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ABSTRACT This paper is concerned with the control design for a class of stochastic nonlinear systems.
Three uncertainties are considered; that is, nonlinear parameter uncertainty, matched uncertainty and
stochastic disturbance. The nonlinear uncertainty contains some uncertain parameter and satisfies bound
condition. Neither the exact value of the matched uncertainty nor its possible bound is known; its upper
bound function satisfies certain concave condition. The stochastic disturbance is a standard Wiener process.
Based on stochastic Lyapunov stability theory, the adaptive robust controller is designed, which renders the
state variables of the closed-loop system bounded in probability, regardless of all uncertainties. The desired
controller is constructed by the upper bound function and the saturation function, in which the upper bound
function represents the magnitude of the control, while the saturation function indicates the control direction.
The design of the adaptive robust controller is based on the minimum information of uncertainty, which is
simple and can be easily realized in practical systems. Finally, a two-tank water level control example is used
to demonstrate the effectiveness of our control design.

INDEX TERMS Stochastic system, nonlinear system, uncertainty, adaptive control, bounded in probability.

I. INTRODUCTION
The stochastic disturbance often occurs in practical systems
and causes instability. Therefore, it is necessary and challeng-
ing to investigate control problems for stochastic systems. In
the middle of the 20th century, stochastic stability definitions
were firstly formulated in [1] and [2]. And then, some classi-
cal stochastic stability theories have been put forward, such
as stochastic Lyapunov stability theory [1], stochastic LaSalle
invariance principle [3] and stochastic input-to-state stable
(SISS) [4] etc. Meanwhile, some analysis and design tools for
stochastic control systems were also developed from deter-
ministic control systems. Florchinger extended the CLF [5]
and Sontag stabilization formula [6] into stochastic systems,
and introduced the passivity definition [7]. The stochastic
nonlinear small-gain theoremwas given in [8].More recently,
lots of outstanding results on stochastic nonlinear control
have been reported in the literature; see, e.g. [9]–[14] and the
references therein.

The associate editor coordinating the review of this manuscript and
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In practical applications, mathematical models of systems
always contain uncertainty. The earlier robust control tech-
nique can usually accommodate the uncertainty with upper
bound. When the upper bound is unknown, which is related
to some unknown parameters, the conservative estimation
in the robust control will lead to large control laws. Therefore
the adaptive algorithm of parameter is designed, instead of
the robust controller design only depending on the upper
bound. This is the core idea of adaptive robust control, which
can provide less conservative results. In recent years, many
important research results about advanced adaptive control of
deterministic nonlinear systems have emerged. An adaptive
neural tracking scheme was designed in [15] for a class
of uncertain switched non-strict feedback nonlinear systems
subject to both unknown backlash-like hysteresis and output
dead-zone. By using output feedback, [16] investigated the
problem of adaptive practical tracking for a class of uncertain
nonlinear systems subject to non-symmetric dead-zone input
nonlinearity. In [17], based on the Lyapunov stability theory
and the backstepping design technique, the event-triggered
adaptive fuzzy output feedback control was given for a
class of multi-input and multi-output (MIMO) switched
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nonlinear systems with unknown nonlinear functions and
unmeasured states. An improved backstepping-based fuzzy
finite-time control scheme was proposed in [18] for a class of
non-strict feedback nonlinear systems with unknown actuator
faults. As far as stochastic nonlinear uncertain systems are
concerned, there have been some representative results on
the adaptive control problems. For example, a neural net-
work (NN) was employed in [19] to compensate for the
unknown upper function of the nonlinear interconnections,
where a decentralized adaptive output-feedback stabiliza-
tion controller for a class of large-scale stochastic nonlin-
ear strict-feedback systems was designed. In the context
of stochastic large-scale nonlinear systems with unknown
dead-zone and unmodeled dynamics, a robust adaptive fuzzy
decentralized controller was constructed in [20]. In [21],
combining the backstepping design with the supply chang-
ing function technique, an adaptive fuzzy decentralized out-
put feedback control approach was developed which was
robust against unmodeled dynamics and unknown dead-
zones, while in [22] an adaptive robust output feedback
control scheme was developed for dynamically positioned
ships with unavailable velocities and unknown dynamic
parameters in an unknown time-variant disturbance envi-
ronment. In [23], an adaptive NN state-feedback controller
was presented for a class of nonlinear stochastic systems
with unknown parameters, unknown nonlinear functions and
stochastic disturbances. An adaptive control scheme for non-
linear stochastic systems with unknown parameters was pro-
vided in [24], where full state constraints in the considered
systems were taken into consideration. In [25], an adaptive
integral sliding mode controller was constructed for general
Takagi-Sugeno (T-S) fuzzy systems with matched uncertain-
ties. Reference [26] constructed an observer to estimate the
unknown state variables, and solved the observer-based adap-
tive fuzzy control problem for nonstrict-feedback stochastic
nonlinear systems with input saturation and prescribed per-
formance. An observer-based fuzzy adaptive output feedback
controller was proposed for a class of switched stochastic
nonlinear uncertain systems with quantized input signals
in [27]. It is noted that there are few results on the adap-
tive robust control design for stochastic nonlinear systems
embracing nonlinear parameter uncertainty, matched uncer-
tainty and stochastic disturbance.

In this paper we endeavor to explore the effect of those
different uncertainties on stochastic systems performance
analysis and controller design. Inspired by [28], [29] and
[30], we address the state feedback stabilization problem
for a class of stochastic nonlinear systems. The system is
subject to three uncertainties including nonlinear parameter
uncertainty, matched uncertainty and external disturbance.
The zero dynamic which contains parameter uncertainty
is bounded in probability, while the matched uncertainty
satisfies certain concave condition. The stochastic distur-
bance is a standard Wiener process. Based on the stochastic
Lyapunov stability theory, an adaptive robust controller is
designed to guarantee that the state variables of the resulting

closed-loop system are bounded in probability, regardless of
all uncertainties. By properly choosing design parameters,
all the responses of the closed-loop system can converge
to a small neighbourhood of the origin. The controller is
explicitly represented by the upper bound function and a
saturation function. The control design can be based on the
minimum information of the uncertainty, which is simple and
can be easily realized in practical systems. We demonstrate
the design procedure by using a two-tank water level control
system, in which the water level height not only needs to be
close to the desired height but also stays positive for all time.

Our control schemes are unprecedented, practical, and
significant. In the past, the most advanced control design
only embraced portion of uncertainties. And even for that,
it is required to know the bound of uncertainty. Our control
schemes, on the other hand, do not need to know the bound of
uncertainty. They also capture the full spectrum of varieties
of uncertainty. The proposed control scheme is applicable
to many systems and requires only the minimum structural
information of the uncertainty.

II. PRELIMINARIES ON STABILITY IN PROBABILITY
The following symbols will be used in the sequel. R+ repre-
sents the set of non-negative real numbers. For a given vector
or matrix X , XT denotes its transpose, and Tr denotes the
matrix trace. ‖ · ‖ represents the Euclidean vector norm. C i

denotes the set of all functions with continuous i-th partial
derivatives. C i,j denotes the family of all nonnegation func-
tions which are C i in the first argument and C j in the second
argument.

Consider a stochastic nonlinear system described by

dx(t) = f̂ (x(t), t)dt + ĝ(x(t), t)dw(t), (1)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn is the state,
w(t) is r-dimensional independent standard Wiener process.
f̂ : Rn

× R+ → Rn and ĝ : Rn
× R+ → Rn×r are locally

Lipschitz.
Definition 1 ( [1]):Acontinuous function γ : R+→ R+ is

said to belong to classK if it is strictly increasing and γ (0) =
0. It is said to belong to class K∞ if γ ∈ K, and γ (r)→∞
as r →∞.
Definition 2 ( [1]): The solution process {x(t), t ≥ 0} of

the stochastic system (1) is said to be bounded in probability,
if limξ→∞ sup0≤t<∞ P{‖x(t)‖ > ξ} = 0.

The following theorem provides a sufficient condition on
the boundedness and stability properties for the system (1),
which is based on stochastic Lyapunov stability theory.
Lemma 1 ( [4]): Consider the stochastic system (1) and

assume that both f̂ and ĝ are locally bounded and Lipschitz
continuous. If there exist aC2,1 functionV : Rn

×R+→ R+,
K∞ functions µ1, µ2, constants c1 > 0, c2 ≥ 0, and a
nonnegative continuous function W (x, t), such that

µ1(‖x(t)‖) ≤ V (x, t) ≤ µ2(‖x(t)‖), (2)

LV (x, t) ≤ −c1W (x, t)+ c2, (3)
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where

LV (x, t) =
∂V (x, t)
∂t

+∇
T
x V (x, t)f̂ (x, t)

+
1
2
Tr{ĝT (x, t)

∂2V (x, t)
∂x2

ĝ(x, t)}. (4)

then (a) for system (1) there exists an almost surely unique
solution on [0,∞); (b) all the responses are bounded in
probability, when W (x, t) ≥ ζV (x, t) for some constant
ζ > 0; (c) when c2 = 0, f̂ (0, t) ≡ 0, ĝ(0, t) ≡ 0 and
W (x, t) = W (x) is continuous, the equilibrium x = 0 is
globally stable in probability and the solution x(t) satisfies
P{limt→∞W (x(t)) = 0} = 1.

III. UNCERTAIN STOCHASTIC DYNAMICAL SYSTEMS
Consider the uncertain stochastic dynamical system
described by the state equation

dx(t) = {f (x(t), t, σ (t))+1f (x(t), t, σ (t))

+ [B(x(t), t)+1B(x(t), t, σ (t))]u(t)}dt

+ g(x(t), t)dw(t), (5)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn is the
state, u(t) ∈ Rm is the control, σ (t) ∈ Rp is an
uncertain (possibly time-varying) parameter, and w(t) is an
r-dimensional independent standard Wiener process. Fur-
thermore, f (x, t, σ ), 1f (x, t, σ ), B(x, t), 1B(x, t, σ ) and
g(x, t) are locally Lipschitz.
Assumption 1: The (unknown) parameter σ : R → 6 ⊂

Rp is Lebesgue measurable with 6 compact and possibly
unknown.
Assumption 2 (i): There are continuous functions e : Rn

×

R×6→ Rm and E : Rn
× R×6→ Rm×m such that

1f (x, t, σ ) = B(x, t)e(x, t, σ ),

1B(x, t, σ ) = B(x, t)E(x, t, σ ), (6)

and

‖e(x, t, σ )‖ ≤ ρ(x, t, θ),∀(x, t, σ ) ∈ Rn
× R×6. (7)

for a known bound function ρ(x, t, θ) with an unknown con-
stant θ ∈ Rk . Moreover, there exists a scalar constant c > −1
such that

min
σ∈6

λmin
1
2
{ET (x, t, σ )+ E(x, t, σ )} > c. (8)

Here λmin(·) (λmax(·)) denotes the minimum (maximum)
eigenvalue of a symmetric matrix.
Remark 1: In reality, unknown parameters are always

bounded, just like Assumption 1, unbounded uncertain
parameters would require infinite energy to sustain. The
inequality (8) implies that the direction of the control is not
to be ‘‘reversed’’ nor ‘‘annihilated’’ by uncertainty.

Assumption 1 implies that the possible value of the uncer-
tainty parameter σ falls within a compact set, which may be
unknown. Assumption 2 (i) states that e must be bounded by
a known function ρ, whose value at each (x, t, θ) may be

unknown due to the fact that θ is unknown, in order to permit
one to guarantee boundedness of the system (5).
Assumption 2 (ii): For each (x, t) ∈ Rn

× R, the function
ρ(x, t, ·) : Rk

→ R+ isC1 and nondecreasing with respect to
each component of its argument θ , and ρ(x, t, ·) is concave.
Remark 2: ρ(x, t, ·) is concave means the effect of param-

eter on the upper bound function of uncertainty is nonlinear.
Thus, prior to controlling the effects of the uncertainty,

it may be necessary to employ a portion of the control to
render the following uncontrolled system bounded:

dx(t) = f (x(t), t, σ (t))dt + g(x(t), t)dw(t). (9)

Assumption 3: There exist a C2,1 function V0 : Rn
×

R+ → R+, K∞ functions γ1, γ2, and parameters l1 >

0, l2 > 0 such that

γ1(‖x‖) ≤ V0(x, t) ≤ γ2(‖x‖), (10)

LV0(x, t) ≤ −l1V0(x, t)+ 1/l2. (11)

where

LV0(x, t) =
∂V0(x, t)
∂t

+∇
T
x V0(x, t)f (x, t, σ )

+
1
2
Tr{gT (x, t)

∂2V0(x, t)
∂x2

g(x, t)}. (12)

We denote α(x, t), for each (x, t) ∈ Rn
× R, as follows

α(x, t) = BT (x, t)[∂V0(x, t)/∂x]. (13)

Remark 3: Both f (x, t, σ ) and 1f (x, t, σ ) depend on the
uncertain parameter σ . The reason for distinguishing them
in (5) is that f (x, t, σ ) provides a ‘‘bounded’’ portion for the
system regardless of the appearance / effect of σ . The other
portion 1f (x, t, σ ) satisfies the matched condition.
Remark 4: The matching condition, as delineated in

Assumption 2 (i), is a structural condition, which preempts
that 1f (x, t, σ ) and 1B(x, t, σ ) are within the range space
of B(x, t), as in (6). This can always be met if there is
sufficient control to the system. That is, the satisfaction of
the matching condition is simply the designer’s discretion.
It is satisfied in most physical systems, including mechanical
manipulators, transportation systems, hydraulic systems, etc.
This however does not mean the system needs to be com-
pletelymatched. The system dynamics f (x, t, σ ) still contains
uncertain parameter σ and does not need tomeet thematching
condition. It only needs to meet certain bounded condition
(See Assumption 3). So, the whole system is best described
as partially matched. The matching condition can be relaxed
in [31]. We adopt this condition in this paper for simplicity.
We also note that for quadratic stabilizability, the matching
condition is also proven to be a necessary condition in [32].

Our control objective is to design the adaptive robust
controller u(t) such that all the responses of the resulting
closed-loop system are bounded in probability.

Next, we introduce one important Lemma, which is fol-
lowed from Theorem 4.1 of [33].
Lemma 2: For some continuous function h : Rn

×

R × 6 × Rm
→ R, suppose there exist a function
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ρ0 : Rn
× R× Rk

→ R+, a constant β0 > 0 and a constant
vector θ ∈ Rk , such that for all (x, t, σ, u) ∈ Rn

×R×6×Rm,

uT h(x, t, σ, u) ≥ β0 ‖u‖ [‖u‖ − ρ0(x, t, θ)]. (14)

Suppose, further, that for any vector α0 ∈ Rm with u ‖α0‖ =
−‖u‖α0. Then the following inequality holds:

αT0 h(x, t, σ, u) ≤ −β0 ‖α0‖ [‖u‖ − ρ0(x, t, θ)]. (15)

where ρ0 is a known function, and θ is a constant which
may be unknown. And h is some function which will be
determined later. Lemma 2 is useful in the proof of our main
results. See Appendix for proof.

IV. CONTROLLER DESIGN AND PERFORMANCE
ANALYSIS
The control u(t) is proposed to be

u(t) = p(x(t), t, θ̂ (t), ε(t)), (16)

with

p(x(t), t, θ̂ (t), ε(t))

= −5(x(t), t, θ̂ (t))s(x(t), t, θ̂ (t), ε(t)), (17)
˙̂
θ (t) = L ‖α(x(t), t)‖

∂5

∂θ̂
(x(t), t, θ̂ (t))− σ1Lθ̂ (t), (18)

ε̇(t) = −(σ2 + τ )ε(t), θ̂ (t0) ∈ (0,∞)k , ε(t0) ∈ (0,∞),

(19)

where L ∈ Rk×k is diagonal with positive elements, σ1, σ2
and τ are positive constants, 5(x, t, θ̂ ) = ρ(x, t, θ̂ )/(1 + c),
and s : Rn

×R×(0,∞)k+1→ Rm is any continuous function
which satisfies

s(x, t, θ̂ , ε) ‖α(x, t)‖ =
∥∥∥s(x, t, θ̂ , ε)∥∥∥α(x, t), (20)

i.e., the two vectors have the same direction, and∥∥∥µ(x, t, θ̂ )∥∥∥ > ε2 ⇒ s(x, t, θ̂ , ε) =
α(x, t)
‖α(x, t)‖

. (21)

where µ(x, t, θ̂ ) = 5(x, t, θ̂ )α(x, t). A particular example of
such a function s is

s(x, t, θ̂ , ε) = sat[µ(x, t, θ̂ )/ε2], (22)

where

sat(η) =

{
η, ‖η‖ ≤ 1,
η/ ‖η‖ , ‖η‖ > 1.

(23)

Based on the aforementioned design, the adaptive parameter
θ̂ (t) > 0 for all t ≥ t0. The main result of this paper can be
summarized by the following theorem.
Theorem 1: Consider the system (5). Suppose that

Assumptions A1-A3 hold. Then, under the adaptive robust
controller (16)-(19), the state variables of the closed-loop sys-
tems are bounded in probability. Moreover, if a prior bound
on the unknown constant θ is available, all the responses of
the closed-loop system can converge to a small neighbor-
hood of the origin by appropriately choosing the parameters
l1, l2,L, σ1, σ2 and τ .

Proof: The Lyapunov function candidate is

V (x, t, θ̂ − θ, ε) = V0(x, t)+ V1(θ̂ − θ )+
1+ c
2τ

ε2, (24)

where

V1(θ̂ − θ ) =
1+ c
2

(θ̂ − θ )TL−1(θ̂ − θ ). (25)

Consider the infinitesimal generator of V along the trajectory
of the controlled system:

LV (x, t, θ̂ − θ, ε) = LV0(x, t)+ V̇1(θ̂ − θ )+ (1+c)
τ
ε̇ε,

(26)

where

LV0(x, t) =
∂V0
∂t
+∇

T
x V0(x, t)f (x, t, σ )

+
1
2
Tr{gT (x, t)

∂2V0(x, t)
∂x2

g(x, t)}

+∇
T
x V0(x, t)B{[I + E(x, t, σ )]

× p(x, t, θ̂ , ε)+ e(x, t, σ )}. (27)

We denote the last term as �:

� : = ∇Tx V0(x, t)B{[I + E(x, t, σ )]p(x, t, θ̂ , ε)

+ e(x, t, σ )}

= αT {[I + E(x, t, σ )]p(x, t, θ̂ , ε)+ e(x, t, σ )}. (28)

In view of (20), one has

−5(x, t, θ̂ )s(x, t, θ̂ , ε) ‖α(x, t)‖

= −5(x, t, θ̂ )
∥∥∥s(x, t, θ̂ , ε)∥∥∥α(x, t), (29)

which, along with (17), implies that

p(x, t, θ̂ , ε) ‖α(x, t)‖ = −
∥∥∥p(x, t, θ̂ , ε)∥∥∥α(x, t). (30)

Letting

h(x, t, σ, u) := [I + E(x, t, σ )]u(t)+ e(x, t, σ ),

and combining with Assumption 2 (i), we have

uT h(x, t, σ, u) = uT [I + E(x, t, σ )]u+ uT e(x, t, σ )

≥ (1+ c) ‖u‖2 − ‖u‖ ρ(x, t, θ)

= (1+ c) ‖u‖ [‖u‖ − ρ(x, t, θ)/(1+ c)].

(31)

Using Lemma 2, (28) becomes

� ≤ −(1+ c) ‖α(x, t)‖ [
∥∥∥p(x, t, θ̂ , ε)∥∥∥

− ρ(x, t, θ)/(1+ c)]

= (1+ c) ‖α(x, t)‖ [ρ(x, t, θ)/(1+ c)

−5(x, t, θ̂ )]

+ (1+ c) ‖α(x, t)‖ [5(x, t, θ̂ )

−

∥∥∥p(x, t, θ̂ , ε)∥∥∥]. (32)
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Since 5(x, t, ·) is concave for all (x, t) ∈ Rn
× R, we note

5(x, t, θ)−5(x, t, θ̂ ) ≤ −
∂5T

∂θ̂
(x, t, θ̂ )(θ̂ − θ ), (33)

For the first term on the right-hand side (RHS) of (32),
we have

(1+ c) ‖α(x, t)‖ [ρ(x, t, θ)/(1+ c)−5(x, t, θ̂ )]

= (1+ c) ‖α(x, t)‖ [5(x, t, θ)−5(x, t, θ̂ )]

≤ −(1+ c) ‖α(x, t)‖
∂5T

∂θ̂
(x, t, θ̂ )(θ̂ − θ ). (34)

Now consider the second term on the RHS of (32). It follows
from (21), (22) and (23) that, if ‖µ‖ > ε2,

∥∥∥p(x, t, θ̂ , ε)∥∥∥ =
5(x, t, θ̂ ) and

(1+ c) ‖α(x, t)‖ [5(x, t, θ̂ )−
∥∥∥p(x, t, θ̂ , ε)∥∥∥] = 0. (35)

If ‖µ‖ ≤ ε2, then

(1+ c) ‖α(x, t)‖ [5(x, t, θ̂ )−
∥∥∥p(x, t, θ̂ , ε)∥∥∥]

≤ (1+ c) ‖α(x, t)‖5(x, t, θ̂ )

= (1+ c)
∥∥∥µ(x, t, θ̂ )∥∥∥

≤ (1+ c)ε2. (36)

Consequently,

(1+ c) ‖α(x, t)‖ [5(x, t, θ̂ )−
∥∥∥p(x, t, θ̂ , ε)∥∥∥]

≤ (1+ c)ε2. (37)

Combining (34) and (37), one can obtain

� ≤ −(1+ c) ‖α(x, t)‖ (θ̂ − θ )T
∂5

∂θ̂
(x, t, θ̂ )

+ (1+ c)ε2. (38)

Concerning V1, it follows from (18) and (25) that

V̇1(θ̂ − θ ) =
∂V1
∂θ̂

(θ̂ − θ ) ˙̂θ

= (1+ c)(θ̂ − θ )TL−1(L ‖α(x, t)‖

×
∂5

∂θ̂
(x, t, θ̂ )− σ1Lθ̂ ). (39)

Substituting (11), (19), (38) and (39) into (26) yields

LV (x, t, θ̂ − θ, ε)
≤ −l1V0(x, t)+ 1/l2

− (1+ c) ‖α(x, t)‖ (θ̂ − θ )T
∂5

∂θ̂
(x, t, θ̂ )

+ (1+ c)ε2

+ (1+ c)(θ̂ − θ )T ‖α(x, t)‖
∂5

∂θ̂
(x, t, θ̂ )

− (1+ c)(θ̂ − θ )Tσ1θ̂

− (1+ c)ε2 −
(1+ c)σ2

τ
ε2

= −l1V0(x, t)+ 1/l2 − (1+ c)σ1(θ̂ − θ )T θ̂

−
(1+ c)σ2

τ
ε2. (40)

Denote θ̃ = θ̂ − θ , then it follows

−σ̄1θ̃
T θ̂ ≤ −

σ̄1

2

∥∥∥θ̃∥∥∥2 + σ̄1
2
‖θ‖2 . (41)

Finally, we have

LV (x, t, θ̂ − θ, ε) ≤ −l1V0(x, t)−
σ̄1

2

∥∥∥θ̃∥∥∥2
− σ̄2ε

2
+
σ̄1

2
‖θ‖2 + 1/l2. (42)

where σ̄1 = (1 + c)σ1, σ̄2 =
(1+c)σ2

τ
and κ =

min{l1,
σ̄1

λmax(L)−1(1+c)
, σ̄2}. Therefore we can prove

LV (x, t, θ̂ − θ, ε) ≤ −κV (x, t, θ̂ − θ, ε)

+ (
σ̄1

2
‖θ‖2 + 1/l2). (43)

Based on Lemma 1, if a prior bound on the unknown con-
stant θ is available, the state variables of the closed-loop sys-
tem are bounded in probability. Moreover, all the responses
of the closed-loop system can converge to a small neighbor-
hood of the origin by appropriately choosing the parameters
l1, l2,L, σ1, σ2 and τ . Q.E.D.
Remark 5: In (16) (17), the upper bound function repre-

sents the magnitude of the controller, and the saturation func-
tion shows its direction. And neither the uncertain parameter
nor the bound of uncertainty is known while constructing
the control. The control design is based on the minimum
information of uncertainty.
Remark 6: From (43), the bound of the closed-loop system

trajectory can be tuned arbitrarily small when we choose σ1
that is small enough and l2 that is large enough at the same
time.

Next we will take another control design into condition.
The controller is given by

u(t) = p(x(t), t, θ̂ (t)), (44)

with

p(x(t), t, θ̂ (t)) = −5(x(t), t, θ̂ (t))s(x(t), t, θ̂ (t)), (45)
˙̂
θ (t) = L̄ ‖α(x(t), t)‖

∂5

∂θ̂
(x(t), t, θ̂ (t))− σ L̄θ̂ (t),

θ̂ (t0) ∈ (0,∞)k , (46)

where L̄ ∈ Rk×k is diagonal with positive elements, σ is a
positive constant, and 5(x, t, θ̂ ) = ρ(x, t, θ̂ )/(1+ c),

s(x, t, θ̂ ) =

{
µ/ε̄2, ‖µ‖ ≤ ε̄2,

µ/‖µ‖, ‖µ‖ > ε̄2.
(47)

with µ(x, t, θ̂ ) = 5(x, t, θ̂ )α(x, t). And ε̄ is a positive
constant.
Theorem 2: Consider the system (5). Suppose Assump-

tions A1-A3 hold. Then, under the adaptive robust controller
(44)-(46), the state variables of the closed-loop system are
bounded in probability. Moreover, if a prior bound on the
unknown constant θ is available, all the responses of the
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closed-loop system can be regulated into a small neighbour-
hood of the origin by appropriately choosing the parameters
l1, l2, L̄, σ and ε̄.

Proof: Consider the Lyapunov function candidate

V (x, t, θ̂ − θ ) = V0(x, t)+ V1(θ̂ − θ ), (48)

where

V1(θ̂ − θ ) =
1+ c
2

(θ̂ − θ )T L̄−1(θ̂ − θ ). (49)

Consider the infinitesimal generator ofV , it follows from (48)
that

LV (x, t, θ̂ − θ ) = LV0(x, t)+ V̇1(θ̂ − θ ). (50)

Substituting (11), (44)-(46) and (49) into the expression of
LV , yields

LV (x, t, θ̂ − θ )
≤ −l1V0(x, t)+ 1/l2

− (1+ c) ‖α(x, t)‖ (θ̂ − θ )T
∂5

∂θ̂
(x, t, θ̂ )

+ (1+ c)ε̄2

+ (1+ c)(θ̂ − θ )T ‖α(x, t)‖
∂5

∂θ̂
(x, t, θ̂ )

− (1+ c)(θ̂ − θ )Tσ θ̂

= −l1V0(x, t)+ 1/l2
− (1+ c)σ (θ̂ − θ )T θ̂ + (1+ c)ε̄2. (51)

Applying the Young’s inequality, we have

LV (x, t, θ̂ − θ ) ≤ −πV (x, t, θ̂ − θ )

+ (
σ̄

2
‖θ‖2 + 1/l2 + (1+ c)ε̄2). (52)

where σ̄ = (1+ c)σ and π = min{l1, σ

λmax(L̄)−1(1+c)
}. Q.E.D.

Remark 7: By comparing Theorem 1 with Theorem 2, it is
concluded that when ε̄ is time-varying, the control effect is
better thanwhen it is constant, due to the smaller boundedness
region.
Remark 8: When the low triangle system or higher-order

system is considered, these results still hold and the bound-
edness in the mean square can be obtained.

V. SPECIALIZATION TO LINEAR SYSTEMS
Consider the special case when the stochastic system is linear:

dx(t) = {[A+1A(σ (t)]x(t)

+ [B+1B(σ (t)]u(t)}dt + Gx(t)dw(t), (53)

where A is Hurwitz, σ is an unknown parameter, the matrices
A, 1A, B, 1B, and G are of appropriate dimensions. The
counter part of Assumption 2 is that there are e(σ ) and E(σ )
such that

1A(σ ) = Be(σ ),

1B(σ ) = BE(σ ), (54)

and

min
σ∈6

1
2
λmin{ET (σ )+ E(σ )} > c̃ > −1, (55)

‖e(σ )‖ ≤ ρ(θ ). (56)

where ρ is concave on θ .
Let Q ∈ Rn×n be a positive-definite symmetric matrix. Let
also V0(x) = xTQx. By the Rayleigh’s principle,

λmin(Q) ‖x‖2 ≤ xTQx ≤ λmax(Q) ‖x‖2 . (57)

Consider the matrix equation H = QA + ATQ + GTQG.
We have

LV0(x) = xT (QA+ ATQ+ GTQG)x

≤ −ϕV0(x). (58)

where ϕ = λmax(H )λmax(Q).
We propose the controller as

u(t) = p(x(t), θ̂ (t), ε̃(t)), (59)

with

p(x(t), θ̂ (t), ε̃(t))

= −5(θ̂ (t))s(x(t), θ̂ (t), ε̃(t)), (60)

˙̂
θ (t) = 2L̃

∂5T

∂θ̂
(θ̂ (t))

∥∥∥BTQx(t)∥∥∥− σ̃1L̃θ̂ (t), (61)

˙̃ε(t) = −(τ̃ + σ̃2)ε̃(t),

θ̂ (t0) ∈ (0,∞)k , ε(t0) ∈ (0,∞), (62)

where

5(θ̂ ) = ρ(θ̂ )/(1+ c̃), (63)

µ(x, θ̂ ) = 2[ρ(θ̂ )/(1+ c̃)]BTQx, (64)

s(x, θ̂ , ε̃) = sat[µ(x, θ̂ )/ε̃2]. (65)

As in Theorem 1, all responses of the closed-loop system
are bounded in probability. The control is more structured:
µ is autonomous and linear in x. Moreover, the effects of x
and θ̂ inµ are decoupled. Furthermore, in comparing with the
nonlinear case, the choice of V0(x, t) can be autonomous and
LV0(x, t) is obtained via a matrix equation.
In the past, the most advanced control design only

embraced portion of them. And even for that, the con-
trol needed to know the bound of uncertainty. Our control
schemes, on the other hand, do not need to know the bound of
uncertainty. They also capture the full spectrum of varieties
of uncertainty. The control scheme is applicable to many sys-
tems and requires only the minimum structural information
of the uncertainty.

VI. ILLUSTRATIVE EXAMPLE
Consider the two-tanks water level system. The model is
given by

C1(t)dh1(t)

= (r1(t)−
h1(t)
R1(t)

)dt + C1(t)β1
h∗1
h1(t)

sin(2t)dw(t), (66)
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C2(t)dh2(t)

= (r2(t)+
h1(t)
R1(t)

−
h2(t)
R2(t)

)dt + C2(t)β2
h∗2
h2(t)

× cos(5t)dw(t), (67)

where hi(t), i = 1, 2 is the water level height of tank i, Ci(t)
is the capacitance of tank i, Ri(t) is the resistance of valve i,
and ri(t) is the inflow rate to the tank i (ri(t) > 0 means to add
water and ri(t) < 0 means to drain the tank). We treat r1,2(t)
as the control input. The control task is to design ri(t), i =
1, 2, such that hi(t) is driven to be close to a desired value
h∗i > 0. βi, i = 1, 2 is a positive constant. We consider that
Ci(t),Ri(t), i = 1, 2 are unknown. However, their possible
bounds are known a priori. Let C0

i , R0i , i = 1, 2 be the
nominal values of Ci(t), Ri(t), i = 1, 2. There are known
strictly positive constants C i, C̄i, Ri and R̄i with

0 < C i ≤ Ci(t) ≤ C i, (68)

0 < Ri ≤ Ri(t) ≤ Ri, i = 1, 2. (69)

We note that the strict positiveness is assured by the phys-
ical implications of the capacitance and resistance. While
designing the control, in addition to regulating hi to be close
to h∗i , it is also realistic that hi(t) > 0 for all t ≥ t0 for
otherwise (that is: hi(t) < 0) we lose the physical meaning.
This positive-constraint is very common in many practical
systems, yet it has rarely been addressed.

In order to ensure hi(t) > 0 for all time and hi(t)
will be close to h∗i , we creatively propose the following
transformation:

Let

yi = ln(
hi
h∗i

), i = 1, 2. (70)

The transformation is bijective (i.e., one-to-one) and smooth.
The implication of this transformation is that yi = 0 as hi =
h∗i . Furthermore, the boundedness of yi means hi > 0. The
systems (66) and (67) can be represented in terms of yi:

dy1(t)

= (−
1

C1(t)R1(t)
+

1
C1(t)

1
h∗1e

y1(t)
r1(t))dt

+β1sin(2t)e−y1(t)dw(t), (71)

dy2(t)

= (
1

C2(t)R1(t)

h∗1e
y1(t)

h∗2e
y2(t)
−

1
C2(t)R2(t)

+
1

C2(t)
1

h∗2e
y2(t)

r2(t))dt + β2cos(5t)e−y2(t)dw(t). (72)

The systems above in turn are represented by

dy1(t)

= [
1

C1(t)R1(t)
(e−y1(t) − 1)−

1
C1(t)R1(t)

e−y1(t)

+
1

C1(t)
1

h∗1e
y1(t)

r1(t)]dt + β1sin(2t)e−y1(t)dw(t), (73)

dy2(t)

= [
1

C2(t)R2(t)
(e−y2(t) − 1)−

1
C2(t)R2(t)

e−y2(t)

+
1

C2(t)R1(t)

h∗1e
y1(t)

h∗2e
y2(t)
+

1
C2(t)

1
h∗2e

y2(t)
r2(t)]dt

+β2cos(5t)e−y2(t)dw(t). (74)

The systems (73) and (74) is in the form of (5) by taking
y = [y1, y2]T , u = [r1, r2]T ,

f (y, t, σ ) =


1

C1R1
(e−y1 − 1)

1
C2R2

(e−y2 − 1)

 ,

B(y, t) =


1

C0
1h
∗

1e
y1

0

0
1

C0
2h
∗

2e
y2

 ,

E(y, t, σ ) =


C0
1 − C1

C1
0

0
C0
2 − C2

C2

 ,
g(y, t) =

[
β1sin(2t)e−y1(t)

β2cos(5t)e−y2(t)

]
,

1f (y, t, σ ) =

 −
1

C1R1
e−y1

−
1

C2R2
e−y2 +

1
C2R1

h∗1e
y1

h∗2.e
y2

 ,

1B(y, t, σ ) =


C0
1 − C1

C1C0
1

1
h∗1e

y1
0

0
C0
2 − C2

C2C0
2

1
h∗2e

y2

 . (75)

Assumption 3 is met by taking

V0(y) =
2∑
i=1

1
2
(eyi − 1)2. (76)

This can be easily verified by first taking

γ1(η) = min
y
{

2∑
i=1

1
2
(eyi − 1)2| η = ‖y‖}, (77)

γ2(η) = max
y
{

2∑
i=1

1
2
(eyi − 1)2| η = ‖y‖}. (78)

Since
C0
i
Ci
> 0, we have

min

{
C0
1 − C1

C1
,
C0
2 − C2

C2

}
=: c > −1. (79)

After some simple calculations, one obtains

e(y, t, σ ) =

 −
C0
1h
∗

1

C1R1

−
C0
2h
∗

2

C2R2
+
C0
2h
∗

1e
y1

C2R1

 . (80)
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Letting θ = maxi, j=1, 2{( 1
C iRj

)2}, it yields

‖e‖ ≤ ρ(y, θ), (81)

where

ρ(y, θ) =
√
θ ·

√
(C0

1h
∗

1)
2 + (C0

2h
∗

1e
y1 − C0

2h
∗

2)
2, (82)

5 = ρ(y, θ)/(1+ c). (83)

ρ(y, ·) is C1 and nondecreasing, and ρ(y, ·) is concave about
θ . B, 5 and ∂5/∂θ are continuous.
Furthermore, we have

LV0(y) = ∇Ty V0(y)f (y, t, σ )

+
1
2
Tr{gT (y, t)

∂2V0(y)
∂y2

g(y, t)}

=

2∑
i=1

(eyi − 1)
1

CiRi
eyi (e−yi − 1)

+
1
2

2∑
i=1

g2i (2e
2yi − eyi ). (84)

Considering Assumption 3, we obtain

LV0(y) ≤ −2V0(y)+ (β21 + β
2
2 ). (85)

The candidate Lyapunov function can be chosen as

V (y, θ̂ − θ, ε) = V0(y)+ V1(θ̂ − θ )+
1+ c
τ

ε2, (86)

where

V1(θ̂ − θ ) =
1+ c
2

(θ̂ − θ )TL−1(θ̂ − θ ). (87)

The adaptive robust controller can be given as

u(t) =
[
r1(t)
r2(t)

]
= −5(y(t), θ̂ (t))s(y(t), θ̂ (t), ε(t)), (88)

with

5(y, θ̂ ) =

√
θ̂ ·

√
(C0

1h
∗

1)
2 + (C0

2h
∗

1e
y1 − C0

2h
∗

2)
2

1+ c
, (89)

α(y) =


1

C0
1h
∗

1

(ey1 − 1)

1

C0
2h
∗

2

(ey2 − 1)

 , (90)

µ(y, θ̂ ) = 5(y, θ̂ )α(y)

=

[
µ1(y, θ̂ )
µ2(y, θ̂ )

]

=

√
θ̂ ·

√
(C0

1h
∗

1)
2 + (C0

2h
∗

1e
y1 − C0

2h
∗

2)
2

1+ c

×


1

C0
1h
∗

1

(ey1 − 1)

1

C0
2h
∗

2

(ey2 − 1)

 , (91)

and

s(y, θ̂ , ε) = sat[µ(y, θ̂ )/ε2]. (92)

The controllers are established as

r1(t)=


−
52

ε(t)2
·

1

C0
1h
∗

1

(ey1(t) − 1), ‖µ1‖ ≤ ε
2,

−sgn[5 ·
1

C0
1h
∗

1

(ey1(t) − 1)]5, ‖µ1‖ > ε2.

(93)

r2(t)=


−
52

ε(t)2
·

1

C0
2h
∗

2

(ey2(t) − 1), ‖µ2‖ ≤ ε
2,

−sgn[5 ·
1

C0
2h
∗

2

(ey2(t) − 1)]5, ‖µ2‖ > ε2.

(94)

Additionally, we know

∂5

∂θ̂
=

√
(C0

1h
∗

1)
2 + (C0

2h
∗

1e
y1 − C0

2h
∗

2)
2

2(1+ c)
√
θ̂

, (95)

‖α‖ =

√
(
ey1 − 1

C0
1h
∗

1

)2 + (
ey2 − 1

C0
2h
∗

2

)2. (96)

So the adaptive laws of parameter are as follows

˙̂
θ (t) =

L
√
(C0

1h
∗

1)
2 + (C0

2h
∗

1e
y1(t) − C0

2h
∗

2)
2

1+ c

×

√
(
ey1(t) − 1

C0
1h
∗

1

)2 + (
ey2(t) − 1

C0
2h
∗

2

)2

− σ1Lθ̂ (t),

ε̇(t) = −(τ + σ2)ε(t). (97)

For simulation purpose, we choose C0
1 = C0

2 = 1, R01 = 1,
R02 = 0.5, 1C1 = 0.2 sin(7t), 1C2 = 0.2 sin(8t), 1R1 =
0.2 sin(5t), 1R2 = 0.2 cos(10t), C1 = C2 = 0.8, C̄1 =

C̄2 = 1.2, R1 = R2 = 0.8, R̄1 = R̄2 = 1.2, L = 1,
τ = 1, σ1 = 60, σ2 = 1, c = −0.17, β1 = β2 = 0.1,
and y1(0) = 2, y2(0) = −2, θ̂ (0) = 0.5, ε(0) = 0.5 are the
initial conditions.

Hence, we obtain the controller

µ1(y, θ̂ ) = 1.2
√
θ̂ ·
√
1+ (ey1 − 1)2 · (ey1 − 1), (98)

r1(t)=



−
θ̂ (t)[1+ (ey1(t) − 1)2](ey1(t) − 1)

0.69ε(t)2
,

‖µ1‖ ≤ ε
2,

−sgn[1.2
√
θ̂ (t) ·

√
1+ (ey1(t) − 1)2

×(ey1(t) − 1)]

√
θ̂ (t) ·

√
1+ (ey1 − 1)2

0.83
,

‖µ1‖ > ε2.

(99)

µ2(y, θ̂ ) = 1.2
√
θ̂ ·
√
1+ (ey1 − 1)2 · (ey2 − 1), (100)
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FIGURE 1. (a) y1 of the open-loop system. (b) y2 of the open-loop system. (c) y1 of the
closed-loop system. (d) y2 of the closed-loop system. (e) Controller r1. (f) Controller r2.
(g) Parameter θ̂ . (h) Parameter ε.
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r2(t)=



−
θ̂ (t)[1+ (ey1(t) − 1)2](ey2(t) − 1)

0.69ε(t)2
,

‖µ2‖ ≤ ε
2,

−sgn[1.2
√
θ̂ (t) ·

√
1+ (ey1(t) − 1)2

×(ey2(t) − 1)]

√
θ̂ (t) ·

√
1+ (ey1(t) − 1)2

0.83
,

‖µ2‖ > ε2.

(101)

The adaptive laws are given as

˙̂
θ (t) = 1.2

√
1+ (ey1(t) − 1)2

×

√
(ey1(t) − 1)2 + (ey2(t) − 1)2 − θ̂ (t), (102)

ε̇(t) = −2ε(t). (103)

The results of simulation are as follows. The magnitude of
yi, i = 1, 2 reflects the relation between hi and h∗i . As time
goes on, Fig. 1(a) and Fig. 1(b) show yi, i = 1, 2 is divergent,
which means hi → h∗i does not hold. From Fig. 1(c) and
Fig. 1(d), we can see yi, i = 1, 2 are bounded in proba-
bility. This in turns means hi will be close to h∗i and remain
close thereafter. From Fig. 1(e) and Fig. 1(f), the controls
ri, i = 1, 2, remains bounded for all time. Furthermore, the
control magnitude stays very small after the transient period.
These demonstrate both efficiency and cost-effectiveness of
the adaptive robust control. From Fig. 1(g) and Fig. 1(h),
we can see that the other responses θ̂ (t) and ε(t) are also
bounded in probability after about 3 seconds.

VII. CONCLUSION
In this paper, we have considered the adaptive robust control
problem for a class of stochastic nonlinear systems with three
uncertainties. The nonlinear uncertainty is bounded in prob-
ability. Under the matched conditions, a known function ρ
with an unknown parameter θ , is introduced to bound the
uncertain e. The upper bound ρ satisfies certain concave
condition. And the external disturbance is standard Wiener
Process. Based on stochastic Lyapunov stability theory, the
adaptive robust controller has been designed, which renders
the closed-loop system bounded in probability, regardless
of all the uncertainties. As a result, neither σ nor θ is
known when constructing the control. The desired controller
is constructed by the upper bound function and the saturation
function, in which the upper bound function represents the
magnitude of the control, while the saturation function indi-
cates the control direction. The design of desired controllers
is based on the minimum information of the uncertainty.

APPENDIX
THE PROOF OF LEMMA 2

Proof: Note that if α0 ∈ Rm and γ > 0, then, utilizing
the inequality (14),

αT0 h(x, t, σ,−γα0)

= −
1
γ
(−γα0)T h(x, t, σ,−γα0)

≤ −
1
γ
β0 |−γα0| [|−γα0| − ρ0(x, t, θ)]

= −β0 |α0| [γ |α0| − ρ0(x, t, θ)], (104)

that is

αT0 h(x, t, σ,−γα0)≤−β0 |α0| [γ |α0|−ρ0(x, t, θ)] (105)

Since (106) is satisfied for all γ > 0 and each side is
continuous in γ , it also holds for γ = 0.
Now consider any two vectors u, α0 ∈ Rm which satisfy

u |α0| = − |u|α0 (106)

If α0 6= 0, then u = −γα0 where γ = |u| / |α0|, and using
(106),

αT0 h(x, t, σ, u) ≤ −β0 |α0| [(|u| / |α0|) |α0| − ρ0(x, t, θ)]

= −β0 |α0| [|u| − ρ0(x, t, θ)]. (107)

that is

αT0 h(x, t, σ, u) ≤ −β0 |α0| [|u| − ρ0(x, t, θ)] (108)

Clearly, (109) also holds when α0 = 0.
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