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ABSTRACT The detection of abnormal electricity consumption behavior has been of great importance in
recent years. However, existing research often focuses on algorithm improvement and ignores the process of
obtaining features. The optimal feature set, which reflects customers’ electricity consumption behavior, has
a significant influence on the final detection results. Moreover, it is not straightforward to obtain datasets
with label information. In this paper, a method based on feature engineering for unsupervised detection
of abnormal electricity consumption behavior is proposed. First, the original feature set is constructed by
brainstorming in the feature engineering step. Then, the optimal feature set, which reflects the customers’
electricity consumption behavior, is obtained by features selected based on the variance and similarity
between them. After that, in the abnormal detection step, a density-based clustering algorithm, in which
the best clustering parameters are selected through iteration and evaluation, combined with unsupervised
clustering evaluation indexes, is used to detect abnormal electricity consumption behaviors. Finally, using the
load dataset of an industrial park, several typical feature strategies are applied for comparison with the feature
engineering proposed in this paper. To perform the evaluation, the label information of abnormal behaviors
is obtained by combining the original electricity consumption behavior detection results with abnormal data
injections. The abnormal detection method proposed has given good results and outperformed typical feature
strategies in an effective and generalizable way.

INDEX TERMS Abnormal detection, electricity consumption behavior, feature engineering, maximal
information coefficient, unsupervised learning.

I. INTRODUCTION
With the widespread use of smart meters and the con-
tinuous development of advanced metering infrastructures
(AMI), utilities are able to acquire fine-grained data about the
real electricity consumption of end-users [1], [2]. Moreover,
research on anomaly detection for electricity consumption
behavior based on data from smart meters has gained exten-
sive attention [3], [4]. Anomaly detection can regulate cus-
tomers’ electricity consumption behavior, reduce the losses
of power utilities, and maintain the security of the smart
grid [4], [5]. The data from smart meters indirectly reflect
customers’ electricity consumption behavior, and the essence
of anomalous behavior detection is to distinguish abnormal
data in the electricity consumption dataset [6], [7]. Generally,
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the data in abnormal detection include bad data and non-
technical loss (NTL) data, which are directly reflected in the
readings of smart meters. Nevertheless, there are fundamental
differences between bad data and NTL data. Bad data include
missing data as well as abnormal electricity consumption
patterns caused by force majeure in the process of data col-
lection, transmission, temporary power outages, or business
rectification [3]. The generation of bad data is inevitable,
objective, and temporary. The data in NTL are generated
by electricity theft under specific strategies, including meter
tampering, network intrusion, and measurement interruption,
which have the characteristics of continuity, subjectivity, and
illegality [8].

The problems with bad data, such as missing data, repeated
data, and exceptions, are easy to find and handle in the process
of data cleaning [9]. However, because of the large amount
of data, distinguishing bad data manually without a unified
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standard is subjective, and abnormal electricity consumption
patterns in bad data cannot be distinguished effectively from
normal patterns. At the same time, unplanned electricity con-
sumption in bad data and electricity theft in NTL have similar
performance on load curves and similar detection methods.
Therefore, the abnormal electricity consumption patterns in
bad data and electricity theft in NTL all belong to the category
of abnormal electricity consumption behavior.

Current research on abnormal electricity consumption
behavior detection generally follows the process of ‘‘feature
acquisition—abnormal detection’’ [10]–[12]. A feature, also
called an attribute or variable, represents a property of a
process or system that has beenmeasured or constructed from
the original input variables [13]. Through different feature
strategies, a series of electricity consumption behavior fea-
tures are obtained from the data set and are used to train
classifiers or to perform cluster analysis. However, existing
research mainly focuses on the improvement of classification
and clustering algorithms, while research on feature strategies
is not a popular issue. ‘‘Data and features determine the
upper limit of machine learning, while models and algo-
rithms only approach this upper limit’’ [14]. The feature set,
which can reflect customers’ electricity consumption behav-
ior based on load data, has played a decisive role in follow-up
research [15]. In fact, in two recent research reviews [3], [16],
feature engineering is considered to be a challenging field that
has been ignored in previous studies.

Feature engineering mainly focuses on the mining and
analysis of electricity consumption and load data in the exist-
ing research. Features can be divided into two categories
according to whether they are interpretable. One is the cat-
egory of interpretable features, such as the variability index,
the daily average load, and the peak-to-valley time. These
features generally rely on professional knowledge to execute
feature construction or adopt specific strategies to select fea-
tures from the commonly used electricity consumption fea-
ture set. The other is the category of noninterpretable features
generated by machine learning or deep learning algorithms,
such as a deep confidence network [9], an autoencoder [17],
or a convolutional neural network [18]. Obtaining a feature
set that can reflect customers’ electricity consumption is
the first step in detecting abnormal electricity consumption.
The features obtained by different feature strategies lead to
vast differences in the evaluation of anomaly detection algo-
rithms [19]–[21]. At present, there are several problems in the
research of customer electricity use features. The process of
constructing the electricity behavior feature set relies heavily
on professional knowledge. Features selected by experience
have the disadvantages of subjectivity and one-sidedness.
Additionally, customers have inherent electricity consump-
tion characteristics, and unified selection of features ignores
the differences between customers and can lead to the loss of
crucial information. Deep learning algorithms are a popular
research topic in feature engineering and are very effective
on feature engineering datasets. However, almost all of them
are based on a sample data set and require the dataset with

labels for model training in supervised learning. The number
of layers and parameters of deep learning algorithms means
that researchers must carry out experiments continuously,
and the extracted features are not interpretable. The deep
learning algorithms cannot be adjusted adaptively and have
some limitations when facing a new dataset.

After feature acquisition, the methods of detection can be
divided into supervised and unsupervised methods according
to whether label information is available in the dataset. Super-
vised methods include various classifiers and neural network
models, such as support vector machines [17], [22], extreme
learning machines [23], random forests [24], and deep learn-
ing algorithms. Unsupervised methods primarily include a
variety of clustering algorithms, e.g., k-means clustering [25],
fuzzy clustering [26], and other improved clustering meth-
ods [2], [27], [28]. However, as mentioned above, the labels
of abnormal electricity consumption data in most datasets are
difficult to obtain. Moreover, there is no standard to judge
whether the customer data represent normal electricity con-
sumption behavior and manual labeling is difficult to work
that lacks reliability [3]. Therefore, supervised methods have
certain limitations in practice, and unsupervised methods are
more suitable for actual needs.

In order to solve the above problems of features acqui-
sition in abnormal electricity consumption behavior detec-
tion, an unsupervised abnormal detection method based on
feature engineering for electricity consumption behaviors
is proposed. The proposed method consists of three parts:
data preparation, feature engineering, and anomaly detection.
First, data preprocessing is carried out to clean the data, and it
is a vital and indispensable step. Next, through feature engi-
neering, the optimal feature subset that reflects consumers’
energy consumption behavior is obtained. Then, the best
clustering parameters are found by iterative evaluation and
cluster evaluation. Finally, anomaly detection is performed by
a density-based clustering algorithm. The proposed method
is based on unsupervised learning and does not rely on sub-
jective experience and data. The optimal feature set obtained
by the proposedmethod can comprehensively and objectively
reflect the user’s electricity consumption behavior, and real-
ize abnormal detection.

ORGANIZATION OF THE PAPER
Section II discusses the related concepts of feature engineer-
ing and provides an overview of the existing studies related to
electricity consumption feature strategies in anomaly detec-
tion. Section III proposed the abnormal detection method
and elaborates on each component of the method in detail.
Section IV shows the experimental results and compares them
with previous works. Finally, the conclusion and discussion
are discussed in Section V.

A. ABBREVIATIONS AND ACRONYMS
Abnormal data injection (ADI), advanced metering infras-
tructure (AMI), clustering evaluation score (CES), common
feature construction (CFC), deep belief network (DBN),
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FIGURE 1. The position of feature engineering in the process of data
mining.

feature construction (FC), feature extraction (FE), fea-
ture selection (FS), false positive rate (FPR), independent
component analysis (ICA), linear discriminant analysis
(LDA), maximum information coefficient (MIC), mini-
mum number of points (MinPts), maximum-relevance-
minimum-redundancy (mRMR), mutual information (MI),
non-technical loss (NTL), principal component analysis
(PCA), positive predictive value (PPV), restricted boltzmann
machine (RBM), true positive rate (TPR).

II. RELATED WORK
This section discusses the related concepts about feature
engineering and provides a brief review of the existing studies
of feature engineering in abnormal electricity consumption
detection.

A. FEATURE ENGINEERING
Feature engineering is the process of using data science
knowledge to create feature sets that enable machine learn-
ing algorithms to achieve the best performance. Gener-
ally, the essence of feature engineering is to transform the
preprocessed data, which includes three subproblems: fea-
ture construction (FC), feature extraction (FE), and feature
selection (FS). The place of feature engineering in the process
of data mining is shown in Fig. 1.

FC is based on the original dataset and relies on profes-
sional experience to build new features, which are gener-
ally interpretable. Usually, the process of FC requires much
time to study data samples as well as particular abilities of
insight and analysis. For power data, FC needs background
information on the power industry, which relies on experi-
ence and subjective judgment. The task of FS is to select a
feature subset from the original feature set based on specific
evaluation criteria [29], [30]. The number of elements in the
feature subset should be less than that in the original feature
set. In essence, FS is a dimensionality reduction process, and

the features themselves do not change. A good FS algorithm
can effectively reduce the original feature set dimension, has
low computational complexity, and can improve the effective-
ness of subsequent classification and clustering [31]. Similar
to FS, FE also reduces the dimension of the original feature
set. Through dimension reduction, mapping, and other meth-
ods, FE keeps the original data information to as great an
extent as possible and obtains more abstract and concise fea-
ture representation. Common FEmethods include PCA, inde-
pendent component analysis (ICA) and linear discriminant
analysis (LDA). Unlike FS, the data themselves will change
in the process of FE. LetF ∈ Rd×n be a feature set with n fea-
tures as

{
f 1, . . . , f i, . . . , f n

}
, where f i ∈ Rd×1. The process

of FS is as follows:{
f 1, . . . , f i, . . . , f n

} FS
−→

{
f i1 , . . . , f ij , . . . , f im

}
(1)

where ij ∈ {1, . . . , n} , j ∈ {1, . . . ,m}, a = b can be deduced
when ia = ib and a, b ∈ {1, . . . ,m}. The process of FE is as
follows:{
f 1, . . ., f i, . . . ,f n

} FE
−→ {g1 (F) , . . . ,gi (F) , . . . ,gm (F)}

(2)

where gi (F) represents the transformation of feature set F by
a series of FE methods, such as PCA, ICA, and LDA. In most
cases, not all three subproblems of feature engineering are
carried out, but one or two of them are selected according to
the needs of model building and analysis.

B. FEATURE CONSTRUCTION AND EXTRACTION
Feature construction and feature extraction are used to build
feature vectors of consumers in [32]. An unsupervised algo-
rithm for detecting abnormal electricity consumption patterns
is proposed. They use monthly average load data as the
dataset and obtain trend index, variability index, and volatil-
ity index as feature sets. Then, PCA is used in FE of the
feature sets to two dimensions, and the local outlier factor
is calculated to find anomalous power consumption patterns.
Sun et al. [33] proposed an improved outlier detectionmethod
based on the Gauss kernel function. After consumers are
classified by clustering, the feature set of the electricity con-
sumption behavior of each type of consumer is constructed,
such as trend indicators, the standard deviation of daily load
series. Then, the feature set is reduced to 2 dimensions
by PCA, and the improved Gaussian kernel function detects
the outliers. This method is similar to [32] in its feature
strategy. An optimum-path forest (OPF) clustering algorithm
is proposed in [34]. They take the problem of NTL recogni-
tion as an anomaly detection task to analyze and use eight
features to represent each electricity customer for clustering
analysis.

As mentioned above, several of features constructed are
subjective and cannot reflect the inherent electricity con-
sumption behavior of customers. Additionally, the features
extracted lack of interpretability.
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C. FEATURES OBTAINED BY DEEP LEARNING
ALGORITHMS
Zhang et al. [9] used a deep belief network based on
real-valued (RDBN) to detect electricity theft. The electricity
consumption data are divided into a training set and a test
set, and dimension reduction is performed by factor analysis.
The RDBN is built and trained to obtain electricity con-
sumption behavior features and to realize anomaly detection.
Yu et al. [10] introduced a feature extraction method based on
deep learning theory to detect electricity theft. The stacking
uncorrelation autoencoder (SUAE) is proposed and used to
extract features from electricity consumption data. It can
extract highly abstract and concise features due to its deep
structure and high nonlinearity. A convolutional neural net-
work (CNN) based deep learning method is proposed in [18]
and used to extract features from massive load profiles
automatically.

The features generated by deep learning algorithms lack
interpretability and rely on data with labels. At the same time,
it makes model building and parameter selection challenging.

D. FEATURE ENGINEERING TO OBTAIN THE OPTIMAL
FEATURE SET
R. Razavi et al. introduced the concept of feature engineering
into anomaly detection applications for the first time [35].
The feature engineering framework proposed was used to
create a set of features that could best express the dynamics
of a load over time. It was easier to detect abnormalities
and fraud behaviors of anomalous households in comparison
with similar households. In [36], Lu Jun et al. proposed a
strategy based on feature information quantity to select the
optimized feature set of customers’ electricity consumption
behavior. According to the mutual information (MI) and the
correlation coefficient between features, the optimal feature
subset was selected based on the common feature set. Aydin
and Gungor [21] and Toma and Li [22] presented two feature
construction techniques for NTL characterization. Compared
with algorithm improvement, they were more concerned
about finding the set of features that best discriminate legal
and illegal profiles.

In summary, the problem of how to acquire the optimal
feature set, which can reflect users’ electricity consumption
behavior, is becoming a research hotspot. A series of methods
(i.e., feature strategies) of feature engineering in machine
learning have gradually become more prevalent in abnormal
electricity consumption behavior detection.

III. METHODOLOGY
The abnormal detection method of electrical consumption
behavior is proposed firstly in this section, and the conducted
of the research is also discussed. After that, the details of the
method are discussed in the rest of this section.

A. PROCESS OF THE METHOD
Based on the related concepts of unsupervised learning, fea-
ture engineering and the general process of data mining,
the abnormal detection method of electricity consumption

FIGURE 2. The unsupervised method of anomaly detection for electricity
consumption based on feature engineering.

behavior is proposed, and it is shown in Fig. 2. The method
includes three parts: data preparation, feature engineering,
and anomaly detection.

In the process of dataset preparation, different methods are
selected to address specific problems in the dataset. Feature
engineering includes the original feature set construction of
electricity consumption behavior, FS based on variance, and
FS based on improved maximum relevance minimum redun-
dancy (mRMR). The problem of missing crucial features
missing, caused by subjective selection, can be avoided by
using the brainstorming method in building the original fea-
ture set of electricity consumption behavior. The maximum
information coefficient (MIC) is used to replace the MI to
measure the correlation and redundancy between features
based on the supervised FS algorithm of mRMR. Compared
with MI, MIC has the advantages of generality and equitabil-
ity. In addition, the concept of relevance in mRMR is rede-
fined to apply in unsupervised cases. In the anomaly detection
step, a density-based clustering algorithm is adopted, and the
best clustering parameters are obtained by iteration based on
a certain clustering evaluation standard. Finally, customers’
abnormal electricity consumption behavior is detected; the
load data of an industrial park are selected for experimental
analysis.

B. FC BASED ON TSFRESH
To overcome the problems in the FC process mentioned
earlier, a Python package named tsfresh (time series feature
extraction based on scalable hypothesis tests) was used to
construct the original feature set from the load data set. tsfresh
is a Python-based development package that can quickly cal-
culate a large number of time series characteristics, namely,
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features [24], [25]. The features calculated by tsfresh can be
used in subsequent research, e.g., classification, regression,
and clustering. At present, tsfresh provides 63 time-series fea-
ture methods, and 794 time-series features can be calculated
by changing the methods’ parameters [40].

Customers’ load data are essentially a time series [3], [26].
Many aspects of the information on electricity consumption
behavior can be obtained by constructing the original feature
set based on tsfresh. Problems such as missing vital features
due to insufficient consideration can be avoided. At present,
tsfresh can extract 794 features from the customers’ daily load
data, including the commonly used electricity consumption
features in the existing research. However, when constructing
the feature set through tsfresh, the correlation between the
features and the labels cannot be considered because of the
lack of label information. Unavoidably, there are a large num-
ber of redundant features in the original electricity consump-
tion behavior feature set (referred to as the original feature
set). The dimension of the original feature set is higher due to
the existence of a large number of redundant features, which
reduces the efficiency of the algorithm and leads to the ‘‘curse
of dimensionality’’ [11], [18], [42]. Therefore, to ensure the
interpretability of features, it is necessary to carry out the
FS process for the original electricity consumption feature
set.

C. FS BASED ON VARIANCE
FS based on variance, which belongs to the filtering method
in FS, looks only at the features, not the desired outputs,
and can thus be used for unsupervised learning. After the
variance of features is calculated, the variance of a feature
being minimal means that the feature has a low difference
in the sample set and a weak ability to distinguish samples.
In contrast, if the variance of a feature is maximal, the feature
has a higher impact on the overall sample set, including more
information that can reflect the differences between samples.
For the feature matrix F with d samples and n features

F =

 f11 · · · f1n
... fij

...

fd1 · · · fdn


d×n

(3)

The equation of the ith feature variance is

Vj =

∑d
i=1

(
fij − µj

)2
d

(4)

where µj is the average value of the j-th feature, and the
equation is as follows:

µj =

∑d
i=1 fij
d

(5)

To improve the efficiency of the method and reduce infor-
mation loss, it is necessary to reduce the number of features
in the original feature set to a reasonable number. Therefore,
the variance of each feature in the original feature set is
calculated first. After that, only features with variance equal

to zero are removed, and the features with nonzero variance
are retained.

D. MAXIMUM INFORMATION COEFFICIENT
The relationship coefficient is usually used to measure the
similarity between features. In statistics, the Pearson corre-
lation coefficient and Spearman correlation coefficient are
the most well-known measures to calculate the correlation
between feature vectors. However, the scope of its application
is limited because only linear and simple nonlinear associa-
tions can be identified. The correlation between most features
is complex and nonlinear, and the traditional correlation mea-
surement method cannot reflect sophisticated associations.
The MIC proposed by Reshef et al. [43] based on MI can
not only find linear or nonlinear correlations but can also
widely mine the nonfunctional dependence between vectors.
It has been proven that in many cases, the MIC has a better
performance thanMI. TheMIC has been applied in the power
industry. For example, in [44], K. Zheng et al. used the MIC
to find the correlations between the NTL and tampered load
profiles of consumers to find abnormal users. The scale of the
MIC is [0,1], and a larger value indicates a stronger correla-
tion between two feature vectors. The MIC has the character-
istics of generation, equitability, and symmetry. Generation
means that when the sample size is sufficient, the MIC can
capture a wide range of interesting associations that are not
limited to specific function types. Equitability means that the
MIC can give similar scores to different types of correlation
with equal noise levels. The definition of symmetry is as
follows:

MIC (a;b) = MIC (b;a) (6)

where a and b are two vectors. Given a finite set D,
the elements of which are data points with two dimensions
of x-values and y-values. An x−by− y grid G can be created
in finite two-dimensional space based on the supposition that
the x-values of D can be partitioned into x bins, and the
y-values ofD can be partitioned into y bins. Let all elements in
D be arranged in the gridG. LetD|G represent the distribution
of D divided by one of x − by − y grids as G. Calculate the
MI under each grid division as follows:

I∗ (D, x, y) = max
G

I
(
D|G

)
(7)

where I
(
D|G

)
denotes theMI ofD|G,D ∈ R2, and x, y ∈ N∗.

Because the division of grid G is infinite, the number I
(
D|G

)
is also infinite, and the largest representation is I∗ (D, x, y).
The characteristic matrix M is composed of the maximum
normalized MI obtained under different grid divisions, which
is defined as follows:

M (D)x,y =
I∗ (D, x, y)
logmin {x, y}

(8)

where the logmin {x, y} is the maximal possible MI of a
distribution on an x − by − y grid [45]. Normalizing by the
logmin {x, y} creates a score that can be compared across
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grids with different dimensions and therefore across different
distributions. It also ensures that almost all noiseless func-
tions receive perfect scores and the entries of the character-
istic matrix M range from zero to one [43]. Furthermore,
the MIC of a finite set D of two-variable data with sample
size n is given by

MIC (D) = max
xy<B(n)

{
M (D)x,y

}
(9)

where B (n) is the upper bound of the grid size. This paper
uses B (n) = n0.6 because it has better performance in
practice [43], [44], [46], [47].

E. FS BASED ON IMPROVED mRMR
This section proposes an improved algorithm based on the
supervised FS algorithm mRMR [48], which can be used
in the unsupervised case. The algorithm selects the MIC to
replace the MI as the feature coefficient evaluation metric
and defines relevance in FS without label information. The
mRMR maximizes the relevance between features and cat-
egory variables, i.e., class labels, and minimizes the redun-
dancy between features in the constructed feature subset. The
m-th feature vector is selected based on mRMR from the
original feature set F and represented by f gm as follows:

f gm = max
f iεF−Sm−1

I (f i; c)− 1
m− 1

∑
f t∈Sm−1

I
(
f i; f t

) (10)

where S represents the selected feature subset, I (·) denotes
the MI between a pair of vectors, and c is the class label
variable. Due to the difficulty in obtaining the class label c,
the unsupervised FS is based on the mRMR algorithm pro-
posed, which should meet the following requirements:

1. The m-th feature selected should contain the largest
amount of information, i.e., this feature can minimize the
uncertainty of other features;

2. In the optimal feature subset S, the relevance between
features should be as small as possible, which will minimize
the redundancy between the selected features.

The unsupervised FS algorithm starts from an empty set
and uses a step-by-step method to select a feature from the
original feature set F and add it to the feature subset S. The
first feature selected f g1 , which has the maximum average
MIC value, found by calculating the MIC between features
in the original feature set F, is defined as follows:

f g1 = max
f iεF

{
1
n

n∑
t=1

MIC
(
f i;f t

)}
(11)

where n = |F| represents the number of features in F.
The first feature has the highest relevance to the remaining
features, which can reduce the uncertainty of other features
to the greatest extent and provide the most information com-
pared with the others. Therefore, the relevance of a feature is
defined as the average value of the MIC between the feature
and the other features in the set.

The m-th feature selected mainly considers the following
two aspects: containing the largest amount of information
with other features in the setF and having the smallest degree
of redundancywith other features in the subset S. By using the
incremental search, the search for the m-th feature is written
as an optimization problem as follows:

f gm = max
f iεF−Sm−1

{
1
n

n∑
t=1

MIC(f i; f t )

−
1

m− 1

m−1∑
j=1

MIC
(
f i; f j

) (12)

where m − 1 represents the number of features in feature
subset S before feature selection. To make the algorithm
take both efficiency and effect into account, the termination
condition of FS is defined as follows:

(m− 1)
∑n

t=1MIC
(
f gm;f t

)
n
∑m−1

j=1 MIC
(
f gm; f j

) ≤T (13)

For the selected m-th feature, when the amount of infor-
mation it contains has less redundancy than a certain thresh-
old, the selection is stopped. The flow of the unsupervised
FS algorithm based on improved mRMR is shown
in Algorithm 1.

FS is usually in an independent part of the data mining
process, which cannot benefit from the previous data explo-
ration process. Information loss is inevitable with the feature
dimension reduction in the FS process, but it can reduce the
computational complexity of the process.

F. CLUSTERING ALGORITHM
Density-based spatial clustering of applications with noise
(DBSCAN) is a classical clustering algorithm based on den-
sity that is widely used in anomaly detection [49]. Com-
pared with k-mean and partition-based clustering algorithms,
DBSCAN can find any shape of clustering without setting the
number of clusters in advance, and it is not sensitive to the
order of data points. At the same time, it can detect outliers
in the process of clustering.

Given a set of points in a certain space, DBSCAN can
divide the points in the high-density area into a group
and mark the outliers in the low-density area, i.e., out-
liers. DBSCAN needs to set the following two neighborhood
parameters: the ε-neighborhood and the minimum number of
points (represented byMinPts) needed to form a high-density
area. The ε-neighborhood describes the neighborhood dis-
tance threshold of a sample, and MinPts describes the
threshold of the number of samples in the ε-neighborhood.
In short, the basic idea of the algorithm is to explore the
ε-neighborhood of any point that is not visited. If the num-
ber of points in the ε-neighborhood reaches MinPts, a new
cluster is established. Otherwise, the point is labeled as an
outlier.
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Algorithm 1 Unsupervised FS based on improved mRMR

Input:Feature set F =
{
f 1, . . . , f i, . . . , f n

}
of customers’

electricity consumption behaviors, where n represents the
total number of features, which is determined by FC based
on tsfresh and FS based on variance.
Output:The optimal feature subset S, which reflects the
customers’ electricity consumption behavior.

Begin:
Initialization:
S = ∅
F =

{
f 1, . . . , f i, . . . , f n

}
MIC_martix = On×n
/∗ Calculate MIC between features in set F∗/
for all f i, f j ∈ F do

MIC_martix[i][j] = MIC
(
f i; f j

)
MIC_martix[j][i] =MIC_martix[i][j]

end for
Find the first feature f g1 according to (11)
S =

{
f g1
}

F = F \ f g1
while True:

Find the feature f gm in F according to (12)
if f gm satisfies the condition of (13) do

break
else:
S = S ∪

{
f gm

}
F = F \ f gm

end while
Return S
End

G. EVALUATION INDEX
The unsupervised evaluation indexes are selected to evaluate
clustering performance, e.g., the silhouette coefficient (SC),
the Calinski Harabasz index (CHI), and the Davies-Bouldin
index (DBI). The higher the scores of SC and CHI, the lower
the scores of DBI, indicating that the clustering algorithm
has better-defined clusters and better separation between the
clusters. The scores of indexes under different clustering
parameters are obtained by iteration. The ranking sum of the
three index scores under different clustering parameters is
used to evaluate clustering to avoid the problem of different
indexmagnitudes. The clustering evaluation scores (CES) are
defined as follows:

CES = rankSC + rankSHI − rankDBI (14)

The clustering parameters with the highest CES will be used
for clustering and obtain the final anomaly detection results.

In order to realize methods evaluation and compari-
son, the confusion matrix and several derived indexes are
used. The confusion matrix is shown in Table 1. FN refers
to the actual abnormal electricity consumption behavior that
is detected as normal electricity consumption behavior, and
FP refers to the actual normal electricity consumption

TABLE 1. Confusion matrix for abnormal electricity consumption
behavior detection.

behavior that is detected as abnormal. TP and TN indi-
cate correct detection, i.e., the actual abnormal behavior
is detected as abnormal, and the actual normal behavior
is detected as normal. Several evaluation criteria can be
derived from the confusion matrix and used to evaluate
the results of different feature strategies methods. The true
positive rate (TPR), also known as the sensitivity or recall,
is defined as the proportion of detecting as abnormal in
actual abnormal electricity consumption behavior. The false
positive rate (FPR) is defined as the proportion of detect-
ing as abnormal in actual normal electricity consumption
behavior. The positive predictive values (PPV) also known as
the precision is defined as the proportion of actual abnormal
electricity consumption behavior in detected as abnormal
electricity consumption. TPR, FPR, and PPV are defined as
follows:

TPR =
TP

TP+ FN
×100% (15)

FPR =
FP

FP+ TN
× 100% (16)

PPV =
TP

TP+ FP
× 100% (17)

In many cases, there is an imbalance between positive and
negative samples in the data set, and TPR (i.e. recall) and
PPV (i.e. precision) are contradictory in most cases. If the
method wants to detect more abnormal electricity consump-
tion behavior, it will be possible to detect more normal.
Therefore, there will be higher TPR and lower PVV. On the
contrary, if the method is relatively conservative, only certain
samples are detected. Themethodwill have a higher PVV and
a lower TPR. Therefore, the F1 Score (also called balanced
F score) and FPR are selected as the evaluation criteria of the
method in this paper. The F1 Score is defined as the harmonic
mean of TPR and PPV, which can be used to evaluate the
performance of unbalanced label data set. The F1 Score is
defined as follows:

F1 =
2× PPV× TPR
PPV+ TPR

(18)

F1 Score helps to compute TPR and PPV in one equation so
that the problem to distinguish the models with low TPR and
high PVV or vice versa could be solved.

IV. EXPERIMENT
The load dataset of an industrial park is used for analysis in
this paper. First, inherent electricity consumption habits and
abnormal electricity consumption behavior of different users
are detected through the method proposed. Then, to evalu-
ate the method, six methods given in Appendix A are used
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FIGURE 3. The flow chart of the experimental stage.

TABLE 2. Basic information on the data set.

to inject abnormal electricity consumption data. After that,
the label information database is established by combin-
ing the original abnormal electricity consumption behavior
and the abnormal data injection information. Finally, with the
label information database, the feature engineering method
proposed and several common feature strategies are used for
comparison and evaluation. The experiment shows that the
method based on the feature engineering proposed is better
than the others by comparing the clustering evaluation results.
The flow chart of the experimental stage is shown in Fig. 3.

A. EXPERIMENTAL SETUP
All experiments are implemented on a single computer with
a CPU of 2.6 GHz and a memory of 16 GB. Experiments and
results are completed with the jupyter notebook compiling
environment with Python version 3.6 and the relevant Python
library.

B. DATA PREPARATION
The basic information about the data set is shown in Table 2;
it includes 15 industrial and commercial electricity users, and
the data were collected over a period of 547 days with a
sampling interval of 1 hour. The anomaly detection work in
this paper is accurate to the unit of days. Four typical users
are selected from the data set for analysis, numbered User1 to
User4.

TABLE 3. Main problems in the data cleaning process.

Data cleaning plays a vital role because the data set is of
raw data that has not been processed. The main problems
found in the process of data cleaning are shown in Table 3.

C. FEATURE ENGINEERING FOR USERS’ ELECTRICITY
CONSUMPTION BEHAVIOR
The tsfresh package is used to construct the original feature
set in days. Seven hundred ninety-four electricity consump-
tion behavior features are extracted for each customer, and
the feature matrix of size 547∗794 is generated. The original
feature set of electricity consumption behavior on the ith day
is expressed as follows:[

f i1, · · ·f
i
j , · · · f

i
794

]
(19)

The Gauss kernel function is used to estimate the variance
distribution of the 794 column features, as shown in Fig. 4.
According to Fig. 4, the logarithms of the feature variance in
different customers’ original feature sets have a similar distri-
bution, which is mostly concentrated between [−20,20], and
most values are equal to 0. Although the FS based on variance
has dramatically reduced the dimension of the original feature
set, there is still much redundant information between the
features. Therefore, FS based on improved mRMR is needed.
The MIC between feature sets is calculated after FS based
on variance is performed, and the time complexity is O

(
n2
)
.

Therefore, only the upper triangle (or lower triangle) matrix
of the MIC matrix is calculated to reduce calculation time
based on the symmetry of MIC in (6). The MIC matrix is
obtained, as shown in Fig. 5, where the parameters for the
MIC are selected according to [43].

Different colors in Fig. 5 correspond to different values
of the MIC. When there is no correlation between the two
features, the MIC is 0, which is shown in red. When there is
a certain correlation relationship between features, the MIC
is 1, which is shown in blue. From the color density and the
sum of all elements in the customers’ MIC matrix, it can be
seen that there are apparent differences in the feature sets
between customers. The MIC of the User2 feature set is
the smallest, and the proportion of red is the highest, which
means that the correlation between features is the lowest.
In contrast, the MIC of the User4 feature set is the largest,
and the proportion of blue is the highest, which means that
the correlation between features is the highest.

The FS based on mRMR is conducted based on the
MIC matrix. A smaller number of features will result in
missing crucial information; on the contrary, a large num-
ber of features will increase the running time and cause
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FIGURE 4. Estimation of the logarithm of the feature variance in the original feature set based on the Gaussian kernel function.

FIGURE 5. Heatmap of the MIC between features in the feature set after FS based on variance.

dimension disaster. Therefore, setting a reasonable value
of the termination parameter T in (13) is very important.
After many experiments and analyses, when T = 1,
the proposed method can meet the requirements of accu-
racy and generalizability. That is, when the correlation of
the m-th feature is less than its redundancy, the FS is
stopped.

From Table 4 and Fig. 5, User2, with the lowest sum
of the MIC matrix, has the highest number of features
after FS. In contrast, User4, with the highest sum of the

MIC matrix, has the lowest number of features ultimately
obtained. Therefore, the conclusion is that more features
are needed to reflect customers’ electricity behavior when
the correlation between features in the electricity behavior
feature set is lower. A smaller number of features are needed
when the correlation between features is higher. The vio-
lin plots of the features in the optimal feature set of cus-
tomer electricity consumption behaviors are shown. Those of
User1 and User4 are shown in Fig. 6, and those of User2 and
User3 are shown in Appendix B.
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FIGURE 6. The violin plot of the features in the optimal feature sets of user1 and user4.

TABLE 4. Change in users’ feature numbers in the process of feature
engineering.

A violin plot plays a similar role as a box-and-whisker plot,
which is used to visualize the distribution of the data and
its probability density. A violin plot shows the distribution
of quantitative data across several levels of more categorical
variables so that those distributions can be compared [50].
The violin plot shows a kernel density estimation of the
underlying distribution rather than actual data points. The
violin plot in Fig. 6 indicates that the distributions of features
in the optimal sets of electricity consumption features of
different users are quite different. Each ‘‘violin’’ in Fig.6 and
Appendix B. represents a feature in the optimal feature set of a
user. The shape represents the density estimate of the feature,
i.e. the more data points in a specific range, the larger the
violin is for that range. Different colors are used to distinguish
different features in a user’s optimal feature set.

The violin plot in Fig. 6 and Appendix B is a combination
of a box plot and a density plot that is rotated and placed
on each side, to show the distribution shape of each feature.
The white dot in the middle is the median value and the thick
black bar in the center represents the interquartile range. The
whiskers show a 95% confidence interval and the shape of the
violin display frequencies of values. The features of Users 1

to 3 have a scattered density distribution, which indicates
an excellent ability to distinguish the different electricity
consumption behaviors. It means that the user’s electricity
consumption behavior can be well described by the features
in the optimal feature set obtained by the feature engineering
in this paper. That is, if the features extracted by a user have
a similar distribution, i.e., they have a similar median and
frequency, the different electricity consumption behaviors of
the user cannot be reflected from the features. It shows that
this feature set cannot effectively distinguish the abnormal
electricity consumption behaviors from the normal. On the
contrary, if the distribution of multiple features of the user is
quite different, the extracted features can effectively describe
the user’s electricity consumption behavior, then it can deeply
mine the user’s electricity consumption law and realize abnor-
mal detection. However, the violin plot of User4 is different
from that of other users because of the characteristics of
the load curve itself, and the details will be explained later.
The results show the effectiveness of the feature engineering
strategy proposed.

The optimal feature subset, which reflects the electric-
ity consumption behavior of different users, is obtained
through the feature engineering strategy proposed. Moreover,
the features in the optimal feature subsets of users are dif-
ferent because users have different electricity consumption
behaviors.

D. DETECTION OF ANOMALOUS ELECTRICITY
CONSUMPTION BEHAVIOR
The feature vector based on days is standardized before clus-
tering to eliminate the weight difference between different
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FIGURE 7. Calendar chart showing the electricity consumption behaviors of different users.

TABLE 5. Optimal DBSCAN clustering parameters for each user.

features. The standardization method is as follows:

f ij =
f ij − µ

i

σ i
(20)

where f ij is the j-th feature on the i-th day, σ i and µi are the
standard deviation and mean value of the feature vector of the
i-th day.

Through the iterative clustering algorithm parameters,
multiple clustering results are obtained based on the CES, and
the optimal clustering parameters are selected for different
customers as shown in Table 5.

Fig. 7 shows the final clustering results reflected in the
calendar chart. Colors represent different clustering results,
i.e., different electricity consumption behaviors. The dates
of detected abnormal electricity consumption behaviors are
unified and marked in black with the category mark −1.
The peach color is used to represent the most common
kind of electricity consumption behavior of users, which has
the category mark 0. The sky blue shown for User1 has
category mark 0, and the orange and red for User4 have
category marks of 1 and 2, respectively, representing other
electricity consumption behaviors of the users. In addition,

data loss is represented with a blank mark. As shown in
Fig. 7, users have habitual electricity consumption behav-
iors. User1’s electricity consumption behavior on Sundays
is grouped into one group. Most of the abnormal electricity
consumption behavior of User2 occurs at the beginning and
the end of the month. User4’s electricity use behaviors are
grouped into three groups. During the holidays, User1, User2,
and User3 all have abnormal electricity consumption behav-
ior. For visual display, the clustering results are reflected in
the original load curve, as shown in Appendix C.

Using the best clustering parameters, shown in Table 5, the
normalized sum of the three indexes in CES are adopted to
evaluate whether the termination parameter T is reasonable.
The variable T directly affects the number of features in the
optimal feature subset for clustering. With a change in the
feature number for clustering, i.e., the variable T , the clus-
tering result changes accordingly, and the results are shown
in Fig. 8. In order to compare different users horizontally,
the sum of three indexes in CES under different feature num-
bers are normalized and represented as the cluster evaluation,
which is defined as follow:

CES∗ =
CESi −min (CES)

max (CES)−min (CES)
(21)

where CES∗ represents the cluster evaluation in Fig. 8, CESi
represents the CES under the number of features i. The nor-
malized cluster evaluation changes as the number of features
used for clustering increases from 1 to 100 in Fig. 8. When
T = 1, the number of features used for clustering by different
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FIGURE 8. Changes in the cluster evaluation with the number of features.

users is shown in Table 4. Under the number of optimal
feature subsets, the cluster evaluations of different users are
all at a high level, which ensures that the algorithm has
generalizability.

As shown in Fig. 8, when the number of features is in a
small range (this means that the variable T is in a high range.),
the clustering evaluations of Users 1 to 4 are all at a high
level, such as User 1, User 3, and User 4 when the number of
features ranging from 1 to 5, and User 2 when the number
of features ranging from 5 to 10. Although it has a good
cluster evaluation when there are few features, it is difficult
to obtain an accurate value of T due to the higher cluster
evaluations only exist in a small range of changes in the
number of features. According to Fig. 8, when the number of
features used for clustering analysis reaches a specific critical
value, the cluster evaluations drop sharply due to dimension
disaster, such as User1 when the number of features is 20 to
25, User2 when the number of features ranging from 70 to 80,
User3when the number of features ranging from 35 to 40, and
User4 when the number of features ranging from 85 to 90.

Considering the generalizability and robustness of the
method, the stage of feature number range where the cluster
evaluation changes relatively smoothly and having a higher
level is chosen. Therefore, it is reasonable to choose the
termination parameter T in (13) as 1.

E. COMPARISON AND EVALUATION
For each user, 10% of the load data in units of days are
randomly selected and changed by the six abnormal data
injection (ADI) methods in Appendix A, which are repre-
sented as ADI1 to ADI6. Meanwhile, the dates of ADI are
recorded, and the label information database is established
by factoring in the original abnormal electricity consumption
behavior dates. It is worth noting that the label of abnormal
electricity consumption behaviors is only used for evaluation,
and the label information is not included in the detection
process.

Two feature strategies, FE and FC, which are relied on
experience and selected as contrasts to the feature engineering
method given in this paper. In FE, three feature extraction
methods, PCA, restricted boltzmann machine (RBM) and

deep belief network (DBN), are used for comparison. The
PCA selects the parameters as 2 and 3, i.e., the original load
data in days will be reduced to 2 and 3 dimensions after
normalization, and the results are represented by PCA_2d and
PCA_3d. The RBM is a generative stochastic artificial neu-
ral network that can learn a probability distribution through
input data sets. The standard RBM consists of binary hidden
layer and visible layer without connections between the units
within the same layer. RBM can extract discriminative fea-
tures from complex data set by the unsupervised way due to
the introduction of hidden units [51]. The DBN is a kind of
probability generating model including multiple hidden lay-
ers, which can be regarded as a composite model composed
of multiple simple unsupervised learning models [52], [53].
The high flexibility of DBN makes it possible to learn dis-
criminant features from the high-dimensional complex data
set. RBM and DBN are all belonged to deep learning and
can be used in unsupervised learning. They can reduce the
dimension of the original data and achieve feature extrac-
tion. The RBN and DBN structures in this paper are shown
in Appendix D.

In FC, the common features are constructed by experience
and are represented by CFC (common feature construction).
The features in CFC are commonly used in current research to
reflect electricity consumption behaviors. A total of ten fea-
tures are included in CFC, including maximum andminimum
values of the daily load, the daily peak-valley difference of
the load, the difference of load variation, the daily average
power consumption, the linear degree of the load curve, and
the degree of load deviation. All of these can be obtained
from the original feature set generated by tsfresh. The MI is
also used in the process of FS based on improved mRMR
to prove that the MIC has better performance than the MI.
The F1 Score and FPR are selected as indicators to verify
the detection ability of several feature strategies for six kinds
of ADI.

Fig. 9 consists of six columns, each of which repre-
sents an ADI method and includes two subplots, one for
F1 Score and the other for FPR, under different feature
strategies. F1 Score and FPR of different users under dif-
ferent ADI are displayed in the form of histogram. Different
colors are used to distinguish the results of different feature
strategies.

Furthermore, the experimental results were analyzed as
follows. For the feature strategy of PCA, the difference of
the parameters (referring to the final feature dimension) has a
significant influence on the result evaluation indexes F1 Score
and FPR. The experimental results show the process of FE
by PCA. When the parameter of PCA is selected as 3,
the evaluation results are better than they are when the param-
eter is selected as 2, in most cases. Reducing to 2 dimensions
means losing more information on the original load data than
reducing to 3 dimensions, which leads to the loss of more
crucial information that can distinguish abnormal electricity
consumption behavior. Therefore, the follow-up clustering is
affected, leading to the above results. Note that although the
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FIGURE 9. Values of F1 score and FPR for each user under ADI1 to ADI6.

FIGURE 10. The original load curve of user4.

FPR of the PCAmethod is at a low level in all cases, the level
of the F1 Score is also low, and so it cannot detect anomalies
effectively.

In most cases, it is found that in the results of CFC, all
samples are easily clustered into one group because of the
lack of differences in features. This means that CFC has a
lower F1 Score and a low-level FPR in the same case. CFC
performs well only in a few cases, such as User 3 under ADI1,
User 4 under ADI3, etc. The reason is that the consumption
behaviors of the users and the results of performing ADI
on the load curve do not perfectly correlate. Because CFC
uses only experience and professional knowledge to build the
feature set, it is unable to fully reflect the different electric-
ity consumption behaviors of users. Therefore, CFC is only
applicable to specific users or under specific ADImethod and
has limited generalizability.

The experimental results in Fig. 9 show that DBN has
a higher F1 score and better performance than RBM in
all cases. The reason is that compared with the RBM
two-layer network, DBN deep-layer neural network structure
can extract more abstract and concise electricity consumption
behavior features of users. Even in some cases, for example,
User2 under ADI4 and User1 under ADI6 are better than the
feature engineering method proposed in this paper. However,

the structure and parameter selection of RBM, DBN and
other networks depend on experience and data itself to a
great extent and need to adjust parameters many times for
experiments. Different data sets often correspond to different
neural network structures. Moreover, in the process of RBM
and DBN network training, the acquired features are usually
not interpretable.

Experimental results show that compared with MI, using
theMIC to evaluate the degree of correlation between features
can better mine the correlations between features. In most
cases, the experimental results show that the F1 Score with
MIC is higher than with MI and in a few cases, they have
similar performance, such as those of User1 under ADI2,
ADI3, AID4 and ADI6, User2 under ADI3 and ADI4, and
User4 under ADI4 and ADI5. Although MI and MIC have
similar F1 Score results sometimes, MI has the worst FPR
result in most cases.

In some ADI modes, such as ADI1-ADI5, the F1 Score
of User4 is lower than that of other users. As shown in
Fig. 10, through the analysis of the original load curve, it is
found that User4 has a large number of cases with a daily
load of 0. The unusual characteristics of User4 also lead to
the difference in the violin plot mentioned above. The ADI
process has little impact on the original load data of User4,
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so not all kinds of feature engineering strategies can detect
the abnormal behavior well.

The results show that the detection of abnormal behav-
iors based on the feature engineering proposed can identify
abnormal electricity consumption behavior well compared
with detection based on other feature strategies. The proposed
method has a high F1 score under different ADI methods
and good generalizability for users with different electricity
consumption behaviors. In a few cases, such as User2 under
ADI4, User3 under ADI5, User1 under ADI6, the method
proposed does not perform well compared with other feature
strategies. The reason is that there are similarities between
different users’ inherent electricity consumption behavior
load curve and the load curve injected by abnormal data,
which makes the optimal feature set obtained by the pro-
posed method unable to distinguish the abnormal electricity
consumption behavior and normal effectively. The original
feature set obtained by the proposed method is based on
tsfresh, which is directly obtained from the user’s electricity
load curve. Other feature strategies, such as PCA and DBN,
do not rely on the load data curve directly but acquire features
through dimension reduction and training the neural network.
Therefore, those feature strategies will not be affected by
the above reason and have good performance compared with
the proposed method in a few cases. However, the above
phenomenon belongs to the existence of a specific situation.
In practice, the abnormal electricity consumption behavior of
users is generally different from their inherent electricity use
habits. In addition, the better performance of other feature
strategies also depends on the parameters detected through
repeated experiments, but the selection of parameters largely
depends on the data itself and experience. Although in a
few cases the proposed method is inferior to other feature
strategies, on the whole, it can effectively detect the abnor-
mal electricity consumption behavior of most users under
different ADI methods and can meet the requirements of
unsupervised detection.

In order to ensure that the method proposed can detect
all abnormal electricity consumption behaviors of users to
the maximum extent, it is inevitable that a small number
of normal electricity consumption behavior data are judged
as abnormal data by the method in the clustering process.
As a result, the proposed method has a higher FPR com-
pared with other feature strategies in these cases, which
are those of User1 under ADI3, User3 under ADI4, and
User2 under ADI5 and ADI6. In some cases, the higher FPR
is also affected by the user’s own electricity consumption
behavior. That is, if the user’s minority normal electricity
behavior and the abnormal electricity usage behavior are
similar in some aspects, there is a possibility of misjudgment
as abnormal electricity consumption. Because the proposed
method detects abnormal electricity consumption behavior
of users as much as possible, there are inevitably a few
cases with high FPR. However, considering the generaliza-
tion of the method and avoiding experience influence, in most
cases, the proposed method can ensure that it has a higher

TABLE 6. Six kinds of abnormal data injection methods.

FIGURE 11. An instance of abnormal data injection for Table 6.

F1 Score and lower FPR, which can meet the requirements of
unsupervised anomaly detection.

At the same time, some cluster algorithms, such as k-means
and fuzzy c-means are used to compare with the DBSACN
clustering algorithm. The above clustering algorithms need
to set the number of clusters and other parameters, but in
practice, it is difficult to know the user’s inherent electricity
consumption behaviors in advance. Although the user’s elec-
tricity consumption data can be divided into several clusters,
it is not advisable to only rely on subjective experience to
regard a certain cluster as abnormal electricity consumption
behavior. Therefore, the above clustering algorithm is not
suitable for unsupervised anomaly detection. However, in the
case of supervision, the user’s inherent electricity consump-
tion behavior can be divided into several categories based
on the user’s various information, so the above clustering
algorithm will have a good performance. DBSCAN clus-
tering algorithm, as mentioned above, can detect outliers in
the process of clustering without determining the number of
clusters in advance, and it is not sensitive to the order of
data points, so it is more suitable for unsupervised anomaly
detection.

V. CONCLUSION
Aiming to solve the problems of the features obtained
in the detection of abnormal electricity consumption
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FIGURE 12. (a) The violin plot of the features in the optimal feature set of
User2. (b) The violin plot of the features in the optimal feature set of
User3.

FIGURE 13. (a) The original load curve of User1 after clustering. (b) The
original load curve of User2 after clustering. (c) The original load curve of
User3 after clustering.
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FIGURE 13. (Continued.) (d) The original load curve of User4 after
clustering.

FIGURE 14. (a) Architecture of the restricted boltzmann machine.
(b) Architecture of the deep belief network.

behavior, an unsupervised abnormal detection method based
on feature engineering is proposed. The proposed method
is based on unsupervised learning with feature engineering
as the core, combined with a density clustering algorithm
to detect abnormal electricity consumption behavior. In the
proposed method, the feature engineering part does not rely
on experience, and can comprehensively and objectively

obtain the optimal feature subset reflecting the user’s elec-
tricity consumption behavior, and the obtained features are
interpretable. The abnormal detection part can avoid subjec-
tivity through parameter iteration and clustering evaluation.
In addition, the proposed method does not depend on the
data and labels information, which has better generalization
and practicability. At the same time, the proposed method
involves customer portrait analysis, which can fully mine the
intrinsic value of electricity consumption data.

Although the result of the anomaly detection method based
on feature engineering is satisfactory, there is still room for
improvement in terms of clustering algorithms based on den-
sity. In addition, because this paper studies small-scale data
sets, in future works, when faced with the massive amount of
data of the power grid, the problem of how to detect massive
users in parallel still needs further research. At the same
time, expansion of the application scenarios of the proposed
method to cases such as demand-side response and power
fault detection remains to be considered.

APPENDIX A
See Table 6 and Figure 11.

APPENDIX B
See Figure 12.

APPENDIX C
See Figure 13.

APPENDIX D
See Figure 14.
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