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ABSTRACT Medical images are playing an important role in the medical domain. A mature medical visual
question answering system can aid diagnosis, but there is no satisfactory method to solve this comprehensive
problem so far. Considering that there are many different types of questions, we propose a model called
CGMVQA, including classification and answer generation capabilities to turn this complex problem into
multiple simple problems in this paper. We adopt data augmentation on images and tokenization on texts.
We use pre-trained ResNet152 to extract image features and add three kinds of embeddings together to deal
with texts. We reduce the parameters of the multi-head self-attention transformer to cut the computational
cost down. We adjust the masking and output layers to change the functions of the model. This model
establishes new state-of-the-art results: 0.640 of classification accuracy, 0.659 of wordmatching and 0.678 of
semantic similarity in ImageCLEF 2019 VQA-Med data set. It suggests that the CGMVQA is effective in
medical visual question answering and can better assist doctors in clinical analysis and diagnosis.

INDEX TERMS Classification model, generative model, medical image, transformer, visual question
answering.

I. INTRODUCTION
Health has consistently been one of our most concerned
issues. So far, there are still few ways to easily learn about our
physical conditions without professional guidance. Medical
imaging, as a non-invasive technique for producing images of
the internal aspects of the body, is an extremely important tool
for doctors to understand our physical conditions in clinical
analysis and diagnosis. However, the information obtained
from medical images by different doctors can differ. Deep
learning, as a powerful information processing tool, plays an
increasingly significant role in health informatics [1]. Some
deep learning methods can be used to extract information
from images or texts. Specific to the medical field, a good
medical visual question answering (VQA) model based on
deep learning can automatically extract the information con-
tained in the medical images and assist in medical diagnosis.
Meanwhile, it can help patients to get a preliminary under-
standing of their physical condition through themedical VQA
model, which can devote in choosing a more targeted medical
treatment plan. In general, using the medical VQAmodel can
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alleviate the problems caused by the imbalanced distribution
of medical resources.

In recent years, the application of computer-aided diag-
nosis (CAD) methods for processing medical information
are becoming widespread [2]. However, lots of the CADs
concentrate on lesion diagnosis or segmentation of a sin-
gle type of medical images, such as tumor tracking [3].
Some of the CADs focus on medical records to predict
risks [4]. Most CAD methods are aimed at the diagnosis
of a single disease, including lung disease [5], breast can-
cer [6], etc.. However, there is less work to combine nat-
ural language processing with medical image processing,
such as medical image caption [7] and medical VQA [8].
There are few public medical VQA data sets. A typical
one is VQA-RAD [9], including 315 medical images from
MedPixr, https://medpix.nlm.nih.gov/. We have applied
for permission to use another data set called ImageCLEF
2019 VQA-Med [10]. The data from this set contain a series
of questions from the elementary to the profound. Elementary
questions refer to the ones that patients or medical students
may ask, such as the type of the scan. Profound questions
involve the severity of illness or diagnosis. This data set
involves a wide range of medical images and question-answer
pairs, close to the real medical environment. The ImageCLEF
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FIGURE 1. An example in the ImageCLEF 2019 VQA-Med (a medical image
with several questions and answers).

2019 VQA-Med has 10 times more images than the VQA-
RAD. As the example shown in FIGURE 1, there are a variety
of questions that can be considered in a medical image. There
are various types of medical images, like magnetic resonance
imaging, computerized tomography, etc., and each image can
be taken from a different angle. The accuracy of medical
VQA so far is lower than the level of human doctors, owing to
the variety of answer expression and the difficulty of answer
evaluation. There is still no existing method that can solve
this comprehensive problem well.

VQA is the task of answering relevant questions based
on the contents of images, involving image processing and
natural language processing techniques. The process of the
VQA task can be divided into three parts: extracting image
features, extracting question features, and integrating fea-
tures. Generally, the method of extracting image features is
to use transfer learning [11] as a feature extractor to deal
with images such as deep residual network [12] (ResNet).
Extracting question features mainly uses the recurrent neural
networks [13] like long short-term memory [14] to turn texts
into vectors. Features integration can be used in two kinds of
approaches: classification and generation. Integration meth-
ods for classification can be based on concatenation [15],
bilinear pooling [16] or some other mechanisms. Integration
methods for generation are commonly based on encoder-
decoder [17] framework.

Answering the questions in VQA requires an understand-
ing of vision, language and common sense knowledge. Back-
ground knowledge can supplement relevant information in a
certain field [18]. To promote understanding, some models
employ knowledge-based reasoning for VQA [19]. Existing
VQA models perform well when there is no need for them to
fully understand the image information, such as object detec-
tion. However, they cannot solve different kinds of complex
questions at the same time. Existing CAD methods cannot
achieve satisfactory results when dealing with different types
of images like magnetic resonance and computerized tomog-
raphy, as well as different organs like brain, lung, and so on
at the same time. This is similar to the challenge in the VQA
task we described.

In order to meet this challenge, we divide the complex
medical VQA task into multiple simple tasks, and introduce a

model that can do both classification and answer generation.
The core of our model is the multi-head self-attention mech-
anism [20], which can learn the internal representations from
the training data. This mechanism uses the multi-channel
parallel computation and carries out the linear transforma-
tion and the weight calculation on each term of the input
itself. We reduce the parameters based on the transformer and
introduce the weight sharing between embedding and output
layers to do lower memory consumption training.

Bidirectional Encoder Representation from Transform-
ers [21] (BERT) is a pre-trained language representation
model, coping with mask language model tasks and next
sentence prediction tasks at the same time. Inspired by that,
we adjust the masking and output layer to unify classi-
fication and answer generation into one model, as shown
in FIGURE 2. Our proposed model can do classification
by using only images and questions, and do generation by
using images, questions and unidirectional masked answers.
We adopt the convolution outputs of different layers from
ResNet152 as the image input features. Text input features
we used is the word piece [22] features after three kinds of
embeddings.

CGMVQA is used to answer questions containing various
medical images by transforming the strong artificial intelli-
gence problem into multiple weak artificial intelligence prob-
lems. The data set is ImageCLEF 2019 VQA-Med. We use
accuracy to evaluate the predicted answers and get a score
of 0.640, which is better than that of the task challenge winner
(0.624 in TABLE 2). We also employ Bilingual Evaluation
Understudy [23] (BLEU) and Word-Based Semantic Simi-
larity [24] (WBSS) to evaluate the predicted answers and get
results of 0.659 and 0.678 respectively. These results indicate
the effectiveness of our model.

Our contributions can be summarized as follows:
• We propose a model for medical VQA. This model can
switch between the classification model and the genera-
tive model by modifying the output layer and the loss
function without modifying the core part. Our model
establishes new state-of-the-art results on ImageCLEF
2019 VQA-Med data set.

• We adopt the pre-trained ResNet152 to extract image
features. Because the structure of the medical image
is relatively fixed, we extract features from different
convolutional layers so as to retain the image semantic
information from different dimensions, which is differ-
ent from other models.

• Unlike other models, we abandon the traditional
encoder-decoder framework, and build the generative
model through the method of masking position by posi-
tion.

• Compared to BERT-like models, we reduce the param-
eters of our model by weight sharing and embedding
factorization. Our model can be implemented on a single
GPU.

The rest of this paper is structured in the
following part. Section II briefly reviews the related work.
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FIGURE 2. Overview of CGMVQA architecture, including image embedding (red), text embedding (blue), model core (yellow) and output (green).

Section III provides the details of CGMVQA. Section IV
analyzes the experiments and the results of our model.
Section V presents the discussion, followed by the conclusion
in section VI.

II. RELATED WORK
Initialization is important for model training. In computer
vision, transfer learning based on ImageNet [25] is often
used as a feature extractor in other computer vision tasks.
The pre-trained model without the classification layer has a
powerful representation ability. ResNet152 is one of the best
performing neural networks in ImageNet classification tasks.
Considering that the distribution gap between ImageNet and
medical images is too large, we do not directly use the transfer
learning model as a feature extractor. Besides, U-Net [26]
with few parameters and skip connection, is appropriate for
medical image semantic segmentation. In U-Net, the out-
put of each convolutional layer is the feature of different
dimensions of the image. We learn the idea from U-Net and
extract different convolutional layer outputs from the pre-
trained model Resnet152. Then we use these features as the
input of the image part, as shown in FIGURE 2.

Word embedding can represent words as vectors for a bet-
ter training. Global vectors [27] is an unsupervised learning
algorithm, which maps words into meaningful space based
on semantic similarities and uses vector representation. Since
the vector of each word is fixed, this method cannot disam-
biguate according to the context. Embedding from language
models [28] is a way to learn the context of words by deep
networks. Compared with global vectors, this method adjusts
the word vector according to the context, but it requires a
high computational cost. ALBERT [29] proposed factorized
embedding parameterization, which can greatly reduce the
number of embedded parameters. We adopt this technique
and share the weight of output embeddings with the input
embeddings when generating the answers.

In natural language processing, pre-trained models like
GPT [30] and BERT have achieved lots of breakthrough
results. These models all use the multi-head self-attention
mechanism in transformer, which is good at learning con-
textualized text representations. Existing research [31] shows
that placing the layer normalization of the transformer into

the residual part can avoid adjusting the learning rate through
the warm-up optimizer. We try to combine the features of
images and texts through this mechanism.

Recently, multi-modal pre-trained models like
ViLBERT [32] and LXMERT [33] have adopted two trans-
formers to deal with images and texts independently. Others
like VL-BERT [34] and VisualBERT [35] have used one
transformer to model visual-language representation. The
key difference between CGMVQA and the other models
is that the other models can only do classification, while
our model can do both classification and answer generation
by modifying the output layer. In addition, considering the
closed-domain data set and training cost, we do not use the
large-scale pre-training process, but directly used the model
for training. And our parameters are much less than those of
the above models.

Most existing VQA data sets are open-domain, such as
VQA challenge data set [36]. Some answers in this data set
only require common sense knowledge, instead of the image
itself. For instance, the question ‘‘What color is the tree?’’
appears 73 times in the data set, and 95.9% of the answers are
‘‘green’’. Unlike the open-domain sets, the medical data sets
are closed-domain, and have a smaller amount of data. Most
of the public medical data sets only contain a single disease,
with labels like ‘‘sick or not’’ or ‘‘severity of illness’’ [37].
ImageCLEF 2019 VQA-Med data set involves various image
types and organs, which is more complicated.

Different VQA data sets have their own evaluation metrics,
but these metrics are mainly variants of accuracy [38] [39].
Both accuracy and BLEU are used in ImageCLEF 2019
VQA-Med tasks. We also adopt WBSS [24] to compare
the degree of semantic similarity. In addition, we use the
metrics such as precision and recall for the classification
part.

III. CGMVQA
The problem can be formulated as follows:

Given an image Vi, and a questionQi = (qi0, qi1, · · · , qik ),
the goal is to get an answer Ai. For the classification problem,
the answer Ai has candidate items, which are denoted as
Ai ∈ {A0,A1, · · · ,Am}; for the generative problem, there
is no candidate items but a word pieces vocabulary W for
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Algorithm 1: CGMVQA Pseudo Algorithm

Input: image Vi, question Qi, max length L, learning rate η;
Output: classification answer Ai or generative answer a0, · · · , aL−1;

1 Initialize the parameters θ of the model f randomly;
2 v0, · · · , v4← Vi features from pre-trained ResNet152;
3 q0, · · · , qL−1← Qi features from Embeddings;
4 if Classification mode then
5 Cross-entropy loss function Lossθ ← `(θ ) = −

∑m
j=0 Aj log f (v0, · · · , v4, q0, · · · , qL−1; θ );

6 (Train θ until it converges.) Backpropagation θ ← θ − η ∂Lossθ
∂θ

;
7 Ai← Class label hc(θ );
8 Inference: return Ai;

9 else if Generative mode then
10 a0, · · · , aL−1← [MASK] features from Embeddings;
11 for j = 0; j < L; j++ do
12 Lossθ ← `(θ ) = −

∑
aj∈W aj log f (v0, · · · , v4, q0, · · · , qL−1a0, · · · , aL−1; θ );

13 (Train θ until it converges.) θ ← θ − η ∂Lossθ
∂θ

;
14 aj← Token label haj(θ );

15 Inference: return a0, · · · , aL−1;

answer Ai, and we denote the answer Ai = (ai0, ai1, · · · , ain),
ai0, ai1, · · · , ain ∈ W .
We propose a model called CGMVQA for medical VQA.

As is illustrated in FIGURE 2, we use this model to combine
images and texts. Depending on the different output layers,
the model can be constructed as a classifier or generator for
downstream tasks. The classification mode uses images and
questions (the model only contains the left part of the dotted
line). The class is predicted by the first item of output hc.
The generative mode includes images, questions, and masked
answers. The next word piece is predicted by the output of
the first mask label haj. On the ImageCLEF 2019 VQA-Med
data set, this mode is used to answer the questions of yes-no,
modality, plane and organ system. And the generative mode
is used to give the answers of abnormality questions, since
there is no candidate answer in this category.

A. BASELINE
We had a submission in the ImageCLEF 2019 VQA-Med
task, and got ranking fourth [40]. We choose that model as
one of the baseline. In the experimental part, the CGMVQA
not only exceeds our previous work, but also achieves new
state-of-the-art results. We use a simple classifier to divide
all the questions into four different categories in the baseline.
InceptionResNetV2 [41] uses the technology of inception
and residual connection to expand the width and depth of
the convolutional neural network. We adopt the pre-trained
InceptionResNetV2 as the image feature extractor, and the
pre-trained BERT as the text feature extractor in this baseline.
We concatenate these features and train them by a multi-layer
perceptron for classification. As for generative part, we con-
catenate these features as the initial state of the decoder, and
train them by a long short-term memory.

The other baseline is the Bottom-Up and Top-Down Atten-
tion model [42]. This model has obtained state-of-the-art
results in some open-domain tasks such as the VQA Chal-
lenge [36]. According to the paper, this model concatenates
the image features and the embedding of the question and
uses them to generate the top-down attention weight. In order
to use this model for the ImageCLEF 2019 VQA-Med data
set, we do not use the pre-trained image features provided
by the author, but keep the same with our proposed model
(using the image features that we extract by ResNet152).
In order to make the comparison experiments with similar
numbers of parameters, we reduce the hidden size of this
model proportionally. The output is generated by a multi-
label classifier, which means that the model can only be used
for classification.

B. PRE-PROCESSING
Considering the wide distribution of training data and training
difficulties caused by plenty of categories, we try to simplify
this complex problem. Since the category is not given in the
test set, we use a simple classifier to divide the questions
into five different categories: yes-no, modality, plane, organ
system and abnormality, similar to what we used before [40].
Unlike baseline, yes-no questions are trained separately. The
simple classifier is sufficient to correctly classify the data
only through features of the questions. Different categories
of questions have their own characteristics, for example, yes-
no questions begin with words including ‘‘does’’, ‘‘is’’, etc..

Modality can be regarded as a fine-grained classification
task. Its candidate answers include more than mri and ct,
as shown in FIGURE5. Plane and organ system categories are
simple to do classification due to their few kinds of candidate
answers and the similar composition of images with the same
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candidate answer. Abnormality involves more complicated
issues such as the location of the lesion. Most questions have
their own answers, so this category is hard to do classification.
We try to deal with this category in answer generation.

We adjust the image to the same size: 224 × 224×3. For
classifications, data imbalance canmakemodel training more
difficult. We extend the images of the candidate answers
in each category to the same number by data augmenta-
tion [43]. Data augmentation can also increase the general-
ization ability of the model. Specifically, data augmentation
includes random rotations within±10◦, small amplitude ran-
dom shearing, scaling, and horizontal, vertical shifting.We do
not use flipping because there are lesion location questions in
the data set.

As for the texts, we convert all the questions and answers
into lower case letters and remove the punctuation. Since
word-based token will cause a large dictionary, we use the
word piece tokenization method, like BERT model.

C. EMBEDDINGS
Different convolutional layers have different feature extrac-
tion capabilities. ResNet152 has five blocks that resize the
image through convolution kernels. We attempt to extract
the features of the images from the five convolutional layers
in ResNet152. The feature sizes after extraction are shown
in FIGURE 2. We adopt untrained Full Convolutional Net-
works [44] to unify the number of feature maps and use the
Global Average Pooling [45] strategy to unify the dimensions.

We add three kinds of embeddings to express different
word pieces.We employ a decompositionmethod in the token
embeddings part. Specifically, we project theword pieces into
a lower dimensional space (here we use size 128), then project
them to the hidden space. In the CGMVQA, this method
reduces the embeddings parameters by 60% compared to
direct projection to the hidden space, while the accuracy only
decreased by 0.008. Segment embeddings are used to dis-
tinguish between the questions and masked answers. When
models are employed to classify, only questions are involved
in training. Position embeddings are used to represent the
order of each word piece in the sequence.

We separate the embedding images, questions and
answers with ‘‘[SEP]’’ token and add a ‘‘[CLS]’’ token for
classification at the beginning.

D. TRANSFORMER
The transformer has the advantage of parallel computing and
is gradually replacing LSTM to deal with sequence prob-
lems. As shown in FIGURE 3, we make some improve-
ments based on the original transformer. Similar to BERT,
we use the Gaussian Error Linear Unit [46] activation func-
tion in the fully-connected feed-forward network. To avoid
using the warm-up optimizer, we put layer normalization
before the multi-head attention layer and the fully-connected
feed-forward network. We adopt a residual connection here
to avoid the vanishing gradient problem. Inside the dotted
box is a transformer block. To further decrease the number

FIGURE 3. Architecture of pre-layer-normalization multi-head
self-attention and feed-forward network transformer.

FIGURE 4. The prediction process of generative model. Each line is the
output of the previous time and the masked input of the current time,
and the green box is the position of the predicted word piece.

of parameters, we try to share the weight among the blocks,
but the accuracy drops significantly.

E. CLASSIFICATION MODE
According to the process we described above, we train the
images and corresponding questions, and use the special
token ‘‘[CLS]’’ to do classification. We add fully-connected
layers with the tanh activation function on the top of our
model to calculate the possibility that the ‘‘[CLS]’’ belongs
to a candidate answer. The estimated probability of the model
is:

P(A=Ai|ViQi;θ ) =
eθ

T
i ViQi∑m

j=1 e
θTj ViQi

(1)

where ViQi is the ith of image and question features, Ai is the
corresponding answer, and θj is the weight vector of the jth
class. We use the classifiers to target different categories.

F. GENERATIVE MODE
There is no candidate answer to the abnormality question,
which is different from that of other categories. We employ
the generative mode to obtain the answer. Unlike the classifi-
cation mode, we add the masked answer in generative mode
training. When predicting a word piece, the current word
piece and the following pieces are masked to avoid informa-
tion leak. For example (FIGURE 4), besides the features of
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the image and the question, we use the features of all masked
tokens to predict the first word piece ha0 (‘‘hydro’’), then
use ‘‘hydro’’ and other following masked tokens to predict
ha1. Loop this process until the special token ‘‘[SEP]’’ is
obtained.

We use fully-connected layers with the Gaussian Error
Linear Unit activation function on the top of our model to
predict the word piece at the current position. Besides, we use
beam search [47] to generate the answer when predicting,
with beam width in 5. Beam search is a greedy algorithm that
explores the best combination by extending the most promis-
ing nodes in a limited set [48]. In the prediction process,
we add a penalty factor in the prediction process, to make
the generated results look more readable:

- When the result continuously generates the same word,
such as ‘‘· · · of of the knee’’, we reduce the probability
of the extra duplicate words (‘‘of’’).

- Because of using word piece tokens, we reduce the
probability of the suffix with ## from the beginning of
the generated results, like ‘‘##ce’’.

G. MODEL SETUP
In order to run the CGMVQA on a single GPU, we try to
reduce the number of parameters in our model. To balance
efficiency and information loss, we set the maximum input
length of the questions and answers to 12. We set the hidden
size to 312 and embedding size to 128. We share the weight
between the token embeddings and the output layer in gen-
erative mode. For the transformer part, we set 12 heads in
the multi-head self-attention mechanism. We put the layer
normalization before the self-attention layer and the feed-
forward layer, with L2 = 1×10−12. Andwe set 4 transformer
blocks. TABLE 1 shows the process of setting the hyper-
parameters.

As for training, we set the learning rate to 0.0001 in
ADAM [49] optimizer, with no dropout and batchsize = 64.
To avoid gradient exploding problem, we use gradient clip-
ping in training. The total parameters of our model are 6.4M,
which is greatly reduced compared to 108M of the original
BERT, which can be easily implemented on a GPU.

IV. EXPERIMENT AND EVALUATION
A. DATA ANALYSIS
Compared with open-domain images, medical images are not
only more fixed in structure, but also have a smaller amount
of data. There are few data sets of VQA in the medicine
domain. We use the ImageCLEF 2019 VQA-Med data set
here. This data set has 12792 pairs of question-answer and
3200 medical images for training; 2000 pairs of question-
answer and 500 images for validation; 500 questions and
500 images for testing. In the training set and validation set,
each image may correspond to 4 different categories of ques-
tions: modality, plane, organ system and abnormality. Each
image in the test set corresponds to only 1 question, with no
category marked. Candidate answers are provided in the first
three categories of questions: 43 kinds of answers in modality

TABLE 1. Hyper-parameters setting experiment.

category, 16 kinds of answers in plane category and 10 kinds
of answers in organ category. Owing to the various types
of diseases, abnormality questions do not have candidate
answers.

During the analysis of the data, we find that there are a
few yes-no questions in modality and abnormality categories.
We take them out and put them into a new category. We also
note that there are some wrong labels in the data set, and
we do not make any change, just regard them as noise. The
candidate answers cannot be in one-to-one correspondence
with every ground truth in the data set. Some candidate
answers even have a similar meaning, like ‘‘ct with iv con-
trast’’, ‘‘ct w/contrast (iv)’’ and ‘‘iv’’. During training, we do
not deal with them specifically. In the result visualization
part, we merge them into one item. Furthermore, the class
imbalance problem can be seen from the data set. Especially
in the modality category (FIGURE 5 on the next page), about
half of the classes are not included in the test set.

B. EVALUATION METRICS
Accuracy is a commonly used evaluation metric in VQA.
We adopt a strict accuracy to compare the difference between
the output results and the ground truths. For the classification
method, we use the precision, recall, F1 score from scikit-
learn [50] and confusion matrix to help analyzing the results.
Since we employ the generative method in the abnormality
category, the accuracy cannot reflect the effect of the model
well, so we introduce other metrics as follows.
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FIGURE 5. The pie of modality category data distribution.

FIGURE 6. The concept similarity measure from references [51].

WBSS is an algorithm for calculating semantic similarity
in the biomedical field based on Wu-Palmer similarity [51].

SimWP(C1,C2) =
2 ∗ N3

N1+ N2+ 2 ∗ N3
(2)

According to the paper [51] and FIGURE 6, C3 is the least
common super concept of C1 and C2. N1 is the number of
nodes on the path from C1 to C3. N2 is the number of nodes
on the path from C2 to C3. N3 is the number of nodes on the
path fromC3 to root. For the abnormality category, the higher
the WBSS score is, the higher the similarity between the
semantics of the generated answer and the ground truth
would be.

Bleu is another automatic evaluation metric to compare the
frequency of co-occurrence words, often used for machine
translation. Unlike WBSS, BLEU does not concern similar
expressions, only concerns word matching.

BLEU = BP · exp(
N∑
n=1

wn log pn) (3)

According to the paper [23], BP is the brevity penalty, pn
is the geometric average of the modified n-gram precision.
N-grams here is up to length N = 4 and positive weight
wn = 1/N . We use the natural language toolkit [53] to cal-
culate the BLEU score. However, the score may be unstable
once there’s no 4-gram match between the reference and the
hypothesis.

C. RESULTS
We compare the CGMVQAwith other methods in TABLE 2.
We report averages by training each method with 3 different
random seeds. In 500 outputs of the test set, there are no

more than 10 different predicted answers each time (±0.01
in strict accuracy). Our model achieves 0.640 accuracy score,
0.659 BLEU score and 0.678 WBSS score. Good option
refers to the option that appears most frequently in each cate-
gory of the training set as the answer of the test set (all ‘‘no’’
in yes-no category; all ‘‘xr - plain film’’ in modality category;
all ‘‘axial’’ in plane category; all ‘‘skull and contents’’ in
organ system category; all ‘‘meningioma’’ in abnormality
category). As can be seen from the good option, there is a
severe data imbalance in the test set, especially in the plane
category. Our model has a huge improvement than the good
option.

Since there are few models that can do both classification
and answer generation, we use the previous model that we
proposed in the ImageCLEF 2019 VQA-Med task as the
baseline [40]. Compared to this baseline, our model increase
accuracy by 3.4%, BLEU by 2.5%, and WBSS by 3.1%.
Because the Bottom-Up and Top-Down Attention model can
only be used for classification, we use this baseline to answer
the questions of yes-no, modality, plane and organ system.
The results of this model in both modality and plane cate-
gories exceed those of our previous model, but do not exceed
those of the CGMVQA. In the ImageCLEF 2019 VQA-Med
task, the best method [52] achieved 0.624 accuracy score and
0.644 BLEU score (no WBSS score). The CGMVQA also
gets better results than that method.

In the ablation experiments, we add the model without pre-
classification (no pre-class) and the model without data aug-
mentation (no data-balance) to the comparison. No pre-class
means that the model does classification directly from all the
candidate answers when being trained (including abnormality
category). The results of models without pre-classification
have a certain degree of decline in every category. Com-
pared with the no data-balance model, our proposed model
improves the result of the data imbalanced categories. How-
ever, there is no significant improvement in other categories
(yes-no and abnormality).

We use additional evaluation metrics to evaluate the
effect of the classifiers. The yes-no classifier achieves
0.781 in precision, recall and f1 score. The modality classifier
with 44 candidate answers achieves 0.735 precision score,
0.679 recall score and 0.683 f1 score. We merge similar can-
didate answers (like ‘‘mr - flair’’ and ‘‘flair’’) in modality cat-
egory and draw the confusion matrix, as shown in FIGURE 7.
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TABLE 2. The performances in the comparative and ablation experiments.

FIGURE 7. The confusion matrix of the modality category.

Most of the candidate answers can be successfully classified
in this category. The model tends to predict noncontrast(mri)
as noncontrast. These two concepts are overlapped. ‘‘ugi-
upper gi’’ in the training set accounts for only 0.4%, which
is quite different from the feature distribution in the test set.
The classification accuracy of this class is only 30%. There is
also a ‘‘be-barium enema’’ that is not successfully predicted.

The plane classifier with 16 candidate answers achieves
0.643 precision score, 0.651 recall score and 0.636 f1 score.
We draw the confusion matrix, as shown in FIGURE 8. Some
candidate answers are not included in the test set. In this
category, both ‘‘axial’’ and ‘‘mammo’’ type can be accurately
predicted. However, none of ‘‘longitudinal’’, ‘‘oblique’’ and
‘‘frontal’’ are accurately predicted. In contrast, the model is
too confident to predict ‘‘sagittal’’ or ‘‘ap’’.

The organ system classifier with 10 candidate answers
achieves 0.618 precision score, 0.647 recall score and
0.622 f1 score. We draw the confusion matrix, as shown in
FIGURE 9. This classifier has the fewest candidate answers,
but it does not perform better than other classifiers. The
‘‘vascular and lymphatic’’ with the least proportion in the
training set, performs the worst in the test. The ‘‘skull and

FIGURE 8. The confusion matrix of the plane category.

contents’’ with the most proportion in the training set, are too
confident to be predicted.

In the training set, there are more than 1600 different
answers to the 3000 questions in the abnormality category.
We attempt to employ the classification mode training and
get the same answer to all the questions on the test set.
It means that the result will not be better than the good option.
However, the amount of data (4k in total) is too small for
a generative model (100k is reasonable in natural language
processing). The generator we used achieves better accuracy
than others, but 0.044 is not a high score. Additionally, due to
the existence of synonym, strict accuracy cannot fully reflect
the effect of the model. The ground truths of abnormality
category are mostly composed of the words less than 4, so
4-gram match BLEU also cannot fully reflect the effect of
the model.

V. DISCUSSION
The CGMVQA is efficient on the ImageCLEF 2019
VQA-Med data set. The images of this data set cover almost
all human organ systems, as well as all categories of medical
imaging. The questions of this data set cover the general
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FIGURE 9. The confusion matrix of the organ system category.

FIGURE 10. The loss curves of yes-no and modality categories.

questions that doctors need to know when reading medical
images. Due to the lack of public VQA data in the medical
domain, we do not experiment on other data sets.

Most of the deep learningmodels can only do classification
or answer generation. We propose the method to divide the
complex problem into multiple simple ones. The CGMVQA
only needs to modify the input masking and output layer to
do both classification and generation. Our model can achieve
better results compared to the existing technology.

In the categories with a small number of classes (yes-no
and organ system), our model is not significantly improved
compared to the baseline. As can be seen from FIGURE 10,
the loss value of the yes-no on the validation set is low, but
the performance on the test set is not ideal. Because there is
a problem that the data distributions in the test set and the
training set are inconsistent, which often exists in data sets
with a small amount of data. This problem leads to a bad

FIGURE 11. The examples of predicted answers in the abnormality
category.

performance when testing in spite of a well-trained model.
Considering the wide variety of medical records, a larger data
can improve this problem.

In themodality category with the largest number of classes,
our model has an improvement rate of 15.2% in accuracy
compared to the baseline. The starting value of the loss
function of the modality in FIGURE 10 is higher than that of
yes-no, indicating that the fitting of the modality data is more
difficult. The loss value of the modality on the validation set
is around 0.4, similar to yes-no, showing that our proposed
model has a strong fitting ability. The accuracy of modality
exceeds yes-no, indicating that the distribution of modality
test data is more consistent with the training data than that of
yes-no data.

For relatively balanced category (yes-no), the effect of data
enhancement is not significant. The data enhancement we
used is an elementary transformation based on the existing
image. This method only makes the model not inclined to
output a certain class, but the improvement of data diversity
is limited. For example, ‘‘ugi-upper gi’’, which accounts for
only 0.4% in the training set, gets 30% accuracy in the test set
after data enhancement. The proportion has been increased,
but it is still the lowest.

Similar to the results given by [9], open-ended abnormality
is difficult to achieve high accuracy. The answers predicted
in the generative mode are phrases such as ‘‘glioblastoma
multiforme’’. These words are related to the type of images
and the word frequency in the training set. High frequency
predictions account for 22.6%. The evaluation metrics can
only compare which method is better, but they do not fully
reflect whether the predicted answer is close to the ground
truth. As can be seen in FIGURE 11, the predicted answers
and the ground truths of questions have similar expressions
and the same meaning, but the answers only get 0.135 and
0.111 BLEU scores respectively. It indicates that when the
predicted answer is close to ground truth, it may not get a high
score, which is unreasonable. This is the case in 8.8% of the
predictions. In addition, 20.2% ground truths include words
that cannot be found in the training set. It means that there
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are differences in the data distribution between the training
set and the test set, and it is impossible to generate the same
answer as a ground truth no matter how hard we trained.

There is no medical experts in the process of evaluating
the automatic VQA model. And the evaluation metrics are
limited. Although strong in fitting, the CGMVQA is still far
from being a human doctor. The model has higher accuracy
on the elementary questions, so it could be used for assisting
teaching beginning medical students or giving the answers
to the elementary questions from the patients. Expanding the
amount of data can make the model perform better.

VI. CONCLUSION
Computer-aided diagnosis can alleviate the current state of
medical resource imbalance in some areas, and medical
images are increasingly being employed inmedically assisted
diagnosis. In this work, we propose the CGMVQA for
answering corresponding questions based onmedical images.
Unlike other work, our model is not restricted to a single
disease and can be used for several types of medical images
and organs.

Specifically, we use the ImageCLEF 2019 VQA-Med as
our data set. We split the data into 5 categories to simplify
the complex problem and propose a comprehensive model,
including classification and answer generation capabilities.
Due to the limited amount of data, we adopt data augmenta-
tion on images and tokenization on texts. We use pre-trained
ResNet152 model to extract image features and a global
average pooling strategy to unify the dimensions of these fea-
tures. We add token, segment and position embeddings layers
together to deal with texts. Special tokens, image and text fea-
tures are concatenated as the input of our model. We employ
the pre-layer-normalization multi-head self-attention trans-
former to avoid the warm-up optimizer. And we reduce the
parameters and share the embedding weight to ensure that the
model can be implemented on a single GPU.

We only use images and questions to do the training and
classify them by the output of the ‘‘[CLS]’’ position. The
classification mode is suitable for other categories except
abnormality. This mode is influenced by data imbalance.
We use images, questions and masked answers to generate
answers to the abnormality category. The generative mode
predicts the sequence by looping. The result of the generative
mode is limited by the amount of data.

We adopt strict accuracy, word matching and semantic
similarity as the evaluation metrics. Our model gets results
of 0.640 accuracy score, 0.659 BLEU score, 0.678 WBSS
score and achieves state-of-the-art results on the ImageCLEF
2019 VQA-Med data set.

There is still a lot of work to be done to apply it in a clinical
context. Some diseases may become invisible when we resize
images of a large size to 224 × 224. Next, we will look for
more effective data augmentation methods to see if we can
achieve a better performance. Existing evaluation metrics do
not fully reflect the results, we will try other more realistic
metrics or cooperate with experts to involve in the evaluation

process and get some suggestions for the improvement of our
model.

The code of our proposed model is available on:
https://github.com/youngzhou97qz/CGMVQA.
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