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ABSTRACT In this paper, we investigate a downlink non-orthogonal multiple access (NOMA) system
consisting of a base station (BS) and two users, where each user decodes its own signal through successive
interference cancellation (SIC). When the signal of one user, called the weak user (WU) who has a bad
channel, is being decoded, the signal of the other user, called the strong user (SU) who has a good channel,
acts as interference. In an interference channel, we can increase the achievable rate by applying improper
Gaussian signaling (IGS). Therefore, we apply IGS to SU, aiming to mitigate the interference. We also
consider imperfect SIC at SU, which is a more general assumption for a NOMA system. For the considered
NOMA system model, we derive the outage probability of each user in a closed form, provide its asymptotic
expression, and obtain its diversity order. We also derive the ergodic rate of each of the two users in a
closed form. We propose two algorithms to maximize the fairness of the NOMA system based on the primal
decomposition method. Through simulation, we verify that our analysis is correct, and confirm that applying
IGS improves the fairness of the NOMA system.

INDEX TERMS Ergodic rate, fairness, imperfect successive interference cancellation (SIC), improper
Gaussian signaling (IGS), non-orthogonal multiple access (NOMA) system, outage probability, primal
decomposition.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) is a promising
technology to improve spectral efficiency of future wireless
communication systems [1]–[5]. The power domain multi-
plexing is the main idea of NOMA such that the base station
(BS) broadcasts the superposed signals for multiple users
with different powers, and each receiver decodes its own
signal through the successive interference cancellation (SIC)
technique. Compared with a conventional orthogonal multi-
ple access (OMA) scheme where one channel is assigned to
only one user, a NOMA scheme allows multiple users to use
the same channel to achieve higher rates and lower outage
probabilities.
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In a two-user downlink NOMA system, the BS allocates
more power to a user whose channel condition has been
significantly degraded due to path loss and shadowing effects,
called the weak user (WU), than the other user, called the
strong user (SU) who has a better channel [1]–[3], [6]. WU
decodes its own signal by treating SU’s signal as interfer-
ence. SU performs SIC, i.e., it decodes WU’s signal first and
cancels it from the received signal. After SIC, SU decodes
its own signal. Since SU’s signal acts as interference while
WU decodes its signal and SU performs SIC, it should be
mitigated to improve the performance of the NOMA system.

Proper Gaussian signaling (PGS) is a common assump-
tion in communication systems, where a signal is assumed
to be circularly symmetric complex Gaussian distributed,
i.e., its real and imaginary parts have equal power and they
are independently zero-mean Gaussian distributed [7], [8].
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By the maximum entropy theorem, PGS is known to achieve
the maximum achievable rate in an additive white Gaussian
noise (AWGN) channel [7]. Due to this, most studies on
communication systems assume PGS. However, PGS may
not be an optimal choice in an interference channel.

In [9]–[11], the authors show that improper Gaussian sig-
naling (IGS) can improve the achievable rate over PGS in
an interference channel. Compared to PGS, IGS is a more
general class of signals where circularity and uncorrelated-
ness conditions are relaxed. This means, real and imaginary
parts of a signal either have unequal power or are correlated
[7], [8]. In practical digital communication systems, binary
phase shift keying (BPSK) and continuous phase modula-
tion (CPM) are the well known improper signal modulation
schemes [12], and more general improper signal modulation
schemes are investigated in [13].

There has been a lot of research on the adoption of IGS
to improve the performance for various interference chan-
nel scenarios. In [14]–[16], the performance is improved by
using IGS in the Z-interference channel. In [17] and [18],
a secondary user with IGS achieves higher rate by avoiding
interference from a primary user. In [19], IGS improves the
achievable rate of an alternate relaying system by reduc-
ing inter-relay interference. In [20], IGS improves both the
outage probability and the ergodic capacity in a full-duplex
relaying system by reducing residual self interference.

By applying IGS to NOMA, interference of SU’s signal
can be reduced, which improves the performance of NOMA
systems. There are several studies on NOMA systems with
IGS [21], [22]. In [21], the authors maximize instantaneous
sum rate by controlling impropriety of signals in a two-user
NOMA system. In [22], it shows that transmit beamforming
contributes to maximizing the minimum throughput of users
in a multiuser multi-cell NOMA system with IGS. These
works are based on the assumption of using instantaneous
channel state information (CSI) where the BS knows perfect
CSI of each user. However, due to limited resources for uplink
feedback, instantaneous CSI may not be available at the BS.
In this scenario, we should consider statistical CSI, which can
be obtained easily according to the location of each user.

When analyzing the performance of a communication sys-
tem with statistical CSI, the most commonly used metrics are
the outage probability and ergodic capacity. In a slow fading
channel, an outage occurs when a user suffers deep fading,
resulting in unreliable communication at a certain rate [23].
In contrast, in a fast fading channel, a user may avoid an
outage because it does not suffer deep fading, so that reliable
communication at a certain rate is possible [23]. Therefore,
the outage probability and ergodic capacity are commonly
used in the former and latter scenarios, respectively.

Most of the existing work on NOMA systems assumes
perfect SIC at the receiver, i.e., SU cancels WU’s signal
from the received signal perfectly. This is not practical due to
various reasons such as synchronization error, channel esti-
mation error, and imperfect decoding [24], [34]. Therefore,

considering imperfect SIC at the receiver is a viable approach
for NOMA systems.

In this paper, we investigate a downlink NOMA system
consisting of a BS and two users, where SIC at SU is not
perfect. SU uses IGS while WU uses PGS. Our approach
improves the performance of WU while sacrificing that of
SU, i.e., a compromise to improve fairness between the two
users. The contributions of this paper are as follows:
• We consider a NOMA system where statistical CSI is
available at the BS. Assuming imperfect SIC at SU,
we derive the outage probability of each user in a closed
form and reveal the impact of imperfect SIC on per-
formance. We also derive the asymptotic expression,
diversity order, ergodic rate of each user.

• We formulate the fairness optimization problem and use
two-dimensional grid search to get its optimal solution.
To reduce the computational complexity, we propose an
algorithm that uses the primal decomposition method.

• Through simulation, we confirm that our analysis is
accurate, and show that the proposed algorithms achieve
much better performance than two-dimensional grid
search in terms of runtime. We also show that applying
IGS improves fairness of the NOMA system.

The remainder of this paper is organized as follows. In
Section II, we describe the model of the NOMA system with
IGS under imperfect SIC. In Section III, we derive the outage
probability, diversity order, and ergodic rate of each user. In
Section IV, we propose algorithms to maximize the fairness
of the NOMA system. Section V presents Monte Carlo sim-
ulation results, followed by the conclusions in Section VI.

II. SYSTEM MODEL
We consider a downlink NOMA system that consists of a BS
and two users, i.e., WU and SU. WU is a user whose channel
condition has been significantly degraded due to path loss and
shadowing effects, and SU is the other user. Each user has a
single antenna.

A. CHANNEL MODEL
Suppose that the BS has only statistical CSI, not instanta-
neous CSI. This means, the BS does not know the exact
channel coefficients, but it knows the channel variance.

Assume that the channel coefficients from the BS to WU
and SU, hw and hs, are independent zero mean complex Gaus-
sian random variables with variance λw and λs, respectively.
Note that λw < λs.

We denote the channel gains of WU and SU by gw =
|hw|2 and gs = |hs|2, respectively. The probability density
functions (pdfs) of channel gains gw and gs are given by

fgw (g) =
1
λw
e−

1
λw
g
, (1)

and

fgs (g) =
1
λs
e−

1
λs
g
, (2)

respectively.
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B. RECEIVED SIGNAL MODEL
The transmit signal at the BS intended for WU and SU are
denoted by xw and xs, respectively. Let α ∈ (0, 0.5) denote
the power allocation factor for SU’s signal. The BS sends
the superposed signal, i.e.,

√
1− αxw +

√
αxs, with transmit

power P. The received signal at WU is given by

yw =
√
P(
√
1− αxw +

√
αxs)hw + nw (3)

where nw is the AWGN at WU with variance σ 2
nw . The

received signal at SU is given by

ys =
√
P(
√
αxs +

√
1− αxw)hs + ns (4)

where ns is the AWGN at SU with variance σ 2
ns . Assume

that the noise variances at the both users are the same and
normalized, i.e., σ 2

ns = σ 2
nw = σ 2

= 1. Suppose that SU
performs SIC, i.e., SU decodes WU’s signal and cancels it
from the received signal [1], [2]. After SIC, the received
signal of SU becomes

ys =
√
Pαxshs +

√
P(1− α)xwhr + ns (5)

where hr represents the residual interference channel coeffi-
cient for imperfect SIC at SU. We use the imperfect decoding
model for imperfect SIC where the residual interference is
modeled as complex Gaussian random variable [25]–[29].1

Assume that hr is a complex Gaussian random variable with
zero mean and variance ξλs, where ξ represents the level of
residual interference. So the cases of ξ = 0 and 1 indicate
perfect SIC and fully imperfect SIC, respectively.2

C. IMPROPER GAUSSIAN SIGNALING
IGS shows its advantages when treated as interference [11].
Since the two users decode WU’s signal by treating SU’s sig-
nal as interference, we apply IGS to SU to mitigate the effects
of interference, and then PGS to WU.3 The impropriety of
signal x is defined as follows:
Definition 1 [7], [8]: The variance and pseudo variance

of signal x are given by σ 2
x = E[|x|2] and σ̃ 2

x = E[x2],
respectively.
Definition 2 [7], [8]: If σ̃ 2

x = 0, signal x is called proper,
otherwise improper.
Definition 3 [17]: A circularity coefficient of signal x is

given by Cx = |σ̃ 2
x |/σ

2
x .

From the definitions, the circularity coefficient of signal x
satisfies Cx ∈ [0, 1]. The cases of Cx = 0 and 1 indicate the
proper and maximally improper signals, respectively.

1In practical digital communication systems, signals are not Gaussian
distributed. In these cases, residual interference may not be modeled as a
Gaussian random variable as in [30]–[33]. These cases are beyond our scope,
but should be considered in future work dealing with practical scenarios.

2The residual interference from imperfect decoding should be modeled
as hser where er ∼ CN (0, ξ ) represents the error resulted from imperfect
decoding [34]. However, because this model makes the analysis too compli-
cated, we simplify residual interference to hr ∼ CN (0, ξλs) instead of hser ,
which is a widely used model as in [25]–[29].

3By applying IGS to WU may improve the performance of the NOMA
system because WU’s signal is also treated as interference in (5). However,
this makes the analysis too complicated and is beyond our scope, so that we
leave this as future work.

FIGURE 1. System model of the two-user downlink NOMA system.

D. ACHIEVABLE RATES
When IGS is applied, for a received signal y and an
interference-plus-noise signal z, the achievable rate is given
by [11]

R =
1
2
log2

(
σ 4
y − |σ̃

2
y |

2

σ 4
z − |σ̃

2
z |

2

)
. (6)

From (3) and (6), we obtain the achievable rate of WU as

Rw =
1
2
log2

(
(Pgw + 1)2 − (PαgwCxs )2

(Pαgw + 1)2 − (PαgwCxs )2

)
. (7)

From (4) and (6), we can obtain the achievable rate of SU for
decoding WU’s signal, as

Rs→w =
1
2
log2

(
(Pgs + 1)2 − (PαgsCxs )2

(Pαgs + 1)2 − (PαgsCxs )2

)
. (8)

From (5) and (6), we have the achievable rate of SU after SIC
as

Rs→s=
1
2
log2

(
(Pαgs + P(1− α)gr + 1)2 − (PαgsCxs )2

(P(1− α)gr + 1)2

)
(9)

where gr = |hr |2 is the gain of the residual interference
channel.

III. PERFORMANCE ANALYSIS
A. OUTAGE PROBABILITY OF WU
When the achievable rate of WU is lower than the target rate
Rt,w, an outage occurs. The outage probability ofWU is given
by

poutw = Pr[Rw < Rt,w]. (10)

Putting (7) into (10), we get

poutw = Pr[P2(1− α2γw + α2γwC2xs − α
2C2xs )︸ ︷︷ ︸

=A

g2w

+ 2P(1− αγw)︸ ︷︷ ︸
=B

gw − (γw − 1) < 0] (11)

where γw = 22Rt,w (γw > 1 since Rt,w > 0). The following
lemma shows the available range of the power allocation
factor α and the circularity coefficient of SU’s signal Cxs .
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Lemma 1: For the outage probability of WU not to be one,
the following inequality should hold:

α <
1√

1+ (γw − 1)(1− C2xs )
. (12)

Proof: The proof is given in Appendix A.
In the rest of this paper, we only consider the case when

Eq. (12) holds. We can see that, in the quadratic function
inside the probability in (11), the second order coefficient of
gw is positive and the y-intercept is negative. So the quadratic
function has only one positive root, which is given by

g0w=
−(1−αγw)+

√
γw(1− α)2+(γw − 1)2α2C2xs

P(1− α2(1+ (γw − 1)(1− C2xs )))
. (13)

The inequality inside the probability in (11) holds when gw
is smaller than the positive root, i.e., gw ∈ (0, g0w). Using
this, we derive the outage probability of WU in the following
theorem.
Theorem 1: The outage probability of WU is given by

poutw = 1− e−
1
λw
g0w . (14)

Proof: Since the outage occurs at WU when gw ∈
(0, g0w), we can obtain the outage probability of WU by
integrating the pdf of gw over the region gw ∈ (0, g0w), i.e.,

poutw =

∫ g0w

0
fgw (g)dg (15)

which gives the result of the theorem.

B. OUTAGE PROBABILITY OF SU
When SU’s achievable rate for decoding the signal of WU is
lower than the target rate Rt,w or that of SU is lower than the
target rate Rt,s, an outage occurs. Thus we can express the
outage probability of SU as

pouts = Pr[Rs→w < Rt,w ∪ Rs→s < Rt,s]

= Pr[Rs→w < Rt,w]︸ ︷︷ ︸
=C

+Pr[Rs→s < Rt,s ∩ Rs→w > Rt,w]︸ ︷︷ ︸
=D

.

(16)

Using the fact that the formulas of Rs→w and Rw are similar
to each other, Rs→w < Rt,w holds for gs ∈ (0, g0w). Therefore,
the outage probability of SU for decoding WU’s signal is
given by

C = Pr[Rs→w < Rt,w]

=

∫ g0w

0
fgs (g)dg

= 1− e−
1
λs
g0w . (17)

Since Rs→w > Rt,w holds for gs ∈ (g0w,∞), we obtain
the second term on the right hand side (RHS) of (16) as

D = Pr[Rs→s < Rt,s ∩ Rs→w > Rt,w]

=

∫
∞

g0w

Pr[Rs→s < Rt,s|gs = g]︸ ︷︷ ︸
=E

fgs (g)dg. (18)

Putting (9) into (18), we have the conditional probability in
the integration on the RHS of (18) as

E = Pr[Rs→s < Rt,s|gs = g]

= Pr[P2(γs−1)(1−α)2g2r − 2P(1−α)(Pαgs − (γs−1))gr
−P2α2(1− C2xs )g

2
s − 2Pαgs + (γs − 1) > 0|gs = g]

(19)

where γs = 22Rt,s . The following lemma shows the range of
gr where an outage at SU occurs.
Lemma 2: For gs ∈ (0, g0s ), the inequality Rs→s < Rt,s

always holds regardless of gr , where

g0s =
−1+

√
1+ (γs − 1)(1− C2xs )

Pα(1− C2xs )
. (20)

For gs ∈ (g0s ,∞), the inequality Rs→s < Rt,s holds if and
only if gr ∈ (g0r (gs),∞), where

g0r (gs) =
Pα

(
1+

√
1+ (γs − 1)(1− C2xs )

)
gs − (γs − 1)

P(γs − 1)(1− α)
.

(21)
Proof: The proof is given in Appendix B.

From Lemma 2, we obtain the conditional probability in
(19) as

E = Pr[Rs→s < Rt,s|gs = g]

=

{
1, g ∈ (0, g0s ),∫
∞

g0r (g)
fgr (g̃)dg̃, g ∈ (g0s ,∞),

=

{
1, g ∈ (0, g0s ),

e−
1
ξλs

g0r (g), g ∈ (g0s ,∞).
(22)

Putting (22) into (18), we derive the second term on the RHS
of (16) as

D =
∫
∞

g0w

Efgs (g)dg

=


∫ g0s
g0w
fgs (g)dg+

∫
∞

g0s
e−

1
ξλs

g0r (g)fgs (g)dg, g0w < g0s ,∫
∞

g0w
e−

1
ξλs

g0r (g)fgs (g)dg, g0w > g0s ,

=

{
e−

1
λs
g0w − e−

1
λs
g0s +4e−

1
ξλs

g0r (g
0
s )e−

1
λs
g0s , g0w < g0s ,

4e−
1
ξλs

g0r (g
0
w)e−

1
λs
g0w , g0w > g0s ,

(23)

where

4 =
(γs − 1)(1− α)ξ

α
(
1+

√
1+ (γs − 1)(1− C2xs )

)
+ (γs − 1)(1− α)ξ

.

(24)

Finally, we derive the outage probability of SU in the follow-
ing theorem.
Theorem 2: The outage probability of SU is given by

pouts = 1− e−
1
λs
gmax (1−4e−

1
ξλs

g0r (gmax)) (25)

where gmax = max(g0w, g
0
s ).
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Proof: Putting (17) and (23) into (16), we obtain the
outage probability of SU as

pouts = C + D

=

{
1− e−

1
λs
g0s +4e−

1
ξλs

g0r (g
0
s )e−

1
λs
g0s , g0w < g0s ,

1− e−
1
λs
g0w +4e−

1
ξλs

g0r (g
0
w)e−

1
λs
g0w , g0w > g0s ,

(26)

which gives the result of the theorem.
Corollary 1: The outage probability of SU with perfect

SIC is given by

pout−perfects = 1− e−
1
λs
gmax . (27)

Proof: If SIC is perfect, i.e., ξ → 0, then4→ 0 which
gives the result of the corollary.

Comparing (25) and (27), we can see that the term
4e−

1
ξλs

g0r (gmax) in pouts comes from imperfect SIC.

C. OUTAGE PROBABILITY IN HIGH SNR
As P→∞, the values of g0w, g

0
s , gmax, and g0r (gmax) converge

to

lim
P→∞

g0w

= lim
P→∞

−(1− αγw)+
√
γw(1− α)2 + (γw − 1)2α2C2xs

P(1− α2(1+ (γw − 1)(1− C2xs )))
= 0, (28)

lim
P→∞

g0s

= lim
P→∞

−1+
√
1+ (γs − 1)(1− C2xs )

Pα(1− C2xs )
= 0, (29)

lim
P→∞

gmax

= max
(

lim
P→∞

g0w, lim
P→∞

g0s

)
= 0, (30)

and

lim
P→∞

g0r (gmax)

= lim
P→∞

Pα
(
1+

√
1+(γs − 1)(1−C2xs )

)
gmax−(γs − 1)

P(γs−1)(1−α)

= lim
P→∞

α
(
1+

√
1+(γs−1)(1−C2xs )

)
(γs − 1)(1− α)

gmax −
1

P(1− α)


= 0, (31)

respectively. Then, we can obtain the asymptotic expression
of the outage probability for each user in the following
corollary.

Corollary 2: The outage probability of WU in the high
SNR is approximated as

poutw ≈
1
λw
g0w. (32)

The outage probabilities of SUwith perfect SIC and imperfect
SIC in the high SNR are approximated as

pout−perfects ≈
1
λs
gmax. (33)

and

pouts ≈ 4, (34)

respectively.
Proof: Using the approximation 1 − e−x ≈ x for

x → 0, we can easily obtain (32) and (33) from (14) and
(27), respectively. For the imperfect SIC case, it is easy to see
that the outage probability of SU with imperfect SIC does not
converges to zero. If P→∞ in (25), we can obtain (34).
It is easy to see that g0w and g0s are proportional to P

−1, and
gmax is also proportional to P−1. Therefore, from the defini-
tion of the diversity order D = − limP→∞ log(pout)/ log(P)
and Corollary 2, we can see that WU and SU with perfect
SIC achieve diversity order one. However, the imperfect SIC
causes zero diversity order for SU.

D. ERGODIC RATES OF WU AND SU
We denote the ergodic rates of WU and SU as

R̄w = E[Rw] (35)

and

R̄s = E[Rs→s], (36)

respectively. We present the closed-form expressions for the
ergodic rates of WU and SU in the following theorem.
Theorem 3: The ergodic rate of WU is given by

R̄w =
1

2 ln 2
(−9(λw, αCxs )+9(αλw, Cxs )) (37)

where

9(z,C)

= e
1

Pz(1−C)Ei
(
−

1
Pz(1− C)

)
+ e

1
Pz(1+C)Ei

(
−

1
Pz(1+ C)

)
,

(38)

where Ei(z) = −
∫
∞

−z
e−t
t dt.

The ergodic rate of SU is given by

R̄s = − 1
2 ln 2 (�(Cxs )+�(−Cxs )), (39)

where

�(C)

=
α(1− C)

(1− α)ξ − α(1− C)

[
e

1
P(1−α)ξλs Ei

(
−

1
P(1− α)ξλs

)
− e

1
Pαλs(1−C)Ei

(
−

1
Pαλs(1− C)

)]
. (40)
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Proof: The proof is given in Appendix C.
Corollary 3: The ergodic rate of SU with perfect SIC is

given by

R̄perfects = −
1

2 ln 2
9(αλs, Cxs ). (41)

Proof: For x > 0, the following inequality holds [35]

1
2
ln
(
1+

2
x

)
< −exEi(−x) < ln

(
1+

1
x

)
. (42)

Since limx→∞
1
2 ln

(
1+ 2

x

)
= 0 and limx→∞ ln

(
1+ 1

x

)
=

0, it is clear that limx→∞ exEi(−x) = 0. Then we can easily
obtain the ergodic rate of SU with perfect SIC from (39) by
substituting ξ with 0.

IV. FAIRNESS OPTIMIZATION
A. PROBLEM FORMULATION
By adjusting the power allocation factor α and the circularity
coefficient Cxs , we can improve the fairness of the NOMA
system. If statistical CSI is available, fairness is maximized
when the maximum outage probability of the two users is
minimized [36]. We formulate the optimization problem to
maximize the fairness of the NOMA system as

min
α,Cxs

max(poutw , pouts )

subject to : 0 ≤ Cxs ≤ 1,

0 ≤ α≤min

 1√
1+(γw − 1)(1−C2xs )

, 0.5

 ,
(43)

where the constraint of the power allocation factor comes
from Lemma 1.

B. TWO-DIMENSIONAL GRID SEARCH
We use exhaustive search to obtain the optimal solution
of the problem (43). Thanks to the closed form expres-
sions for the outage probabilities of WU and SU, by using
two-dimensional grid search, we can easily obtain the opti-
mal solution that requires the computational complexity of
O(1/ε2), where ε is a search step size of two-dimensional grid
search. The two-dimensional grid search method is briefly
presented in Algorithm 1.

C. SUBOPTIMAL ALGORITHM BASED ON EXACT OUTAGE
PROBABILITY
The objective function of the problem (43) has a closed form
with elementary functions, but two-dimensional grid search
may take a long time due to hardware limitations. To reduce
the computational complexity, we propose an algorithm
based on the primal decomposition method, which is widely
used for solving resource allocation problems [37]–[39]. The
considered problem is not convex, so its solution will be
suboptimal without guaranteeing optimality. We will show
the optimality and processing time of the proposed algorithm
in Section V.

Algorithm 1 Two-Dimensional Grid Search
1: Initialize
2: Set a search step size ε > 0 as a small positive

number.
3: Set p∗ = 1.
4: for Cxs = 0 : ε : 1 do

5: for α = 0 : ε : min

(
1√

1+(γw−1)(1−C2
xs )
, 0.5

)
do

6: Calculate pmax = max(poutw , pouts )
7: if pmax < p∗ then
8: p∗ = pmax F optimal outage probability
9: C∗xs = Cxs F optimal circularity coefficient
10: α∗ = α F optimal power allocation factor
11: end if
12: end for
13: end for

We divide the problem (43) into a master problem and
a subproblem. The master problem determines the power
allocation factor and the subproblem determines the circu-
larity coefficient. For the fixed circularity coefficient Cxs ,
we formulate the master problem as

min
α

max(poutw , pouts )

subject to : 0 ≤ α ≤ min

 1√
1+(γw − 1)(1−C2xs )

, 0.5

 .
(44)

Due to the non-convexity and complicated expression of the
outage probability of each user, solving the problem (44)
analytically is difficult. So, we find the optimal solution to
the problem (44) with one-dimensional grid search.

For the fixed power allocation factor α, we formulate the
subproblem as

min
Cxs

max(poutw , pouts )

subject to : max
(
0,

α2γw − 1
α2(γw − 1)

)
≤Cxs≤1 (45)

where the constraint comes from the inequality α ≤

1/
√
1+ (γw − 1)(1− C2xs ). Similarly, we find the optimal

solution to the problem (45) with one-dimensional grid
search.

By solving the master problem and the subproblem iter-
atively, which is depicted in Algorithm 2, we can obtain
the suboptimal solution to the problem (43). Algorithm 2
always converges since max(poutw , pouts ) always decreases in
each iteration and max(poutw , pouts ) > 0. As one-dimensional
grid search is used in each iteration, the computational com-
plexity of Algorithm 2 is O(N/ε), where N is the number of
iterations and ε is the search step size of one-dimensional grid
search. For accuracy, ε is usually set to a very small positive
number. Therefore, forN � 1/ε, our proposed algorithm has
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Algorithm 2 Suboptimal Solution Based on Exact Analysis
1: Initialize
2: Set a convergence parameter ε > 0 as a small positive

number.
3: Set α and Cxs satisfying the constraint of the problem

(43).
4: Set p∗ = max(poutw , pouts ).
5: repeat
6: For given Cxs , find α∗ by solving the problem (44)

with one-dimensional grid search.
7: Set α = α∗.
8: For given α, find C∗xs by solving the problem (45)

with one-dimensional grid search.
9: Set Cxs = C∗xs .
10: Set p∗prev = p∗.
11: Set p∗ = max(poutw , pouts ).
12: until p∗prev − p

∗ < ε

much lower computational complexity than two-dimensional
grid search.

D. SUBOPTIMAL ALGORITHM BASED ON ASYMPTOTIC
OUTAGE PROBABILITY
Algorithm 2 uses one-dimensional grid search that still has
high computational complexity. To reduce the complexity
further, we propose an algorithm based on the asymptotic
outage probability of each user and use the primal decompo-
sition method. Before formulating a problem, we check the
monotonic property of g0w(α, Cxs ) and 4(α, Cxs ).
The achievable rate of WU in (7) is strictly decreasing for

α and strictly increasing for Cxs . This results in the outage
probability of WU being strictly increasing for α and strictly
decreasing for Cxs . Therefore, from (14), it is easy to see that
g0w(α, Cxs ) is strictly increasing for α and strictly decreasing
for Cxs .
We rewrite 4(α, Cxs ) as

4(α, Cxs )=
(γs − 1)ξ

α
1−α

(
1+

√
1+(γs − 1)(1− C2xs )

)
+(γs − 1)ξ

.

(46)

The denominator of 4(α, Cxs ) is strictly increasing for α
and strictly decreasing for Cxs , while the numerator does not
change. Therefore, 4(α, Cxs ) is strictly decreasing for α and
strictly increasing for Cxs .

We provide the following lemma to use the strictly mono-
tonic property.
Lemma 3: Let fi(x) and fd (x) are strictly increasing and

decreasing continuous functions for x ∈ [xmin, xmax], respec-
tively. Then x∗ = arg minx∈[xmin,xmax]max(fi(x), fd (x)) can be
obtained as follows:
Case 1) If fi(xmin) ≥ fd (xmin), then x∗ = xmin.
Case 2) If fi(xmax) ≤ fd (xmax), then x∗ = xmax.
Case 3) Otherwise, there exists a unique x0 satisfying

fi(x0) = fd (x0) and x∗ = x0.

Proof: In the proof, we only consider x ∈ [xmin, xmax]
unless stated. Due to the monotonicity, min fi(x) = fi(xmin)
and max fd (x) = fi(xmin). For Case 1, it can be seen that
max(fi(x), fd (x)) = fi(x) since min fi(x) > max fd (x), result-
ing in x∗ = arg min fi(x) = xmin.
For Case 2, it can be similarly proved.
For Case 3, the inequalities fi(xmin) < fd (xmin) and

fi(xmax) > fd (xmax) are satisfied. In this case, x0
satisfying fi(x0) = fd (x0) always exists due to the
intermediate value theorem and it is unique according
to the strictly monotonic property [40]. From Case 2,
we obtain x0 = arg minx∈[xmin,x0]max(fi(x), fd (x)). Similarly,
x0 = arg minx∈[x0,xmax]max(fi(x), fd (x)). Therefore, x0 =
arg minmax(fi(x), fd (x)), which proves x∗ = x0.

We obtain x∗ for Case 3 with bisection search according
to the strictly monotonic property, which is much faster than
grid search [40].

By using the asymptotic outage probabilities of WU and
SU in (32) and (34), respectively, we reformulate the fairness
maximization problem as

min
α,Cxs

max
(

1
λw
g0w, 4

)
subject to : 0 ≤ Cxs ≤ 1,

0 ≤ α ≤ min

 1√
1+ (γw − 1)(1− C2xs )

, 0.5

 .
(47)

We use the primal decomposition method to find the solution
to the problem (47). For the fixed circularity coefficient Cxs ,
we formulate the master problem as

min
α

max
(

1
λw
g0w, 4

)

subject to : 0 ≤ α ≤ min

 1√
1+(γw − 1)(1−C2xs )

, 0.5

 .
(48)

Note that

1
λw
g0w(0, Cxs ) =

−1+
√
γw

Pλw
(49)

and 4(0, Cxs ) = 1. Because the asymptotic analysis is valid
for a large transmit power, we ignore the case of −1+

√
γw

Pλw
≥ 1.

Therefore, the inequality g0w(0, Cxs )/λw < 4(0, Cxs ) always
holds, which implies that Case 1 in Lemma 3 does not occur.
Let αmax =

1√
1+(γw−1)(1−C2

xs )
, then g0w(α, Cxs )→∞ as α→

αmax. Therefore, if αmax ≤ 0.5, i.e., (γw − 1)(1 − C2xs ) ≥ 3,
Case 2 does not occur. Then, we can consider the following
two cases.
Case 1) (γw − 1)(1 − C2xs ) < 3 and g0w(0.5, Cxs )/λw ≤

4(0.5, Cxs ): This is Case 2 in Lemma 3. Therefore, α∗ = 0.5,
i.e., the optimal point.
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Algorithm 3 Suboptimal Solution Based on Asymptotic
Analysis
1: Initialize
2: Set a convergence parameter ε > 0 as a small positive

number.
3: Set α and Cxs satisfying the constraint of the problem

(43).
4: Set p∗ = max

(
1
λw
g0w, 4

)
.

5: repeat
6: if (γw − 1)(1 − C2xs ) < 3 and g0w(0.5, Cxs )/λw <
4(0.5, Cxs ) then

7: α = 0.5.
8: else
9: Find α satisfying g0w(α, Cxs )/λw = 4(α, Cxs )

by using bisection search.
10: end if
11: if α2γw < 1 and g0w(α, 0)/λw < 4(α, 0) then
12: Cxs = 0
13: else if g0w(α, 1)/λw > 4(α, 1) then
14: Cxs = 1
15: else
16: Find Cxs satisfying g0w(α, Cxs )/λw = 4(α, Cxs )

by using bisection search.
17: end if
18: Set p∗prev = p∗.

19: Set p∗ = max
(

1
λw
g0w, 4

)
.

20: until p∗prev − p
∗ < ε

Case 2) Otherwise: This is Case 3 in Lemma 3. Therefore,
α∗ satisfying g0w(α

∗, Cxs )/λw = 4(α∗, Cxs ) is the optimal
point.

For the fixed power allocation factor α, we formulate the
subproblem as

min
Cxs

max
(

1
λw
g0w, 4

)
subject to : max

(
0,

α2γw−1
α2(γw − 1)

)
≤ Cxs≤1. (50)

Let Cmin =
α2γw−1
α2(γw−1)

, then g0w(α, Cxs ) → ∞ as Cxs → Cmin.

Therefore, if Cmin ≥ 0, i.e., α2γw ≥ 1, Case 1 in Lemma 3
does not occur. Then, we can consider the following three
cases.
Case 1) α2γw < 1 and g0w(α, 0)/λw ≤ 4(α, 0): This is

Case 1 in Lemma 3. Therefore, C∗ = 0, i.e., the optimal point.
Case 2) g0w(α, 1)/λw ≥ 4(α, 1): This is Case 2 in

Lemma 3. Therefore, C∗ = 1, i.e., the optimal point.
Case 3) Otherwise: This is Case 3 in Lemma 3. Therefore,

C∗ satisfying g0w(α, C∗)/λw = 4(α, C∗) is the optimal point.
By solving the master problem and the subproblem iter-

atively, which is depicted in Algorithm 3, we can obtain
the suboptimal solution to the problem (43). Since bisection
search is much faster than grid search, the computational

TABLE 1. Parameters used in simulation.

FIGURE 2. Outage probabilities of WU and SU.

complexity of Algorithm 3 is much lower than that of Algo-
rithm 1 and Algorithm 2.

V. SIMULATION RESULTS
For simulation, we use MATLAB with the Monte Carlo
method. Unless specified, simulation parameters are set
according to Table 1.

Fig. 2 show the outage probabilities ofWU and SU accord-
ing to the transmit SNR of the BS for SU’s target rate of (a)
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FIGURE 3. Ergodic rates of WU and SU, and their sum rates.

4 bps/Hz and (b) 2 bps/Hz. In the figure, Cxs = 0 indicates
that SU uses PGS. It shows that the outage probabilities of
the two users decrease with the transmit SNR. It also shows
that with the circularity coefficient, the outage probability
of WU decreases while that of SU increases, for the perfect
and imperfect SIC cases. When Cxs is increased from 0 to
0.5, the outage probability of SU is slightly increased for
both Rt,s = 4 bps/Hz and Rt,s = 2 bps/Hz, while that
of WU is decreased further. On the other hand, when Cxs
is increased from 0.5 to 1, the outage probability of SU
increased significantly, especially for Rt,s = 4, while that of
WU is decreased little. From this, we can infer that by setting
circularly coefficient appropriately, overall performance of
the NOMA system can be improved. In the high SNR region,
the outage probabilities converge to the asymptotic lines, and
the error floor appears for SU with imperfect SIC.

Fig. 3 shows the ergodic rates ofWU and SU, and their sum
rates according to the transmit SNR of the BS. It shows that
the ergodic rates of the both users and their sum rates increase
with the transmit SNR. It also shows that with the circularity
coefficient, the ergodic rate of WU increases while that of SU
decreases, for the perfect and imperfect SIC cases. For the
perfect SIC case, the sum rate decreases with the circularity
coefficient. For the imperfect SIC case, with the circularity
coefficient, the sum rate decreases in the low SNR region,
but increases in the high SNR region.

Figs. 2 and 3 show that the analytical results perfectly
match the simulation results, which verifies that our analysis
is accurate. In the following figures, we only plot the analyt-
ical results for convenience.

Fig. 4 shows the maximum outage probability of each of
the two users, i.e., max(poutw , pouts ), according to the level of
residual interference. The low value of the maximum out-
age probability indicates that it achieves higher fairness of
the NOMA system. It shows that for the transmit SNR of
10 dB, a maximally improper signal, i.e., Cxs = 1, achieves

FIGURE 4. Maximum outage probability of each user versus level of
residual interference.

FIGURE 5. Maximum outage probability of each user versus power
allocation factor.

the lowest maximum outage probability, i.e., highest fair-
ness, when the level of residual interference is low, while
an improper signal with Cxs = 0.5 achieves the highest
fairness when the level of residual interference is high. On the
other hand, for the transmit SNR of 30 dB, a proper signal
achieves highest fairness except when the level of residual
interference is low. This indicates that the impropriety of
a signal achieving the highest fairness depends on system
parameters.

Fig. 5 shows the maximum outage probability of each user
according to the power allocation factor. It shows that when
the power allocation factor is high, the outage probabilities
become one for a proper signal and an improper signal with
Cxs = 0.5. This is an expected result according to Lemma 1
as the both users always experience outage when decoding
WU’s signal due to the interference from SU’s signal.

On the other hand, a maximally improper signal does not
make the outage probability one for any power allocation
factor. This comes from the characteristics of IGS such that
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FIGURE 6. Performance comparison between two-dimensional grid
search and the proposed algorithms.

it reduces the effects of interference. It also shows that a
proper signal achieves the highest fairness when the power
allocation factor is low, while a maximally proper signal
achieves the highest fairness when the power allocation factor
is high. For the transmit SNR of 10 dB, a proper signal
achieves the maximum fairness, while for the transmit SNR
of 30 dB, an improper signal with Cxs = 0.5 achieves the
maximum fairness. This indicates that IGS has an advantage
in the high SNR region. This is the expected result due to the
characteristics of IGS. Since IGS improves performance in
the interference channel, not the AWGN channel, it is natural
that IGS shows better performance in the high SNR region.

Fig. 6 shows performance comparison between two-
dimensional grid search and the proposed algorithms accord-
ing to the search step size. Algorithm 3 uses bisection search
of which accuracy and computational complexity do not
depend on the search step size. Therefore, the performance
of Algorithm 3 does not change with the search step size.
Fig. 6 (a) shows that two-dimensional grid search with a

FIGURE 7. Maximum outage probability of each user versus transmit SNR.

very small step size, for example ε = 0.1x24, achieves the
optimal point. It shows that the accuracy of two-dimensional
grid search and Algorithm 2 increase as the search step size
decreases. It also shows that Algorithm 2 achieves almost the
same accuracy with two-dimensional grid search.

For the transmit SNR of 10 dB and 20 dB, the accuracy
of Algorithm 3 is very poor but converges to that of two-
dimensional grid search as the transmit SNR increases. This
is because Algorithm 3 uses the asymptotic results which are
valid in the high SNR region. In Fig. 6 (b), Algorithm 3 shows
great performance compared to the other methods in terms of
runtime. As the search step size increases, runtime in the two-
dimensional grid search increases dramatically, which is too
high compared to that in the proposed algorithms.

Fig. 7 shows the maximum outage probability of each
user according to the transmit SNR. For the case of PGS,
we optimize only the power allocation factor, and for the
case of IGS, we optimize both the power allocation factor
and the impropriety of the signal. For the accurate results,
we use two dimensional grid search with search step size
ε = 0.001. It shows that fairness is improved by solving the
optimization problem for the both PGS and IGS cases. In the
low SNR region, the maximum outage probability is the same
for the PGS and IGS cases with optimization. However, in the
high SNR region, it shows that IGS achieves higher fairness
compared to PGS. From this, we can see that IGS is effective
for the case when transmit SNR is high. It also shows that
IGS can improve the fairness of the NOMA system for SU’s
target rate of both 4 bps/Hz and 2 bps/Hz cases.

Fig. 8 shows the sum rate of each user according to the level
of residual interference. It shows that the sum rate decreases
according to the level of residual interference. It also shows
that a proper signal and an improper signal with Cxs = 0.5
obtain almost the same sum rate. For the transmit SNR of 10
dB, a maximally improper signal lowers the sum rate. For the
transmit SNR of 30 dB, a maximally improper signal lowers
the sum rate when the level of residual interference is low,
while it improves the sum rate when the level of residual
interference is high.
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FIGURE 8. Sum rate of each user versus level of residual interference.

VI. CONCLUSION
In this paper, we investigated a NOMA system consisting of
a BS and two users. A user whose channel condition has been
significantly degraded due to path loss and shadowing effects
is called WU and the other user is called SU. We applied
IGS and PGS to SU and WU, respectively, and derived the
outage probabilities and the ergodic rates of the both users in
the closed form, assuming imperfect SIC. Due to imperfect
SIC, the diversity order of WU decreases from one to zero.
We proposed two algorithms to maximize the fairness of
the NOMA system. We confirmed that the simulation results
match the analytical results very well. We showed that WU
exploits an advantage of using IGS at the expense of SU’s
performance, i.e., achieving improved fairness of the NOMA
system. We also showed that using the proposed algorithms,
we obtain the optimal solution that maximizes fairness with
low computational complexity, especially in the high SNR
region. In future work, we will also apply IGS to WU, extend
the system model to a cellular network that supports more
users and design an improper signal modulation scheme suit-
able for NOMA systems.
APPENDIXES
APPENDIX A
PROOF OF LEMMA 1
If Eq. (12) does not hold, i.e.,α ≥ 1/

√
1+ (γw − 1)(1− C2xs ),

the second and first order coefficients of gw in the quadratic
function inside the probability in (11) satisfy the following
inequalities:

A = P2(1− α2γw + α2γwC2xs − α
2C2xs )

= P2(1− α2(1+ (γw − 1)(1− C2xs )))
≤ 0 (51)

and
B = 2P(1− αγw)

≤ 2P

1−
γw√

γw − C2xs (γw − 1)


(a)
< 2P(1−

√
γw)

< 0 (52)

where γw − C2xs (γw − 1) < γw in (a) since γw > 1. We see
that the value of the quadratic function is always negative for
gw > 0 since all the coefficients in the quadratic function are
negative. This means that if Eq. (12) does not hold, the outage
probability of WU always becomes one.

APPENDIX B
PROOF OF LEMMA 2
Let h(gr ) be the quadratic function in gr inside the probability
on the RHS of Eq. (19), i.e.,

h(gr )= P2(γs−1)(1−α)2g2r − 2P(1−α)(Pαgs−(γs−1))

×gr−P2α2(1−C2xs )g
2
s−2Pαgs+(γs − 1). (53)

The y-intercept of h(gr ) is given by

y(gs) = −P2α2(1− C2xs )g
2
s − 2Pαgs + (γs − 1). (54)

The positive root of h(gr ) is g0r (gs) if y(gs) > 0, and that of
y(gs) is g0s . It is easy to see that y(gs) > 0 if gs is smaller than
the positive root of y(gs), and y(gs) < 0 otherwise.
When y(gs) > 0, i.e., gs ∈ (0, g0s ), the symmetry axis of

h(gr ) becomes negative because

Pαgs − (γs−1)
P(γs−1)(1−α)

=−
y(gs)+P2α2(1−C2xs )g

2
s+Pαgs

P(γs − 1)(1− α)
<0,

(55)

which makes h(gr ) > 0 regardless of gr .
When y(gs) < 0, i.e., gs ∈ (g0s ,∞), it is easy to see that

h(gr ) > 0 if and only if gr is larger than the positive root of
h(gr ), i.e., gr ∈ (g0r (gs),∞).

APPENDIX C
PROOF OF THEOREM 3
From (1), (7), and (35), we obtain the ergodic rate of WU as

R̄w =
1
2

∫
∞

0
log2

(
(Pg+ 1)2 − (PαgCxs )2

(Pαg+ 1)2 − (PαgCxs )2

)
fgw (g)dg

=
1

2λw

(∫
∞

0
log2((Pg+ 1)2 − (PαgCxs )2)e

−
1
λw
gdg︸ ︷︷ ︸

=F

−

∫
∞

0
log2((Pαg+ 1)2−(PαgCgs )2)e

−
1
λw
gdg

)
. (56)

We calculate the first integral term on the RHS of Eq. (56)
as

F =
∫
∞

0
log2((Pg+ 1)2 − (PαgCxs )2)e

−
1
λw
gdg

= −λw log2(P
2(1− α2C2xs )g

2
+ 2Pg+ 1)e−

1
λw
g∣∣∞
0

+
2λw
ln 2

∫
∞

0

(
P2(1− α2C2xs )g+ P

P2(1− α2C2xs )g2 + 2Pg+ 1

)
e−

1
λw
gdg

(b)
= −

λw

ln 2

(
e

1
Pλw(1−αCxs )Ei

(
−

1
Pλw(1− αCxs )

)
+ e

1
Pλw(1+αCxs )Ei

(
−

1
Pλw(1+ αCxs )

))
(57)
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R̄s =
1
2

∫
∞

0

∫
∞

0
log2

(
(Pαg+ P(1− α)g̃+ 1)2 − (PαgCxs )2

(P(1− α)g̃+ 1)2

)
fgs (g)dgfgr (g̃)dg̃

=
1
2

∫
∞

0

∫
∞

0
log2

(
(Pαg+ P(1− α)g̃+ 1)2 − (PαgCxs )2

) 1
λs
e−

1
λs
gdgfgr (g̃)dg̃

−
1
ξλs

∫
∞

0
log2(P(1− α)g̃+ 1)e−

1
ξλs

g̃dg̃

(c)
=

1
2ξλs ln 2

∫
∞

0

[
− e

P(1−α)g̃+1
Pαλs(1−Cxs )Ei

(
−
P(1− α)g̃+ 1
Pαλs(1− Cxs )

)
︸ ︷︷ ︸

=G

−e
P(1−α)g̃+1
Pαλs(1+Cxs )Ei

(
−
P(1− α)g̃+ 1
Pαλs(1+ Cxs )

)]
e−

1
ξλs

g̃dg̃. (58)

∫
∞

0
Ge−

1
ξλs

g̃dg̃ =
∫
∞

0
e

P(1−α)g̃+1
Pαλs(1−Cxs )Ei

(
−
P(1− α)g̃+ 1
Pαλs(1− Cxs )

)
e−

1
ξλs

g̃dg̃

(d)
=

αλs(1− Cxs )
1− α

e
1

P(1−α)ξλs

∫
∞

1
Pαλs(1−Cxs )

e

(
1− αλs(1−Cxs )(1−α)ξλs

)
h̃
Ei(−h̃)dh̃

(e)
= −

αξλs(1− Cxs )
(1− α)ξ − α(1− Cxs )

e
1

P(1−α)ξλs

[
Ei
(
−
αλs(1− Cxs )
(1− α)ξλs

h̃
)
− e

(
1− αλs(1−Cxs )(1−α)ξλs

)
h̃
Ei(−h̃)

]∣∣∣∣∞ 1
Pαλs(1−Cxs )

=
αξλs(1− Cxs )

(1− α)ξ − α(1− Cxs )

[
e

1
P(1−α)ξλs Ei

(
−

1
P(1− α)ξλs

)
− e

1
Pαλs(1−Cxs )Ei

(
−

1
Pαλs(1− Cxs )

)]
. (59)

where (b) is derived by using the integral in [41]. Then we
calculate the second integral term on the RHS of Eq. (56) in
the similar way.

From (2), (9), and (36), we obtain the ergodic rate of SU in
(58), as shown at the top of this page, where (c) is derived in
the similar way used in (57). The first term in the integral on
the RHS of Eq. (58) is derived in (59), as shown at the top of
this page, where (d) is derived by putting− P(1−α)g̃+1

Pαλs(1−Cxs )
into h̃,

and (e) is derived by using the integral in [42]. We calculate
the other terms in the integral in the similar way. Then we
finally obtain the ergodic rates of SU and WU, i.e., R̄s and
R̄w, as given above.
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