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ABSTRACT Video-based noncontact detection of heart rate has a wide range of applications in the field
of medicine and health. However, this method is susceptible to noise interference, making it difficult to
effectively extract blood volume pulse (BVP) signals. To overcome this problem, a newmethod of noncontact
heart rate estimation that can suppress noise interference is proposed in this paper. First, the established
data acquisition system conducts video collection, and the captured videos are divided into multiple small
regions. Subsequently, the initial signals of BVP are extracted in accordance with the chrominance features
extracted through multi-channel data fusion. The BVP signals are separated using the FastICA algorithm.
The kurtosis value and signal-to-noise ratios of the power spectrum of the separated signals are analyzed
to determine the effective separation component. Results show that this method can extract and process
pulse signals, effectively suppressing non-periodic interference. The experiment also proves that the method
has good consistency with the measurement of pulse oximeter and has good stability and accuracy in the
detection of heart rate of the human body.

INDEX TERMS Chrominance features, kurtosis, photoplethysmography(PPG), data harvesting fusion.

I. INTRODUCTION
Heart rate is an important indicator that reflects the physio-
logical health of the human body and has important applica-
tions in the clinical study of cardiovascular disease [1] and
physical exercise [2]. Traditional instruments used to mea-
sure heart rate include probes and sensors, which can cause
discomfort and increase infection risk during long-term use.

In recent years, the development of noncontact heart rate
detection and estimation has become a research hotspot
in the field of physiological information monitoring to
overcome the limitations of traditional instruments. Schol-
ars have proposed a number of methods for noncontact
heart rate detection and estimation, including ultrasonic
detection, thermodynamic imaging, and photoplethysmog-
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raphy (PPG) [3]–[5]. Recent studies have shown that heart
rate can be determined by analyzing skin color changes
in video signals. This noncontact and inexpensive method
can also be used in certain special scenarios, such as skin
damage, neonatal care, and imperceptible monitoring situa-
tions [6]–[8].With the continuous development of noncontact
measurement technology, imaging photoplethysmography
(PPG)iPPG can provide convenience and comfort and reduce
medical costs given that it only requires the processing of
body skin color from videos to monitor heart rates automat-
ically by means of data fusion and analysis. Therefore, such
research has important practical significance.

II. RELATED WORKS
PPG provides the most basic physiological signal of the
human body, including hemodynamics [9] and circulation
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FIGURE 1. Development of heart rate physiological signal detection technology.

information of the autonomic nervous system [10], which
is comprehensively displayed in pulse waves, amplitudes,
wave speed, and rhythm. These parameters are an important
basis for evaluating human physiological state and clinical
diagnosis [11] in medicine. The detection technology of
physiological signals has developed from contact to noncon-
tact processes, as shown in Figure 1.

In recent years, the noncontact measurement of physio-
logical signals in the human body has been continuously
developed. In 2007, Pavlidis used an infrared camera to mea-
sure heart rate, respiratory rate, and stress levels. Researchers
have demonstrated the effectiveness of using facial thermal
imaging systems to calculate physiological signals. Research
shows that the conduction cycle, morphological parameters,
and rising time can be extracted from PPG signals for physi-
ological evaluation [12]–[14].

At present, obtaining accurate physiological parameters
has been the focus of research on noncontact heart rate
estimation based on video images. With the development of
feature extraction technology [15]–[17], many studies have
researched on noncontact heart rate estimation technology
using human faces as video objects. In particular, ICA tech-
nology has been widely used in heart rate estimation. In 2014,
iPPG signals were extracted using a constrained independent
component analysis (ICA) method and adaptive filters [18].
Favilla et al. used ICA pre-processing to enhance iPPG sig-
nals from different regions of the face [19]. Zhang et al. pro-
posed a six-channel ICA algorithm to separate more potential
sources from smartphone videos [20]. Alghoul et al. used
ICA algorithms for blind source separation (BSS) to decrease
noise interference [21]. However, when the non-skin region
of the face produces a large disturbance and the frequency of
disturbance is closely related to heart rate (e.g., blinking of
the eyes), this method cannot easily filter such disturbance.
Using pixel-based rPPG sensors, Wang et al. performed ICA
to distinguish pulse signals from motion-induced noise using
the spatial redundancy of image sensors and estimated the
heart rate [22]. And the above studies did not provide a basis
to select components after BSS.

In 2016, Wang proposed the spatial subspace rotation
(SSR) algorithm to complete pulse extraction by detecting
time-domain rotation parameters between the subspaces of
the skin color pixel space. This method shows improved
anti-interference ability [23]. Notably, in 2016, Wang intro-
duced the plane orthogonal to skin (POS) model, which
uses CHROM’s information and knowledge of blood volume

pulses (BVPs) to define a rough projection region on a skin
tone plane and accurately calculate the projection direction on
the plane by real-time adjustment [24]. The novelty of POS
lies in defining a plane, that is, orthogonal in the color plane
of the time-normalized RGB space. This plane is used for
pulse extraction. The POS model has better anti-interference
capability compared with other models. Invariant features are
introduced with respect to the action of a differentiable local
group of local transformations [25]. Results show that the
energy of the blood volume signal is rearranged in vector
space with a more concentrated distribution. Moreover, the
recursive probabilistic inference problem in time-varying lin-
ear dynamic systems has been addressed to incorporate the
invariance into the task of heart rate estimation from face
videos under realistic conditions [5].

As reported in the literature, the method of estimating heart
rate based on noncontact videos has almost always evolved
in accordance with the PPG principle. The relevant medi-
cal research on PPG has shown that the temperature of the
human body’s surrounding environment and the temperature
of the epidermal tissue directly affect the perfusion of skin
blood flow, which causes great interference on the iPPG
signal, decreasing the estimation accuracy of blood oxygen
saturation and heart rate. This previous finding also shows
that changes in lighting and subjects’ slight movements can
decrease the accuracy and stability of the heart rate mea-
surement based on the PPG principle. With the development
of technology [26]–[28], some scholars have also used deep
learning to measure physiological parameters. Since this is
not the focus of this article, it will not be described in detail
here.

Weak BVP signals can be completely submerged, and
their waveforms can be distorted due to noise interference,
leading to inaccurate information. These various interference
superpositions set strict requirements for filtering non-BVP
signals [29]. The signal denoising method has always been
the focus of research in the field of signal processing. The
anti-interference processing using the BSS method has been
applied in many engineering fields. ICA is a signal separation
algorithm developed using the BSS problem. Compared with
the traditional BSS algorithm, the ICA algorithm is based on
high-order statistics of the data for signal processing, and the
separated components are not only uncorrelated with each
other but are also independent as possible in high-order statis-
tics, thereby reflecting the essential characteristics of the data.
The FastICA algorithm is the most common ICAmethod and
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FIGURE 2. Specific process of heart rate estimation.

includes kurtosis-based, maximum likelihood, and maximum
negative entropy. The FastICA algorithm based on maximum
negative entropy is used in this paper. This method is used
to effectively remove the effect of noise. The advantages
of this method in denoising have been confirmed by many
researchers. However, on the one hand, extracting weak sig-
nals from mixed signals using this method alone is difficult
under the background of strong noise. On the other hand,
many components are obtained using this method. Only a few
components are closely related to BVP signals, whereas the
rest are irrelevant or interference components. Thus, selecting
effective components is necessary to highlight the signal
characteristics.

In accordance with previous research, POS and FastICA
algorithms are combined in this paper to establish a method
of heart rate detection by extracting and denoising BVP sig-
nals based on chrominance features. This method removes
the noise in BVP signals while retaining useful information.
Given that the kurtosis index can quantitatively evaluate the
random noise contained in the signal and has the advan-
tages of fast calculation speed, simple algorithm, and strong
anti-interference ability, the effective separation component
is determined in accordance with the size of the kurtosis
value. Results show that this method can adapt to pulse signal
analysis and processing and significantly improves the signal-
to-noise ratio (SNR) of the pulse wave.

The rest of the paper is organized as follows. The theo-
retical background is discussed in Part III. In this section,
a method for denoising and extracting BVP is provided. The
experimental results and evaluation indicators are discussed
in detail in Part IV. Part V states the conclusions of this
work.

III. METHODOLOGY
The key problem for heart rate estimation based on videos
is the accurate estimation of BVP signals from the video
images. The heart rate estimation method proposed in this
paper considers the effects of incident light, epidermis and
subcutaneous reflection, and camera noise; establishes the
BVP signal acquisition model; introduces chrominance fea-
tures and FastICA to eliminate the interference caused by
light and movement; and obtains robust heart rate estimation
results. The method of estimating heart rate consists of four
important steps: (1) detection of the region of interest (ROI),

(2) completion of BVP signal extraction, (3) use of FastICA
to complete signal denoising, and (4) selection of signal
components and estimation of heart rate. Figure 2 shows the
specific process of heart rate estimation.

A. EXTRACTION OF CHROMINANCE FEATURES
The iPPG system directly collects the original video con-
taining the pulse wave information, which requires obtain-
ing the pulse wave signal with high SNR. Thus, finding
an algorithm with strong anti-interference ability is neces-
sary to complete the extraction of the original pulse signal.
At present, the acquisition of one-dimensional iPPG signal
is mainly obtained by averaging sensitive regions. However,
this method does not achieve efficient separation of the spec-
ular reflection component and the pulse component. In this
paper, the POS model is used to complete the extraction of
chrominance features for the iPPG signal [24].

The POS model uses CHROM’s information and knowl-
edge of BVP in defining a rough projection region on the
skin color direction plane and in accurately calculating the
projection direction on the plane by real-time adjustment to
achieve the extraction of chrominance features. This algo-
rithm fuses the data of the three channels, which improves the
robustness of the iPPG signal and effectively suppresses the
interference of noisy signals. Using the R, G, and B channels,
the formula for calculating the chrominance features is as
follows:

h(t) = S1(t)+ α · S2(t) (1)

where α = σ (S1)
σ (S2)

, σ (·) represents the standard deviation
operator. S1(t) and S2(t) represent a time-normalized RGB
signal combination, S1(t) = G(t)− B(t) and S2(t) = G(t)+
B(t)− 2R(t), respectively.

The POS method defines the linear combination of spec-
ular reflection and pulse components by using skin color
features. When the pulse component dominates h(t), S1(t)
and S2(t) appear in the same phase.The two in-phase sig-
nals can increase the resulting signal strength. When the
specular reflection dominates h(t), S1(t) and S2(t) appear as
anti-phases,and α can adjust the specular reflection inten-
sity of one signal to the same level as the other, that is,
σ (S1) = σ (α · S2). Then, the two anti-phase signals offset the
distortion of specular reflection. However, this method does
not enhance heart rate estimation when the interference is
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FIGURE 3. Extraction of blood volume pulse. (a) Spectrogram of BVP extracted from the entire region. (b) BVP signal
extracted from two sub-regions. (c,d) Spectrogram of independent component signals extracted by FastICA.
(e) Extracted time-domain pulse signal.

very severe. The spectrogram in Figure 3(a) shows that the
extracted blood volume signal is heavily disturbed by noise.
During the test, the subjects are severely disturbed by noise.

B. FASTICA
From the previous description, the POS method defines the
linear combination of specular reflection and pulse compo-
nents by using skin color features. However, if the specular
reflection component is highly dominant, obtaining a good
signal using the above method alone is difficult. In this paper,
the BSS method is used for denoising. ICA is a method
for BSS. Using the independence and non-Gaussian nature
of the source signal, the method gradually separates several
independent useful signals from the unknown mixed signal
through a demixing system [30]. FastICA, which is part of
ICA, is a fast-finding iteration algorithm that uses fixed-point
iterations with simple structure and rapid convergence.

Let the source signal be S(t) = [S1(t), S2(t), . . . . . . ,
Sn(t)]T, where Si(t)(i = 1, 2, . . . , n) are independent of each
other, and at most one obeys the Gaussian distribution. The
observed signal is X (t), where X (t) = B · S(t) and B are a
mixed matrix with a dimension of m× n. The essence of the
FastICA method is to use X (t) to find a demixing matrix W ,
which maximizes the independence between the components
of the output signal Y (t) = WTX (t).
Studies have shown that non-Gaussianity can be used to

characterize the mutual independence of the different com-
ponents. In components with the same variance, Gaussian
components have the greatest entropy. Thus, entropy can
be used to measure non-Gaussianity and characterize the
independence between components. The modified form of
entropy, that is, negative entropy, is generally used.

Ng(Y ) = H (YGauss)− H (Y ) (2)

In the formula, Y is a random component, YGauss is a
Gaussian random component and has the same variance as Y ,
and H (·) is the differential entropy of the component. The
expression of the differential entropy of the random variable
Y is

H (Y ) = −
∫
pY (ξ ) lgpY (ξ )dξ (3)

where pY is the probability density function of Y . Therefore,
the mutual independence of the separation results can be
expressed by the non-Gaussianity measurement in the sepa-
ration process.When the measure of non-Gaussianity reaches
the maximum, the separation of independent components is
completed. The key to the FastICA algorithm is to find a W
that maximizes Ng(Y ) = Ng(WTX ).
Given that the probability density distribution function

needs to be calculated when calculating the differential
entropy, which is difficult to achieve in practical applications,
we use Equation (4) to approximate the calculation:

Ng(Y ) = [E(g(Y ))− E(g(YGauss))]2 (4)

where E(·) is a mean function and g(·) is a non-linear func-
tion. In this paper, g(Y ) = tanh(Y ).
If the observation matrix is X, the FastICA algorithm is

used to find the demixing matrixW so that Ng(WTX ) has the
maximum non-Gaussian property. The approximate Newton
iterative formula for the demixing matrix W is{

W ∗ = E(Xg(WTX ))− E(Xg′(WTX ))W
W = W ∗

/∥∥W ∗∥∥ (5)

where g′(·) is the derivative of the non-linear function andW ∗

is the temporary matrix.
The specific contents of the FastICA algorithm are not

covered in detail in this paper. Interested readers can refer
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to the relevant literature. In this paper, the ROI is divided
into two parts to extract the BVP signal of the two regions,
as shown in Figure 3(b). The two BVP signals are sep-
arated by ICA to extract the two independent component
signals (Figures 3(c)and 3(d)). As shown in Figure 3(c), the
corresponding signal has a more obvious pulse signal than
the signal in Figure 3(a). Figure 3(e) shows the time-domain
diagram corresponding to Figures 3(a) and 3(c) and exhibits
that the pulse wave signal obtained by the method in this
paper is smoother than that of other methods.

C. KURTOSIS AND SNR OF PULSE WAVE
As a dimensionless parameter, the value of kurtosis can
describe the waveform sharpness of the signal and evaluate
how much the impact component is contained in the sig-
nal [31]. The calculation formulas are as follows:

K =
1
N

N∑
n=1

x(n)4
/

X4
rms (6)

Xrms =

√√√√ 1
N

N∑
n=1

x(n)2 (7)

where x(n) is the acquired signal, N is the number of sam-
pling points, and Xrms is the root mean square value of the
signal x(n).

Kurtosis, which is commonly used to measure the non-
Gaussian nature of random variables, is highly sensitive to
singular values in the data. When a random variable follows
the Gaussian distribution, the normalized kurtosis is zero, and
the absolute value of kurtosis increases as non-Gaussianity
increases. In the field of signal detection and processing,
the sample data in the signal time or frequency domain are
regarded as a set of random variables, and the pulse charac-
teristics of the signal in the time or frequency domain can
be described as kurtosis. Generally, the more pronounced
the peaks of a particular frequency, the larger the kurtosis
value of the power spectrum [32]. In the FastICA separation
results of pulse wave signals, the power spectrum of the
BVP component shows a very significant peak in the heart-
beat frequency range because of the BVP component’s evi-
dent quasi-periodicity. In addition, the corresponding kurtosis
value is usually large. The other signal component usually
does not have a significant spectral peak in the heartbeat
frequency range, and the kurtosis value of the corresponding
power spectrum is relatively low. According to the frequency-
domain pulse characteristics of the BVP signals, the BVP
component can be extracted accurately from the two output
signals of FastICA by using the kurtosis value. The kurtosis
values of the power spectrum in Figures 3(a), (c), and (d) are
10.23, 22.98, and 10.29, respectively.

When the signal has a single-cycle characteristic, the
kurtosis value can well distinguish the components of the
BSS. However, signals often have multi-cycle characteristics.
At this time, the kurtosis value is relatively difficult to distin-
guish the pulse characteristics of the signal.When the kurtosis

FIGURE 4. Diagrammatic sketch of the experiment for pulse wave
extraction.

FIGURE 5. (a) Distribution of the BVP amplitude. (b) Spectrum
distribution of ROIs.

values of the power spectrum of the signal is close, using
the kurtosis value alone is not a good choice for the signal.
In this situation, this paper takes the SNR as another indicator
to complete the signal selection. The formula for the SNR is
defined as follows:

SNR = 10 lg

4∑
f=0.5

(Ut (f ) · S(f ))2

4∑
f=0.5

(1− Ut (f )) · S(f )2
(8)

In the formula, S(f ) represents the spectrum of the
extracted pulse signal and Ut (f ) is a rectangular win-
dow representing the passband of peak in the spectrum
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FIGURE 6. Time-frequency analysis of BVP signal of some subjects.

(considered as the true heart rate). The bandwidth used in this
paper is 0.4 Hz.

D. FEATURE EXTRACTION METHOD
Although the FastICA method has many advantages in signal
extraction, the problem of fuzzy output sorting makes it dif-
ficult to automatically acquire BVP. A considerable number
of experiments show that the position of the BVP signal
is not consistent in the FastICA separation results obtained
using different video signals, which makes the BVP auto-
matic acquisition method not easy to implement in practical
application. The automatic extraction of BVP signal is neces-
sary to conduct dynamic heart rate estimation. The automatic
selection method of BVP based on the kurtosis value of the
spectrum is proposed in this paper to solve this problem. The
specific implementation steps are as follows:

Step 1. The ROI is divided into two sub-regions, and
the pulse signal h(t) of the original region and the pulse
signals(h1(t) and h2(t)) of the two sub-regions are extracted,
respectively.

Step 2. The FastICA separation is conducted after the
preprocessing of h1(t) and h2(t) components to obtain signals
Y1(t) and Y2(t).

Step 3. The kurtosis values and SNRs of the spectrum of
h(t), Y1(t) and Y2(t) are calculated.

Step 4. If the kurtosis value and SNR of a component’s
spectrum are both maximum, the component is the BVP
signal. Otherwise, h(t) is still used as the BVP signal.

IV. RESULTS AND DISCUSSION
A. EXPERIMENT SCHEME DESIGN
The palm contains several blood vessels, and the blood flow
of microvasculature affects the change of the skin’s optical
characteristics. Based on the PPG principle, the collection of
RGB images to obtain this change can acquire signals to cal-
culate physiological parameters such as heart rate, respiratory
rate, blood pressure, and heart rate variability. The extraction
of heart rate information is only considered in this paper.
At the beginning of the experiment, the experimental process
is introduced to the volunteers in detail, and a pulse oximeter
is clamped on the index finger to measure the heart rate
value of the subjects as comparative data. The experimental
scenario is shown in Figure 4. The system uses the color
CCD as a video acquisition unit, and the collected video
data are stored to a computer via the USB interface of the
video acquisition card. The video signal is processed by the
computer. A total of 60 volunteers are invited to participate in
this experiment. During the experiment, the tested persons are
divided into two groups, and palm video images are collected
under two states (hand shaking and stationary hand), and the
acquisition time is approximately 30 s.
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B. DISTRIBUTION OF BVP SIGNALS OF THE PALM
The distribution of the intensity of color change caused by
the pulse is uneven. In other words, some regions have a large
change in color, and some have a small change. Two reasons
can explain this uneven distribution: (1) uneven lighting from
the light source and (2) the differences in blood volume
in different regions caused by the different distribution of
blood vessels on the surface of the skin. Under the premise
of uniform lighting, the distribution of blood vessels is the
main reason for the uneven distribution of color change in
the image sequence. By analyzing the distribution of color
changes caused by the pulse, the distribution of blood vessels
can be roughly analyzed.

This paper uses the distribution of BVP signals to indi-
cate the approximate distribution of microarteries in the
palm. Essentially, the distribution of BVP signals reflects
the distribution of the intensity of color change in different
regions, and these color changes must be caused by the pulse.
Figure 5(a) shows the distribution of the BVP amplitude.
ROIs 1 and 2 are divided in Figure 5(a), and pulse wave
extraction and spectral transformation are performed on these
two regions. The result is shown in Figure 5(b). As shown
in the figure, the main peak in ROI 2 is more obvious, and
the energy is more concentrated. The energy in ROI 1 is
relatively dispersed. These results show that when the arterial
blood vessels in the local region are relatively small, light
changes and respiration are superimposed on each other to
form the main signal, forming a strong random and complex
interference component.

C. COMPARISON OF DIFFERENT METHODS
The samples collected are used as input samples of algo-
rithms, such as SSR [23], POS [24], SPH [33], and
Green [34], to verify the performance of themethod described
in this paper. In this experiment, the iPPG acquisition system
is compared with the finger-clamped pulse oximeter. The
following methods are used to complete the BVP signal
extraction and time-frequency analysis. Some of the subjects’
time-frequency images are shown in Figure 6. In the figure,
the horizontal axis is time, the vertical axis is frequency,
and the amplitude is represented by the color. During long
video-based dynamic heart rate monitoring, the subjects’
hand shake may produce unexpected interference compo-
nents. As shown in Figure 6, the proposed method can take
advantage of its interference elimination to obtain a cleaner
time-frequency spectrum. Samples 1 and 2 are measured with
slight hand shake, and samples 3 and 4 are measured with still
hands.

D. OBJECTIVE EVALUATION INDEX
To make the data more intuitive and visual and to show the
differences and overall situation of the variables, this paper
uses the box diagram for data overview, as shown in Figure
7. In the figure, the middle red line represents the median, and
the upper and lower thin lines represent the upper and lower
quartiles, respectively. Figure 7(a) shows the measurement

FIGURE 7. Box diagram of heart rate measurement.

FIGURE 8. Consistency analysis on the proposed method based on
Bland–Altman.

results when the hand is stationary, and Figure 7(b) shows the
measurement results when the hand is slightly shaken. When
the hand remains stationary, the proposed method, SSR, and
POS achieved good results; however, the data concentration
obtained by the proposed method was higher. In the case
where the subject’s hand is slightly shaken, the proposed
method in this article does not show outliers. The data con-
centration obtained by the POS method is higher, but outliers
appear.
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E. EXPERIMENTAL VALIDITY ANALYSIS
As this paper explores a new method of noncontact heart
rate measurement, the effectiveness of this method is ana-
lyzed. The results of video-based heart rate measurements
and pulse oximeter measurements are evaluated using the
Bland–Altman method. According to statistical analysis, the
consistency of the two methods is determined by analyzing
themean and standard deviation of their measurement results.
The specific results are shown in Figure 8. The mean, stan-
dard deviation, and 95% confidence interval are−0.68, 3.24,
and [−7.04 5.68], respectively. The heart rate value obtained
by the proposed method shows good consistency with the
reference heart rate value, indicating the effectiveness of the
video-based heart rate measurement method.

V. CONCLUSION
PPG signal estimation is a crucial step in the extraction of
heart rate values from video signals in the common visible
spectrum obtained by CCD photoelectric sensor imaging.
In our present work, the estimation accuracy is improved by
means of data fusion and analysis. Specifically, this paper
combined POS and FastICA to extract and denoise pulse sig-
nals, realize noncontact heart rate detection in actual indoor
conditions, and improve the estimation accuracy. The conclu-
sions drawn in this work are as follows:

1) Combining the kurtosis value with the SNR can bet-
ter complete the signal selection and heart rate calculation.
The BVP component has evident quasi-periodicity, and the
corresponding kurtosis value is usually large. The kurtosis
index can be used to quantitatively evaluate the random noise
contained in the signal, thereby completing the selection of
the output signal.

2) The combination of POS and FastICA algorithm can
improve the accuracy of heart rate estimation. The linear com-
bination of specular reflection component and pulse compo-
nent is completed through the POS algorithm, and the initial
BVP signal extraction is completed. Then, the blind signal
separation technology can be used to effectively filter out the
interference signals.

Given that pixel changes in skin images directly reflect
changes in iPPG signals, the SNR of the iPPG signals should
be improved, which is beneficial for clinical noncontact
physiological signal measurement. Notably, the heart rate
estimation method cannot accurately estimate the heart rate
when the captured video is disturbed by regular interference.
Hence, future studies should focus on developing new meth-
ods to eliminate any regular interference and further improve
the robustness and accuracy of heart rate estimation.
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