable for the target
domain. Thus, to make translated image maintain con-
tents stable, we have proposed a method to integrate a
CNN-based Siamese network and CycleGAN and train both

simultaneously. As shown in Fig. 7, we can observe that
the system integrating CycleGAN and the Siamese network
maintains the contents of the translated image better than
CycleGAN. Because the translated image cannot guarantee
the similarity of the range of intensity between the translated
image and the target domain image, the preprocessed [11]
dataset was applied to the image translation module as
shown in Fig. 4. As presented in the results of the Fig. 8,
the translated image shows little intensity difference in the
target domain, as well as improved contents retention and
style changes to the target domain.
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TABLE 4. The Rank-1 Accuracy on the CUFSF dataset.

2) QUANTITATIVE EVALUATION
A quantitative evaluation was performed in the feature learn-
ing module, the second step of the framework. The proposed
method was compared with different state-of-the-art methods
based on the evaluation metrics of Eq.(13) and Eq.(14).

First, Table 4 shows the rank-1 accuracy on the CUFSF
dataset. LRBP [27] and G-HFR [31] are methods based on
the invariant feature descriptor. The G-HFR method shows
the highest rank-1 accuracy among the methods being com-
pared. The PLS [21] method is one of the common sub-
space projection based methods; the performance of the PLS
method is not adequate. MRF [40], MWF [41], TFSPS [42],
RSLCR [45], and MrFSPS [46] methods are synthesis based
methods. Overall, the methods have less than 80% perfor-
mance, and the MRF method has the lowest performance
among these methods. We used the several deep learning
networks [57], [64]–[67] pre-trained in the visual domain as a
comparison method. The results of the experiment show that
the performance is poor because the general face recognition
system on the visual domain does not extract any discrim-
inative features that can distinguish the images with cross-
modality. The proposed method shows the best performance
compared with state-of-the-art methods. We also present the
performance with and without preprocessing applied to the
dataset. The result of applying preprocessing shows 2.66%
higher performance than the G-HFR method.

Second, Table 5 shows the rank-1 accuracy and verifica-
tion rate of 0.1% FAR on the CASIA NIR-VIS 2.0 dataset.
We used the recently proposed TRIVET [32], IDR [33],
ADFL [51], CDL [34], W-CNN [35], and the saveral deep
learning pre-trainedmodels [57], [64]–[67] for comparing the
performance with the proposed method. Among compared
methods, the TRIVET method shows the lowest performance
in both the Rank-1 accuracy and VR@FAR=0.1% perfor-
mance, whereas W-CNN shows the highest performance.

TABLE 5. The Rank-1 Accuracy and verification rate of 0.1% FAR on the
CASIA NIR-VIS 2.0 dataset.

FIGURE 9. The receiver operating characteristic (ROC) curves of the
different methods in the CASIA NIR-VIS 2.0 dataset.

The method proposed in this paper shows the highest per-
formance compared with the state-of-the-art method. When
compared with the W-CNN, the rank-1 accuracy was 0.7%
higher, and the VR@FAR=0.1% was 0.34% higher. We plot
the receiver operating characteristic (ROC) curves of the
proposed method and its competitive state-of-the-art methods
in Fig. 9. In order to better show the results of analysis
on the ROC curve, a semi logarithmic coordinate is used
to show the curves. In ROC curves, the proposed method
performs significantly better compared with the other meth-
ods. In the section where FAR is higher than 1%, all the
methods are not significantly different in their verification
rates, except for the several methods [57], [64]–[67], which
are the pre-trained deep learning models. Applying the HFR
dataset directly to the pre-trained models in the visual domain
shows low performance. The reason is that it doesn’t extract
discriminative features in the images with cross-modality. As
shown in Fig. 9, it can be seen that the method to which
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preprocessing is applied has a higher verification rates than
the method to which preprocessing is not applied, except
for a section in which FAR is more than 0.001% and less
than 0.03%.

V. CONCLUSION
This paper proposes a novel two-step framework that consists
of the image translation module and the feature learning
module. The purpose of the proposed method is to obtain
an enhanced cross-modality matching system in the visual
domain system. To make this possible, first, we integrate the
Siamese network with CycleGAN and train it with a prepro-
cessed HFR dataset. By doing so, the translated images better
maintain their contents, while at the same time transforming
style more similar to the target domain. Second, the images
of the training dataset and its translated images are used to
fine-tune the pre-trained backbone model to obtain a discrim-
inative embedding vector. This enables feature matching of
probe and gallery test datasets in the visual domain. Over-
all, the experimental results show that the proposed method
performs better than other state-of-the-art methods. However,
since our framework can be affected by the amount of training
dataset, we plan to consider the unpaired multi-modal image-
to-image translation as a method to overcome the limitations
on the amount of dataset in the cross-domains in future work.

REFERENCES
[1] X. Wu, R. He, Z. Sun, and T. Tan, ‘‘A light CNN for deep face representa-

tion with noisy labels,’’ IEEE Trans. Inf. Forensics Secur., vol. 13, no. 11,
pp. 2884–2896, Nov. 2018.

[2] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[3] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, ‘‘CosFace: Large margin cosine loss for deep face recognition,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5265–5274.

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘‘ArcFace: Additive angular
margin loss for deep face recognition,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4690–4699.

[5] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, ‘‘Labeled
faces in the wild: A database forstudying face recognition in uncon-
strained environments,’’ Univ. Massachusetts Amherst, Amherst, MA,
USA, Tech. Rep. 07–49, Oct. 2007.

[6] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, ‘‘MS-celeb-1M: A dataset and
benchmark for large-scale face recognition,’’ in Proc. Eur. Conf. Comput.
Vis. Springer, 2016, pp. 87–102.

[7] Y. Xu, Y. Cheng, J. Zhao, Z. Wang, L. Xiong, K. Jayashree, H. Tamura,
T. Kagaya, S. Pranata, S. Shen, J. Feng, and J. Xing, ‘‘High performance
large scale face recognition with multi-cognition softmax and feature
retrieval,’’ in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW),
Oct. 2017, pp. 1898–1906.

[8] J. S. del Rio, D. Moctezuma, C. Conde, I. M. de Diego, and E. Cabello,
‘‘Automated border control e-gates and facial recognition systems,’’ Com-
put. Secur., vol. 62, pp. 49–72, Sep. 2016.

[9] S. Klum, H. Han, A. K. Jain, and B. Klare, ‘‘Sketch based face recognition:
Forensic vs. composite sketches,’’ in Proc. Int. Conf. Biometrics (ICB),
Jun. 2013, pp. 1–8.

[10] B. F. Klare and A. K. Jain, ‘‘Heterogeneous face recognition using kernel
prototype similarities,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 6, pp. 1410–1422, Jun. 2013.

[11] X. Tan and B. Triggs, ‘‘Enhanced local texture feature sets for face recog-
nition under difficult lighting conditions,’’ IEEE Trans. Image Process.,
vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

[12] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired Image-to-Image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[13] R. Hadsell, S. Chopra, and Y. LeCun, ‘‘Dimensionality reduction by learn-
ing an invariant mapping,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2, Jun. 2006, pp. 1735–1742.

[14] D. Lin and X. Tang, ‘‘Inter-modality face recognition,’’ in Proc. Eur. Conf.
Comput. Vis. Springer, 2006, pp. 13–26.

[15] D. Yi, R. Liu, R. Chu, Z. Lei, and S. Z. Li, ‘‘Face matching between near
infrared and visible light images,’’ in Proc. Int. Conf. Biometrics. Springer,
2007, pp. 523–530.

[16] A. Li, S. Shan, X. Chen, and W. Gao, ‘‘Maximizing intra-individual
correlations for face recognition across pose differences,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 605–611.

[17] Z. Lei and S. Z. Li, ‘‘Coupled spectral regression for matching hetero-
geneous faces,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2009, pp. 1123–1128.

[18] Z. Lei, C. Zhou, D. Yi, A. K. Jain, and S. Z. Li, ‘‘An improved coupled
spectral regression for heterogeneous face recognition,’’ in Proc. 5th IAPR
Int. Conf. Biometrics (ICB), Mar. 2012, pp. 7–12.

[19] Z. Lei, S. Liao, A. K. Jain, and S. Z. Li, ‘‘Coupled discriminant analysis for
heterogeneous face recognition,’’ IEEE Trans. Inf. Forensics Secur., vol. 7,
no. 6, pp. 1707–1716, Dec. 2012.

[20] X. Huang, Z. Lei, M. Fan, X. Wang, and S. Z. Li, ‘‘Regularized discrimi-
native spectral regression method for heterogeneous face matching,’’ IEEE
Trans. Image Process., vol. 22, no. 1, pp. 353–362, Jan. 2013.

[21] A. Sharma and D. W. Jacobs, ‘‘Bypassing synthesis: PLS for face recog-
nition with pose, low-resolution and sketch,’’ in Proc. CVPR, Jun. 2011,
pp. 593–600.

[22] S. Liao, D. Yi, Z. Lei, R. Qin, and S. Z. Li, ‘‘Heterogeneous face recog-
nition from local structures of normalized appearance,’’ in Proc. Int. Conf.
Biometrics. Springer, 2009, pp. 209–218.

[23] B. Klare, Z. Li, and A. K. Jain, ‘‘Matching forensic sketches to mug
shot photos,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 3,
pp. 639–646, Mar. 2011.

[24] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[25] T. Ojala, M. Pietikäinen, and T. Mäenpää, ‘‘Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[26] W. Zhang, X. Wang, and X. Tang, ‘‘Coupled information-theoretic encod-
ing for face photo-sketch recognition,’’ in Proc. CVPR, Jun. 2011,
pp. 513–520.

[27] H. Kiani Galoogahi and T. Sim, ‘‘Face sketch recognition by local radon
binary pattern: LRBP,’’ in Proc. 19th IEEE Int. Conf. Image Process.,
Sep. 2012, pp. 1837–1840.

[28] H. K. Galoogahi and T. Sim, ‘‘Inter-modality face sketch recognition,’’ in
Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2012, pp. 224–229.

[29] D. Gong, Z. Li, W. Huang, X. Li, and D. Tao, ‘‘Heterogeneous face
recognition: A common encoding feature discriminant approach,’’ IEEE
Trans. Image Process., vol. 26, no. 5, pp. 2079–2089, May 2017.

[30] H. Roy and D. Bhattacharjee, ‘‘A novel quaternary pattern of local maxi-
mum quotient for heterogeneous face recognition,’’Pattern Recognit. Lett.,
vol. 113, pp. 19–28, Oct. 2018.

[31] C. Peng, X. Gao, N. Wang, and J. Li, ‘‘Graphical representation for
heterogeneous face recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 2, pp. 301–312, Feb. 2017.

[32] X. Liu, L. Song, X. Wu, and T. Tan, ‘‘Transferring deep representation for
NIR-VIS heterogeneous face recognition,’’ in Proc. Int. Conf. Biometrics
(ICB), Jun. 2016, pp. 1–8.

[33] R. He, X. Wu, Z. Sun, and T. Tan, ‘‘Learning invariant deep representation
for NIR-VIS face recognition,’’ in Proc. 31st AAAI Conf. Artif. Intell.,
2017, pp. 2000–2006.

[34] X. Wu, L. Song, R. He, and T. Tan, ‘‘Coupled deep learning for hetero-
geneous face recognition,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1679–1686.

[35] R. He, X. Wu, Z. Sun, and T. Tan, ‘‘Wasserstein CNN: Learning invariant
features for NIR-VIS face recognition,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 7, pp. 1761–1773, Jul. 2019.

[36] X. Tang and X. Wang, ‘‘Face sketch synthesis and recognition,’’ in Proc.
9th IEEE Int. Conf. Comput. Vis., 2003, pp. 687–694.

[37] X. Tang and X. Wang, ‘‘Face sketch recognition,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 14, no. 1, pp. 50–57, Jan. 2004.

[38] Q. Liu, X. Tang, H. Jin, H. Lu, and S. Ma, ‘‘A nonlinear approach for
face sketch synthesis and recognition,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 1, Jun. 2005, pp. 1005–1010.

VOLUME 8, 2020 50463



H. B. Bae et al.: Non-Visual to Visual Translation for Cross-Domain FR

[39] X. Gao, J. Zhong, J. Li, and C. Tian, ‘‘Face sketch synthesis algorithm
based on E-HMM and selective ensemble,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 18, no. 4, pp. 487–496, Apr. 2008.

[40] X. Wang and X. Tang, ‘‘Face photo-sketch synthesis and recognition,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 1955–1967,
Sep. 2008.

[41] H. Zhou, Z. Kuang, and K. K.Wong, ‘‘Markovweight fields for face sketch
synthesis,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 1091–1097.

[42] N. Wang, D. Tao, X. Gao, X. Li, and J. Li, ‘‘Transductive face sketch-
photo synthesis,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 9,
pp. 1364–1376, Sep. 2013.

[43] X. Gao, N. Wang, D. Tao, and X. Li, ‘‘Face sketch–photo synthesis and
retrieval using sparse representation,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 8, pp. 1213–1226, Aug. 2012.

[44] N. Wang, J. Li, D. Tao, X. Li, and X. Gao, ‘‘Heterogeneous image trans-
formation,’’ Pattern Recognit. Lett., vol. 34, no. 1, pp. 77–84, Jan. 2013.

[45] N. Wang, X. Gao, and J. Li, ‘‘Random sampling for fast face sketch
synthesis,’’ Pattern Recognit., vol. 76, pp. 215–227, Apr. 2018.

[46] C. Peng, X. Gao, N. Wang, D. Tao, X. Li, and J. Li, ‘‘Multiple
representations-based face sketch–photo synthesis,’’ IEEE Trans. neural
Netw. Learn. Syst., vol. 27, no. 11, pp. 2201–2215, Sep. 2015.

[47] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[48] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[49] H. Zhang, V. M. Patel, B. S. Riggan, and S. Hu, ‘‘Generative adversarial
network-based synthesis of visible faces from polarimetrie thermal faces,’’
in Proc. IEEE Int. Joint Conf. Biometrics (IJCB), Oct. 2017, pp. 100–107.

[50] T. Zhang, A. Wiliem, S. Yang, and B. Lovell, ‘‘TV-GAN: Generative
adversarial network based thermal to visible face recognition,’’ in Proc.
Int. Conf. Biometrics (ICB), Feb. 2018, pp. 174–181.

[51] L. Song, M. Zhang, X. Wu, and R. He, ‘‘Adversarial discriminative hetero-
geneous face recognition,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 7355–7362.

[52] B. Cao, N. Wang, J. Li, and X. Gao, ‘‘Data augmentation-based joint
learning for heterogeneous face recognition,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 6, pp. 1731–1743, Jun. 2019.

[53] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, ‘‘Learning to discover
cross-domain relations with generative adversarial networks,’’ in Proc.
34th Int. Conf. Mach. Learn., vol. 70, 2017, pp. 1857–1865.

[54] M.-Y. Liu, T. Breuel, and J. Kautz, ‘‘Unsupervised image-to-image transla-
tion networks,’’ inProc. Adv. Neural Inf. Process. Syst., 2017, pp. 700–708.

[55] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric
discriminatively, with application to face verification,’’ in Proc. CVPR,
Jun. 2005, pp. 539–546.

[56] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, ‘‘Signature
verification using a ‘Siamese’ time delay neural network,’’ in Proc. Adv.
Neural Inf. Process. Syst., 1994, pp. 737–744.

[57] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[58] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, ‘‘Least
squares generative adversarial networks,’’ inProc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 2794–2802.

[59] S. Z. Li, D. Yi, Z. Lei, and S. Liao, ‘‘The CASIA NIR-VIS 2.0 face
database,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2013, pp. 348–353.

[60] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, ‘‘The FERET evalu-
ation methodology for face-recognition algorithms,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 10, pp. 1090–1104, Oct. 2000.

[61] K. Zhang, Z. Zhang, Z. Li, andY. Qiao, ‘‘Joint face detection and alignment
using multitask cascaded convolutional networks,’’ IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016.

[62] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[63] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[64] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[65] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[66] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132–7141.

[67] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘Cbam: Convolutional
block attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

HAN BYEOL BAE received the B.S. degree in
electrical and electronic engineering from Yonsei
University, Seoul, South Korea, the B.S. degree in
information and communication engineering from
Yonsei University, Wonju, in 2010, and the M.S.
degree in biometrics engineering fromYonsei Uni-
versity, in 2015, where he is currently pursuing
the Ph.D. degree with the Image and Video Pattern
Recognition Laboratory. His research interests are
mainly in face recognition, image translation, and
image classification.

TAEJAE JEON received the B.S. degree in electri-
cal and electronic engineering from Yonsei Uni-
versity, Seoul, South Korea, in 2014, where he
is currently pursuing the Ph.D. degree with the
Image and Video Pattern Recognition Laboratory.
His research interests include video classification,
facial landmark detection, and stress recognition
using deep learning.

YONGJU LEE received the B.S. degree in electri-
cal and electronic engineering from Yonsei Uni-
versity, Seoul, South Korea, in 2018, where he
is currently pursuing the Ph.D. degree with the
Image and Video Pattern Recognition Laboratory.
His research interests include face recognition and
facial landmark detection.

SUNGJUN JANG received the B.S. degree in elec-
tronics engineering from Kwangwoon University,
Seoul, South Korea, in 2019. He is currently pursu-
ing the M.S. degree with the Image and Video Pat-
tern Recognition Laboratory, Yonsei University.
His research interests include face recognition and
semantic segmentation using deep learning.

SANGYOUN LEE (Member, IEEE) received the
B.S. and M.S. degrees in electrical and electronic
engineering from Yonsei University, Seoul, South
Korea, in 1987 and 1989, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing from the Georgia Institute of Technology,
Atlanta, GA, USA, in 1999. He is currently a
Professor and the Head of electrical and electronic
engineering with the Graduate School and the
Head of the Image and Video Pattern Recognition

Laboratory, Yonsei University. His research interests include all aspects
of computer vision, with a special focus on pattern recognition for face
detection and recognition, advanced driver-assistance systems, and video
codecs.

50464 VOLUME 8, 2020


