
Received February 5, 2020, accepted March 3, 2020, date of publication March 11, 2020, date of current version March 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980008

FPGA-Based Hardware/Software Co-Design of a
Bio-Inspired SAT Solver
ANH HOANG NGOC NGUYEN 1, MASASHI AONO2,3,
AND YUKO HARA-AZUMI 1, (Member, IEEE)
1Department of Information and Communications, Tokyo Institute of Technology, Tokyo 152-8550, Japan
2Faculty of Environment and Information Studies, Keio University, Tokyo 108-8345, Japan
3Amoeba Energy Co., Ltd.

Corresponding author: Anh Hoang Ngoc Nguyen (anh@cad.ict.e.titech.ac.jp)

This work was supported in part by the JSPS KAKENHI from the Japan Science and Technology Agency (JST) under Grant 17H04677,
and in part by the PRESTO from the Japan Science and Technology Agency (JST) under Grant JPMJPR1528.

ABSTRACT For various kinds of Internet of Things (IoT) systems whose control rules can be expressed
in a Satisfiability (SAT) problem, this work aims at realizing an IoT-oriented FPGA-based SAT solver
leveraging a bio-inspired algorithm, AmoebaSAT, using a hardware/software co-design approach. With
regard to the software component, we extended the baseline algorithm to escape from local minima more
quickly and achieve significant reduction in iteration count. With regard to hardware, we fully extracted the
fine-grained parallelism of the algorithm to further accelerate the solution search. Through our evaluations
using several benchmarks of varying variable count and complexity, we demonstrated the efficiency of our
solver, especially for larger practical SAT instances. Compared with three state-of-the-art solvers (i.e., one
software implementation of the original AmoebaSAT algorithm and two FPGA-based hardware solvers),
we achieved an average of 15.9× and up to 48× reduction in iteration count. Furthermore, through in-depth
analyses of the experimental results, we provided the essential findings on the relationship between the
problem’s complexity and the SAT algorithm that can be leveraged for extensions of both the hardware and
software designs.

INDEX TERMS Bio-inspired algorithm, SAT solver, FPGA, high-level synthesis.

I. INTRODUCTION
Internet of Things (IoT) is an ever-growing technology in
which a huge number of edge devices are connected in order
to share information with each other and/or control a target
object in their own applications. As more and more IoT
applications seek for solutions to achieve their purposes,
an increasing number of problems are dealt with as com-
binatorial optimization problems – for example, finding the
best route or best combination from a known list [1], [2] can
be handled as travelling salesman problems, minimum span-
ning tree problems, etc. Those solutions/decisions should
be resolved on-site for self-sustainability (i.e., at the edge
devices, not in the cloud) due to the network congestion and
the need for real-time processing in IoT applications. Con-
sidering such environmental issues and application require-
ments, it is crucial to develop problem solvers that can run on
the edge devices while exhibiting the following features:

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

1) Scalability in searching time:Most combinatorial prob-
lems are known to beNP-complete. Therefore, problem
solvers need to efficiently handle a number of decision
variables. Importantly, in many IoT applications, near-
optimal solutions are often appreciated in lieu of a true
optimal solution if searching time to obtain the optimal
solution is expensive [3].

2) Lightweight operations: Since most edge devices have
resource/power constraints [4], solution search via
lightweight operations (such as binary, logic opera-
tions) are more appreciated than heavy arithmetic oper-
ations.

3) Applicability to various kinds of IoT applications:
Since the diversity of IoT applications and their associ-
ated combinatorial problems is increasing, the ease of
expressing various problems in a uniformway is crucial
to enabling wide application and reuse of the solver.

For decades, a variety of heuristics for combinatorial
problems have been studied, including two main types of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 49053

https://orcid.org/0000-0002-4555-2066
https://orcid.org/0000-0001-9486-5272

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

approaches: deterministic and stochastic. Although deter-
ministic algorithms (ILP [5], MIP [6], etc.) can guarantee
whether or not there exists a solution to a given problem, their
complexity in solution derivation makes it difficult to achieve
feature (1). Stochastic algorithms, on the other hand, are rea-
sonable and capable of finding a solution in less time. There
are roughly three types of stochastic algorithms: conventional
evolutionary algorithms such as simulated annealing (SA) [7]
and genetic algorithms (GAs) [8], etc.), annealers based on
the Ising model [9], and stochastic solvers for satisfiability
(SAT) problems [10]–[12]. Since conventional evolutionary
algorithms tend to employ many heavy arithmetic operations,
they are not suitable for resource-constrained devices (i.e.,
they lack feature (2)). The Ising model (quantum annealing
[13], digital annealing [14], and CMOS annealing [15]) is
an emerging approach which can search for a solution faster
than conventional algorithms (such as SA) and uses binary
lightweight operations. However, as the transformation from
various problems into the Ising model has not been well
studied, this approach is still limited to few applications (i.e.,
lack of the feature (3)). In addition, some annealing machines
must be operated under strict conditions and consume large
amount of area. Hence, for now, they are more well-suited
to cloud settings rather than for edge devices. Contrary,
although most SAT solvers handle Boolean variables, gener-
alization/encoding techniques to handle combinatorial prob-
lems have been well studied [16]. Moreover, stochastic SAT
solvers are lightweight, yet they can achieve searching per-
formance comparable to their heavier stochastic alternatives.
Hence, out of the aforementioned stochastic techniques, this
approach appears to be themost suitable one for edge devices.
Aside from WalkSAT, a recently-developed SAT algorithm,
AmoebaSAT [12], has received attention in the form of IoT-
oriented hardware implementations on various devices such
as FPGAs [17], [18] and electrical Brownian ratchets [19].
Such IoT applicaitons handle mainly hundreds of variables,
enabling the algorithm to extract a high degree of paral-
lelism on edge devices. For example, it was demonstrated
in [12] that AmoebaSAT outperforms WalkSAT in terms of
iterations# (i.e., sequential time step in which one or more
variable assignments are flipped). Details of the AmoebaSAT
algorithm are presented in Section II-A).

In this paper, we propose an effective FPGA-based SAT
solver that is faster and more practical than a the current state-
of-the-art AmoebaSAT hardware implementation [17]. Our
solver has the following important features: (i) it employs
algorithmic extensions to more efficient solution search,
escaping from local minima in fewer iterations than in [17],
(ii) it exploits a high-level design approach to extract the
inherent parallelism of AmoebaSAT, and (iii) it efficiently
solves various problems in terms of both the size and the
community structure [20]). A preliminary version of our
work appeared in [18]. In this extended journal, we elaborate
the feature (i) with in-depth analyses on different behav-
iors of intermediate variables by comparing the original
AmoebaSAT and its algorithmic extensions. We additionally

demonstrate the effectiveness of our solver through analyz-
ing flips# per iteration compared with state-of-the-art hard-
ware solvers ([21] and [17]). We also apply architectural
extensions to enhance the feature (ii) by removing the loop-
carried dependencies to achieve fine-grained parallelism.
Finally regarding feature (iii), we evaluated our solver on
two sets of benchmark instances and discussed the scala-
bility towards IoT-based applications such as 5G network
scheduling. We achieved the speed up of up to 39,350× ver-
sus the software solver [12] and 23.7× versus the hardware
solver [17].

Our contributions are summed up as follows:

• We develop an FPGA-based AmoebaSAT solver in a
hardware/software co-design manner to extract fine-
grained (i.e., variable-level) parallelism, achieving bet-
ter performance than state-of-the-art implemetations.

• On the software side, we generate effective feedback
mechanisms so that the solution search part (on the hard-
ware side) can efficiently search for a solution, leading
to achieve less iterations#.

• On the hardware side, we apply hardware-aware design
optimizations through high-level synthesis, such as tar-
geting irregular memory accesses and applying loop
pipelining to reduce cycle counts.

• Through two sets of evaluations (random and graph
coloring instances), we provide useful observations and
findings for deploying the AmoebaSAT solver on IoT
devices.

The remainder of this paper is organized as follows:
Section II explains in details the original AmoebaSAT algo-
rithm. Section III and Section IV present our algorithmic
extensions and high-level design techniques, respectively.
Section V describes our experiment setup and demonstrates
the effectiveness of our work versus the state-of-the-art.
Section VI concludes this paper.

II. AmoebaSAT: AMOEBA-INSPIRED SAT SOLVER
ALGORITHM
This section explains the overview of the AmoebaSAT algo-
rithm, followed by its unique feature of conflict resolution
mechanisms called ‘‘bounceback rules.’’

A. COMPUTING MODEL
Satisfiability (SAT) is concerned with determining the exis-
tence of a solution to a given formula, where the solu-
tion is a variable assignment that is said to satisfy it.
The Boolean satisfiability problem, in particular, determines
whether or not a Boolean formula (i.e., a formula f (V) | v ∈
{true,false} ∀ v ∈ V) could be satisfied. A Boolean SAT
formula (hereafter referred to as a SAT instance) is often rep-
resented in conjunctive normal form, which is the conjunction
(∧) of multiple clauses, each of which is a disjunction (∨)
of one or more logical variables. For example, the formula
f = (x1 ∨ x2)∧ (x1 ∨ x2) is a SAT instance of two literals and
is satisfied (i.e., f = 1) when (x1, x2) ∈ {(0, 1), (1, 1)}.

49054 VOLUME 8, 2020

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

FIGURE 1. The AmoebaSAT model for a four-variable instance.

The computing model of AmoebaSAT is inspired from the
spatiotemporal dynamics of an amoeba in its adaption with
the surrounding environment. This Amoeba is a single-cell
organism that uses multiple expandable pseudopods (herein
referred to as branches) to effectively find food sources. It is
photosensitive, so whenever light is projected on to a branch,
the organism will typically retract that branch and attempt to
expand in other directions remaining devoid of light. Inspired
by such an expansion scheme, AmoebaSAT [12] constructs a
unit updating model in order to solve SAT problems.1 For
an instance of N variables, the solver employs a model of
2N units, wherein each ternary pair of units determines the
value of a single variable. Each unit is associated with a set of
internal variables capturing its expansion state. By updating
all variables, all units’ expansion statuses are updated as
well, effectively corresponding to how a biological amoeba
expands its branches in nature. Also, inter-clause conflicts
generate control signals that simulate light stimuli, guiding
the amoeba to conduct iterative updating of variable assign-
ments in an effective fashion.

For N variables, each unit (i, v) represents the variable xi,
i ∈ {1, 2, . . . ,N } under the speculative variable assignment
v ∈ {0, 1}. Unit (i, 0) asserts xi = 0, whereas unit (i, 1) asserts
xi = 1. Fig. 1 shows a simplified AmoebaSAT model for
a four-variable instance, where it uses four pairs of ternary
units, each color-coded pair determine the value of a unique
variable. Each unit has three expansion states (represented by
an intermediate variable X), which are expanded (X = 1),
neutral (X = 0) and retracted (X = −1). The central circle
represents the body of the amoeba, which supplies or cuts off
resource to each branch for extension and retraction, respec-
tively. The resource supply decision on a branch depends
on whether it is subjected to a stimulus of light, which is

1The extensions of AmoebaSAT have been studied for combinatorial
optimization problems such as traveling salesman problem (TSP), whose
detailed explanations are omitted in this paper.

TABLE 1. Definitions and descriptions of variables.

simulated by the assignment L = 1 and represented by
a lightning strike in the figure (i.e., L1,0, L3,1, and L4,0).
The assignment Li,v = 1 means that the light stimulus is
turned on at branch (i, v), which cuts off the resource supply
to it. Definitions and descriptions of variables used in the
AmoebaSAT model are summarized in Table 1.

Starting from an initial state in which all branches of the
amoeba are neutral (i.e., Xi,v = 0) and no supply deci-
sions or light stimuli are applied (i.e., Yi,v = 0, Li,v = 0),
the system will iteratively update each units’ intermediate
variables until a satisfying solution is found. At iteration t ,
each variable xi determines its value based on the expansion
volume of its represented units Xi,0 and Xi,1.

The decision of xi and unit volume Xi,v are defined math-
ematically and provided in the formulae (1) and (2), respec-
tively:

xi(t) =

0, Xi,0(t) = 1 & Xi,1(t) ≤ 0
1, Xi,1(t) = 1 & Xi,0(t) ≤ 0
xi(t − 1), otherwise

(1)

Xi,v(t) =

Xi,v(t − 1)+ 1, Yi,v(t) = 1 & Xi,v(t − 1) < 1
Xi,v(t − 1)− 1, Yi,v(t) = 0 & Xi,v(t − 1) >−1
Xi,v(t − 1), otherwise

(2)

The resource supply Yi,v determines whether the unit (i, v)
should attempt to expand or retract (i.e, whether Xi,v can
increase or decrease in accordance with formula 2). The state
transition of Yi,v depends on the dynamics of the fluctuated
variable Zi,v (for 2N units, Zi,v’s are independent each other)
and an exploration parameter ε. Note that Yi,v is determined
by Li,v of the previous iteration (t − 1).

Yi,v(t) =

{
0, Li,v(t − 1) = 1
sgn(1− ε − Zi,v(t)), otherwise

(3)

where sgn is a sign function:

sgn(z) =

{
1, z > 0
0, otherwise

(4)

VOLUME 8, 2020 49055

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

Formula (3) expresses that a unit (i, v) can be supplied
resources based on its control signal Li,v (the concept and
definition of Li,v will be explained in Section II-B). When
there is no light stimulus (Li,v = 0), as long as the fluctuation
Zi,v does not exceed a threshold of error occurrence (i.e.,
1− ε), the unit can freely increase its volume Xi,v. While the
original AmoebaSAT uses a logistic map Zi,v(t) = 4Zi,v(t −
1)(1−Zi,v(t−1)) to let Zi,v exhibit chaotic oscillation through
iterations, this work uses a tent map [22] to generate oscilla-
tory dynamics considering the simplicity and suitability for
implementing fixed-point operations on FPGAs (the details
will be explained in Section IV-A).

Zi,v(t) =

{
2Zi,v(t − 1), Zi,v(t − 1) < 0.5
2(1− Zi,v(t − 1)), Zi,v(t − 1) > 0.5

(5)

B. BOUNCEBACK RULES
The light stimulus Li,v used in formula (3) is an essential
concept in AmoebaSAT to detect conflicts induced by the
variable assignments in the previous iteration t − 1. In other
words, AmoebaSAT learns from failures by way of L. If there
is a conflict, the bounceback control signal is asserted (i.e.,
Li,v = 1) on the corresponding units to cut off the resource
supply, thus making them retract in the next iteration. The
bounceback control is a set of rules constructed from the
clauses of the target SAT instance as expressed in formula (6).

Li,v(t) =

1, (P,Q) ∈ BON such that (i, v) ∈ Q &
∀(j, u) ∈ P,Xj,u(t − 1) > 0

0, otherwise

(6)

where (P,Q) represents a pair of contradictory units that
cannot be true at the same time, and BON represents the set of
bounceback rules geared toward branch retraction. BON con-
sists of three types of rules: INTRA, INTER, and CONTRA.
Hence, BON = INTRA ∪ INTER ∪ CONTRA.

Since a variable xi can only be either 0 or 1 in a given
iteration, the two units representing (i, 0) and (i, 1) must not
be supplied at the same time. INTRA is therefore defined to
prohibit the inconsistent assignment of each variable xi:

INTRA 3 ((i, v), (i, 1− v)), v ∈ {0, 1} (7)

INTER captures the contradiction between elements within
each clause. For example, in the clause C = (x1 ∨ x2 ∨ x3),
if x1 and x2 are assigned to 0, then x3 should be set to 0 in
order to keep the clause true. Therefore, while the unit (3, 0)
should be expanded, the unit (3, 1) should be bounced-back to
avoid the contradiction. The set INTER is defined as follows:

Inter =

{
(P, (i, 0)), C 3 i
(P, (i, 1)), C 3 −i

(8)

where P, for all j 6= i, includes the following units:

P 3

{
(j, 0), C 3 j
(j, 1), C 3 −j

(9)

Algorithm 1 AmoebaSAT
Input: the target instance f & the maximum iterations tmax
Output: variable assignments x’s
1: t = 0
2: Construct the bounceback rules BON by the formulae (7),

(8), & (11)
3: for all (i,v) = (1,0) to (N,1) do
4: Initialize Xi,v(0) = Yi,v(0) = Li,v(1) = 0
5: Initialize Zi,v(0) with a random value in (0.0, 1.0) other

than 0.5
6: end for
7: while t < tmax do
8: Obtain xi(t) by the formula (1)
9: if f = 1 then

10: Return ‘Found’ & output the solution x’s
11: else
12: Calculate Xi,v(t), Yi,v(t), Zi,v(t), and Li,v(t + 1) by

the formulae (2), (3), (5), & (6)
13: t = t + 1
14: end if
15: end while
16: Return ‘Found no solution’

Finally,CONTRAmanages the contradiction between mul-
tiple units from different clauses. For example, given two
clauses C1 = (x3 ∨ x4 ∨ x1) and C2 = (x3 ∨ x4 ∨ x2), if at
a particular timestep the assignments x1 = 1, x2 = 1 and
x4 = 0 all hold, then x3 = 0 must be held to satisfy C1.
However, x3 = 1 also needs to be held to satisfy C2. These
requirements will lead to the bounceback of both X3,0 and
X3,1, i.e., leading to a situation where x3 unreasonably retreats
from both possible assignments 0 and 1. CONTRA rules are
enforced to preclude such undesired behavior. Firstly, two
sets Pi,0 and Pi,1 are constructed based upon the INTER rule
set:

Pi,0 3 P, Pi,0 ∈ INTER
Pi,1 3 P, Pi,1 ∈ INTER

(10)

By combining each element (Pi,0,Pi,1) of the above two sets
together, the set CONTRA is formed:

∀(Pi,0,Pi,1) ∈ Pi,0 × Pi,1
(CONTRA 3 (Pi,0 ∪ Pi,1,Pi,0 ∪ Pi,1)) (11)

To summarize the aforementioned formulae, Algorithm 1
describes the simplified pseudo code of the AmoebaSAT
algorithm. We also illustrate how the intermediate variables
work for a variable xi in Fig. 2, where we assume that xi is
initialized as 0. The upper part, middle part and bottom part
of the figure describe the statuses of Z ’s, Y ’s, and X ’s, respec-
tively, each of which is illustrated through three consecutive
iterations (i.e., t = 0, t = 1 and t = 2) from left to right.
At the iteration t = 0, Y ’s, X ’s and L’s are initialized as
0, while Z ’s take a random value in range (0.0; 1.0) other
than 0.5 (Lines 4-5). Then, at the iteration t = 1, because
fluctuated variable Zi,0 updates by the formula 5 and exceeds

49056 VOLUME 8, 2020

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

FIGURE 2. An example of the status changes in intermediate variables.

1−ε, Yi,0 = 0 is set (i.e., the resource supply is cut off) by the
formula (3), leading to decrement Xi,0 by 1 (i.e., Xi,0 = −1).
On the other hand, since Zi,1 is within the range of normal
occurrence, Yi,1 = 1 supports Xi,1 to increase by 1 (i.e.,
Xi,1 = 1). Since the exploration parameter ε indicates the
probability of error occurrence, even if a unit is not blocked
(Li,v = 0), the supply is still cut off at the unit (Yi,v = 0).
Then, xi = 1 is set by the formula (1). Because of Xi,1 = 1,
INTRA prohibits to supply the resource to Xi,0, resulting in
Li,0 = 1 (represented by a lightning bolt on the unit (i, 0))
and Li,1 = 0 (no lightning on the unit (i, 1)) (Line 7-12). Simi-
larly, at the iteration t = 2,X ’s, Y ’s, Z ’s and L’s are calculated
and set accordingly. Since no resource supply is provided to
the unit (i, 1) (i.e., Yi,1 = 0), the volume of Xi,0 is kept the
same (i.e., Xi,0 = −1), leading to unchange the value of xi.
This loop (Lines 6-15) is iteratively performed until a solution
is found (i.e., when all units satisfy f = 1(Line 9) or the
maximum iteration tmax is reached. If the solver reaches tmax ,
it will return ‘‘Found no solution’’ (Line 16).

As demonstrated, AmoebaSAT computes updates of all
variables in parallel. Hence, it has finer-grained parallelism
than conventional SAT algorithms that update a single vari-
able per iteration, such as WalkSAT. In this work, we aim at
developing an FPGA-based SAT solver that is faster than the
current state of the art by exploiting two important features
of the AmoebaSAT algorithm: (1) variable-level parallelism
and the (2) ability to learn from failures (i.e., using interme-
diate variables). These two features encourage an effective
solution search by flipping as many variables as necessary per
iteration when the current variable assignments are far from
a solution, especially during earlier iterations. Also, through
the algorithmic extension described in Section III, our solver
succeeds in avoidance of useless flips as it approaches a
solution (i.e., during later iterations).

III. HIGH-LEVEL DESIGN APPROACH
This section describes the overview of our AmoebaSAT
solver, followed by two additional algorithmic extensions to
the bounceback control mechanism.

FIGURE 3. An overview of our AmoebaSAT solver (the numbers in the
parentheses represent the formulae explained in Section II).

A. THE OVERVIEW
Our SAT solver is realized in a hardware/software co-design
manner as described in Fig. 3: construction of the bounceback
rules, as well as the random initial generation for Z ’s are real-
ized as a software pre-processing component (the upper left
of the diagram) and performed only once at the beginning of
the computation. All other components comprise the iterative
solution search itself, and are performed in hardware. Each
AmoebaSAT unit is realized as a processing element updating
its own intermediate variables in each iteration. A shared bus
is used to deliver the equilibrium information X ’s of each
unit to all other related ones so that their bounceback control
signals (i.e., L’s) can be updated accordingly. Since many of
today’s FPGA devices feature a hard microprocessor core,
we target an FPGA device for the implementation so that
although the pre-processing component runs on the processor
core, the units are designed as a hardware accelerator utiliz-
ing the reconfigurable fabric through high-level design (i.e.,
HLS). Although in this paper we utilize aXilinx FPGAdevice
and Vivado HLS, this work is not limited to any specific
FPGA device or HLS tool.

The remainder of this section elaborates the algorith-
mic extensions applied to bounceback rule generation in
pre-processing and bounceback controls (i.e., update L’s).
Section IV follows this by providing details of hardware
design optimizations applied to each unit.

B. EXTENSIONS OF BOUNCEBACK RULES
Although the bounceback controls described in section II-B
effectively resolve conflicts by learning from the failures (i.e.,
with a help of the recent statuses of the intermediate vari-
ables), we found room for improvement in the bounceback

VOLUME 8, 2020 49057

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

FIGURE 4. Comparison of (a) INTER and (b) COLLAPSE (for
f = (x1 ∨ x2 ∨ x3)).

controls by observing how the values of X ’s change upon
application of stimuli. Specifically, due to the dependency
between multiple variables, bouncebacks are frequently ini-
tiated in accordance with INTER and CONTRA. This may
result in units cycling through previous expansion states,
impeding further variable updates and delaying convergence
toward a solution. Therefore, to let our SAT solver more effi-
ciently arrive at a solution, we extend INTER and CONTRA
to enable more direct control over the state of intermediate
variables, leading to less number of iterations.

1) COLLAPSE
Fig. 4(a) illustrates how L’s is set when unsatisfactory vari-
able assignments in a clause are detected by INTER rules,
using the formula f = (x1∨ x2∨ x3) as an example. The state
of X ’s, represented by bar height, are shown for three pairs of
units over three consecutive iterations (from top to bottom).
When L’s is set to 1, a lightning bolt is displayed in the figure.
When X1,0, X2,1, and X3,0 are all 1 (i.e., x1 = 0, x2 = 1,
and x3 = 0), the clause is unsatisfied (i.e., f = 0). Hence,
an INTER contradiction is detected by formula (8), which
results in setting the units’ elements of L’s to 1. However,
in each pair of units, an INTRA contradiction also occurs
in accordance with formula (7), resulting in L’s being set
to 1 and the counterpart units being blocked accordingly.
Consequently, X1,0 = X2,1 = X3,0 = 0 and X1,1 = X2,0 =
X3,1 = −1 are set at iteration t + 1. In this state, X1,0,
X2,1, and X3,0 are likely to return to 1 again sooner than
their counterparts, leading to a repeat of the same behavior
at iteration t + 3. This expresses a lack of progress that
delays convergence to a solution. Since such behaviour may
be repeated in consecutive iterations, variable assignments
may remain unchanged, leaving the solver susceptible to

FIGURE 5. Comparison of (a) CONTRA and (b) HyperCONTRA (for
C1 = (x1 ∨ x2 ∨ x3) and C2 = (x2 ∨ x4 ∨ x5)).

getting stuck at a local minimum for several iterations upon
encountering an INTER contradiction.
We thus propose an additional type of bounceback con-

trol, COLLAPSE , to mitigate such back-and-forth behaviors.
Whereas INTER handles when to turn elements of L’s on,
COLLAPSE considers when to turn elements of L’s off.
As shown in Fig. 4(b), when unsatisfactory variable assign-
ments are found, it collapses part of INTER by disabling the
bounceback of the counterpart units at iteration t . This results
in a situation where counterparts Xi,0 and Xi,1 each have an
equal chance to become 1, leading to a higher probability
of changing variable assignments and satisfying clause f at
iteration t + 2. COLLAPSE is derived based on INTER and
formulated as follows:

COLLAPSE 3 ({(i, 0)|xi ∈ Ck} ∪ {(i, 1)|xi ∈ Ck},

{(i, 1)|xi ∈ Ck} ∪ {(i, 0)|xi ∈ Ck}) (12)

Since COLLAPSE specifies when to turn L’s off, this
bounceback rule is handled as BOFF (i.e., BOFF =

COLLAPSE). Then the formula (6) is updated as follows:

Li,v(t) =

(P,Q) ∈ BON & (P,Q) 6∈ BOFF

1, such that (i, v) ∈ Q
and ∀(j, u) ∈ P,Xj,u(t − 1) > 0

0, otherwise

(13)

Note that BON works similarly to the original AmoebaSAT,
and BOFF supplements it to encourage more efficient changes
in the states of intermediate variables.

2) HyperCONTRA
Fig. 5(a) describes the variable assignments for two clauses,
C1 = (x1 ∨ x2 ∨ x3) and C2 = (x2 ∨ x4 ∨ x5), both
of which include x2. The states of these variables are illus-
trated across two consecutive iterations, from top to bottom.
If x1 = x4 = x5 = 0 and x3 = 1 are set, x2 would

49058 VOLUME 8, 2020

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

need to be 0 and 1 concurrently to satisfy both C1 and C2,
respectively. In this case CONTRA takes effect, and elements
of L’s corresponding to these units are set to 1. In addition,
their counterpart units’ L’s values are also set to 1 due to
INTRA. Although all X ’s values then decrease their volume
at iteration t + 1, the clauses are not yet satisfied since the
variable assignments have not yet changed. Recalling the
definitions of the intermediate variables, the reader will find
that it takes another two iterations at minimum for the variable
assignments to change. In other words, the clauses can be
satisfied no earlier than at iteration t+3.Moreover, since units
(1, 0), (3, 1), (4, 0), and (5, 0) each have a larger volume than
its counterpart, they are more likely to expand again in the
following iteration (i.e., t + 2) and repeat the same behavior
as that of iteration t . As the repetition of these behaviors likely
fails to change the variable assignments, the solver is prone
to getting stuck in a local minima.

We find that the aforementioned bounceback controls
through L’s are indirect and inefficient when CONTRA takes
effect. Therefore, we propose to extend CONTRA to force-
fully change the corresponding values of X ’s by setting
them to −1 immediately (i.e., in the current iteration t).
These requests to immediately change X ’s are represented
by straight downward arrows in Fig. 5(b). This extension,
referred to as HyperCONTRA, also refrains from setting
counterparts’ L values to 1 and can encourage the quick
change of variable assignments. Then, a solution may be
found in the following iteration at the earliest, as depicted
in Fig. 5(b). The updates to formula (2) as required by
HyperCONTRA are defined as follows:

Xi,v(t) =

−1, (i, v) ∈ BHON
Xi,v(t−1)+1, (i, v) 6∈ BHON & Yi,v(t) = 1

& Xi,v(t−1) < 1

Xi,v(t−1)−1, (i, v) 6∈ BHON & Yi,v(t) = 0

& Xi,v(t−1) >−1

Xi,v(t−1), otherwise

(14)

where BON = INTRA ∪ INTER (this update of BON applies
to the formula (6)) and BHON = HyperCONTRA. Note that
although HyperCONTRA is defined similarly to CONTRA,
the variables to be updated are different – while CONTRA
updates L’s, HyperCONTRA directly updates X ’s.
Because COLLAPSE and HyperCONTRA are orthogonal,

they can be both applied, i.e., BON = INTRA ∪ INTER,
BOFF = COLLAPSE , and BHON = HyperCONTRA.

IV. HARDWARE-AWARE DESIGN OPTIMIZATIONS
Although the original AmoebaSAT algorithm already well-
matches with hardware implementation due to its inherent
parallelism, to fully enjoy the parallelism, we further applied
several optimizations and extensions in the hardware design.
This section describes these design techniques we applied to
the hardware parts.

FIGURE 6. Localization of the bounceback rules.

A. OPERATIONAL TYPES AND DEFINITION
Floating-point operations typically consume a lot of hard-
ware resources in the dedicated hardware designs. Therefore,
especially on resource-limited FPGAs, the floating-to-fixed-
point conversion is commonly applied. In this work, we also
applied this conversion to Z ’s so that in total 16 bits are used,
which did not affect the precision at all.We also minimized
the bitwidth of the other variables (two bits for X ’s and one
bit for the others) using the ap_int library provided by the
high-level synthesis tool we used (Xilinx Vivado HLS).

To save the hardware resource consumption, we realized
the oscillation for Z ’s by replacing a logistic map adopted
in [12] with a tent map as already explained in the formula (5).
While the logistic map calculates 4Zi,v× (1−Zi,v) and hence
uses a multiplier (i.e., consuming several DSPs), the tent map
is realized by a shifter only. Then, along with the floating-
to-fixed-point conversion and the tent map, we explored the
best ε value over 500 Monte-Carlo simulation runs with
the 0.01 interval on the benchmark instances we used in
the experiments. By comprehensive examinations, we set
ε = 0.32 to all instances in our evaluation in Section V.

B. RULE LOCALIZATION
As illustrated in Fig. 3, our AmoebaSAT solver is imple-
mented based on the units to extract the variable-level paral-
lelism. In each iteration, it is sufficient for each unit to check
only its related bounceback rules, whose amount is relatively
small especially for realistic instances due to their inherent
community structure [20].

We thus partially duplicate the bounceback rules so that
each unit has its related rules in the local lookup table (e.g.,
‘‘Uniti,0 rules’’ for the Uniti,0 in Fig. 3). The concept of
this rule localization through duplication and partitioning is
illustrated in Fig. 6. As shown in the figure, all units can in
parallel check their rules at the cost of resource utilization.
The conflict detection of each unit still follows the formulas
of updating L’s (explained in Sections II and III) which turns
on or off according to the expansion statuses of the conflicting
units.

For an instance composed of N variables and M clauses,
our implementation has 2N separate units, each one of which
has its own rules by the aforementioned rule localization.

VOLUME 8, 2020 49059

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

FIGURE 7. Loop optimization: (a) the baseline and (b) pipelining.

Since the total rules# are originally constructed from M
clauses, the total area in the solution search part realized in
hardware depends on both the variables# N and clauses# M ,
i.e., O(NM). This will be evaluated in our evaluations later in
Section V-B.

C. LOOP OPTIMIZATIONS
Each of the intermediate variables and the bounceback rules is
implemented as an array and iteratively updated in a function
within a loop. The functions are then individually imple-
mented in a single cycle as shown in Fig. 7(a). Although
pipelining this loop would be one of the most resource-and-
performance-efficient optimizations as have been done to
various HLS-based designs, in the AmoebaSAT implemen-
tation, it is difficult to naively apply loop pipelining due to
some dependency and limitation. First there are two types of
loop-carried Write-After-Read (WAR) dependencies in our
implementation when we aim at pipelining the loop with the
minimum initiation interval (II = 1). One is, for example,
on L’s – the old values of L’s (set in the previous iteration)
are read to update Y ’s, and new values are then written to L’s
as formulated in the formula (6). The other happens during
the satisfiability checking (read on x’s set in the previous
iteration) and update (write on x’s). The difference between
these WAR dependencies are that while the WAR on L’s is
only within a unit, the WAR on x’s relates to all units since
the satisfiability checking can be done only after x’s are all
updated. TheseWARdependencies hinder the loop pipelining
and end up with sequentially executing all functions (see
Fig. 7(a)).

Another dependency is irregular memory accesses where
access patterns (or intervals) on the variables/arrays are deter-
mined by an indirect reference or calculation and thus are
not statically analyzable. For example, as shown in the code
snippet below where a function of turning L’s on according to
INTER (represented in an array f) is described, the arrays of
the intermediate variables X ’s and the bounceback rules L’s
are irregularly accessed.

1 void Lon_inter(int X[2N], int f[M][3], int L[2N]){
2 for(int i=0;i<M;i++){
3 id1=f[i][0]; // obtain the 1st index (unit)
4 id2=f[i][1]; // obtain the 2nd index (unit)
5 id3=f[i][2]; // obtain the 3rd index (unit)
6 if((X[id1]>0)&(X[id2]>0)&(X[id3]>0)){
7 // set L=1 for these three units
8 L[id1]=L[id2]=L[id3]=1;
9 }}}

Finally, the sequential access limitation to the FPGA built-
in memories also hinders the possibility of achieving II= 1 if
the arrays are implemented on the memories (e.g., the arrays
X, f, and L in the code above).

In this work, we applied two optimization techniques in
order to resolve the above issues and pipeline loops with as
short II as possible – (1) removing the loop-carried WAR
dependencies and (2) flattening the arrays to resolve the indi-
rect and sequential memory accesses. The optimization (1)
is two-fold; On one hand, the WAR dependency on L’s was
resolved by a Xilinx Vivado HLS pragma ‘‘dependence
false’’ with the direction ‘‘WAR’’, which helped to write
and read L’s in one cycle (e.g., the cycle c + 3 in Fig. 7(b)).
On the other hand, the WAR dependency on x’s was resolved
by introducing a temporary array xtmp so that the variable
assignments in the previous iteration can be read from xtmp’s
while updating x’s with the current assignments simultane-
ously (e.g., the cycle c + 5 in Fig. 7(b)) – the functions
handling xtmp’s and x’s are implemented as the ‘‘Check f from
temporary solution xtmp’’ and ‘‘Update solution x’’ blocks,
respectively, in Fig. 3. Next, the optimization (2) utilized
another pragma ‘‘array_partition complete dim
= 0’’ to completely flatten the arrays into registers so that
the array access condition can be calculated and accessed
in parallel. Finally, by applying a pragma ‘‘pipeline’’ in
combination with these two optimizations, we successfully
achieved the loop pipelining with II= 1 at the cost of resource
utilization.

Note that irregular memory accesses frequently appear not
only in SAT algorithms but also in a variety of database-
oriented applications. Several existing works presented HLS
approaches incorporating a set of pre-designed arbiters and
buffers to resolve this issue. For example, [23] achieved up
to 5.0-8.0× speedup with 2.5-6.8× resource overhead for
database-oriented benchmarks. Hence, some readers would
think that those arbiter approaches are also applicable to our
target algorithm and our array-flattening approach is naive.
Through holistic examinations on how to resolve this issue,
we observed that the approach we employed is the most
performance-effective as it achieved approximately 8,200×
speedup with 23× resource overhead against the baseline
implementation with no pragma – this speedup is infeasi-
ble by the arbiter method. Also, the readers can find that
the speedup effect is nearly cancelled out by the resource
overhead in [23]. We will further study the improvement
of irregular memory access optimizations to suppress the
resource overhead in future.

V. EXPERIMENTS AND RESULTS
This section first provides our experimental setup and then
demonstrates the effectiveness of our work.

A. EXPERIMENTAL SETUP
We applied the algorithmic extensions explained in Sec-
tions III-B.1 and III-B.2 with hardware-aware optimization

49060 VOLUME 8, 2020

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

techniques explained in Section IV to implement in total four
versions of our AmoebaSAT solver as follows:
• Ours-B: The AmoebaSAT algorithm with the original
bounceback rules (Section II-B and [12]). Among our
SAT solvers, this version is regarded as the baseline
design.

• Ours-C: The AmoebaSAT algorithm extended with
COLLAPSE only (Section III-B.1).

• Ours-H: The AmoebaSAT algorithm extended with
HyperCONTRA only (Section III-B.2).

• Ours-CH: The AmoebaSAT algorithm extended with
both COLLAPSE and HyperCONTRA (Sections III-B.1
and III-B.2).

We used Xilinx Vivado HLS and Vivado v2016.3 for high-
level and logic syntheses on a Zynq board (xc7z030ffv676-
3) which was also used in [17]. We compared our solvers
with three counterparts: the original AmoebaSAT algorithm
running as software (hereafter SW), a hardware AmoebaSAT
solver [17] that adopted a largely simplified algorithm2

(hereafter ISQED), and a hardware WalkSAT solver [21]3

(hereafterWalkSAT). The initialization part of our work (i.e.,
Our-B/C/H/CH) and SW were evaluated on a Cortex-A9 of
the same Zynq board at the clock frequency of 1 GHz.

While randomly generated instances have been widely
used in the literature including [17], [21], our work tar-
gets real-life, IoT applications whose community structure
is more hierarchical and sparse than random ones [20].
Therefore, we conducted two sets of evaluations using dif-
ferent types of instances in SATLIB [26]. In the first eval-
uation, in order to demonstrate the effectiveness of our
work over state-of-the-arts, we used six randomly generated
instances composed of 100 to 250 variables (specified with a
name ‘‘uf<variables#>-<index#>’’) including ones
that were also used in [17], [21]. Then, in the second evalua-
tion, in order to show the efficiency of our work in handling
real-life applications, we used three SAT-encoded flat graph
colouring instances composed of 150 to 300 variables (speci-
fied with a name ‘‘flat<vertices#>-<index#>’’; the
vertices# represent the complexity of the graph colouring
problem before encoding to SAT) since some real-life appli-
cations can be expressed in a graph colouring problem [16].
In both evaluations, we discuss the results of our work in
terms of the performance (i.e., iterations#, clock frequency,
and execution time), the resource usage (i.e., Slices# that
represent the circuit area), and the area-delay-product (ADP)4

which is calculated by the product of Slices# and the execu-

2This algorithm removed the intermediate variables to directly determine
the variable assignments of x’s. Therefore, the unique feature in the original
AmoebaSAT of ‘‘learning from the failures’’ was almost given away. Inter-
ested readers are referred to [17] for further details of the algorithm.

3Kanazawa et al. have presented extended versions of the hardware Walk-
SAT solver (e.g., [24], [25]) based on their earlier work [21]. While the
work [21] may be still applicable to embedded/IoT applications, their recent
target has been shifted to huge industrial applications. Therefore, comparing
against [21] is the fairest to demonstrate the effectiveness of our work.

4This is a frequently-used metric to evaluate the efficiency of circuits. The
smaller ADP indicates the better efficiency.

tion time. Since the iterations# to find a solution depend on
the initialization, we ran each solver 100 times with random
seeds and calculated the average iterations#.

B. EVALUATION ON RANDOM INSTANCES
The first evaluation was conducted to compare our work
and the state-of-the-art works for six randomly-generated
instances. Table 2 tabulates the results of different Amoeba-
based SAT solvers, followed by the comparison againstWalk-
SAT afterwards: the execution time of SW and the per-
formance (iterations#, clock frequency and the execution
time) and the area (Slices#) of ISQED and our work Ours-
B/C/H/CH. In the table, the execution time reports the solu-
tion searching time only since the solution search will be
repeatedly done according to the surrounding environment
and sufficiently longer than the pre-processing which should
be done once only at the beginning. Among the six evaluated
instances, three instances (uf100-0285, uf150-0100,
and uf225-028) were used in ISQED [17] (the unused
instances show ‘-’). Cycles# in ISQED and Ours-B/C/H/CH
both equal the iterations#.

As seen from the table, our hardware solvers are all sig-
nificantly faster (39-39,351× in terms of the execution time)
than SW even though SW runs on the processor core with
the 4.8-13.7× higher clock frequency than our solvers. This
indicates that our solvers can well extract the inherent paral-
lelism. Compared with ISQED, Ours-C/H/CH achieved sig-
nificant reduction in iterations# to find a solution. Besides
Table 2, in order to clearly show the comparison between
ISQED and our work, Fig. 8 describes the iterations# and
Slices# of our work normalized by ISQED for the three
commonly-used instances. The x-axis describes the instance
names and the left and right y-axes show the Slices# and
iterations#, respectively. Fig. 8 shows that our solvers are
superior to ISQED in terms of the iterations# especially for
larger instances at the cost of Slices# – our solvers achieved
the iterations# reduction by 4-7× for uf150-0100 and 33-
38× for uf225-028with the 7-12× Slices# compared with
ISQED. In addition, the results from Table 2 show that for
the largest instanceuf225-028, Ours-C/H/CH achieved the
2.12-2.67× better ADP than ISQED. These results demon-
strate that our solvers can more efficiently search a solution
by learning from the failure with the help of the bounceback
rules.

Next as comparing the four versions of our solver, we find
that thanks to the extensions in the bounceback rules pre-
sented in Section III, Ours-C/H/CH have significantly less
iterations# than Ours-B. Although the extended bounceback
rules induce some area overhead, this effect is negligible
considering the significant cycles# reduction. Among the
four versions, Ours-H achieved the least iterations# for two
instances and Ours-C achieved the shortest execution time for
three instances. Ours-CHwhich combined the two extensions
did not achieve the best but is constantly good. In all solvers,
the clock frequency degrades for larger instances as inter-
unit wires tend to be critical and get longer (more detailed

VOLUME 8, 2020 49061

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

TABLE 2. Synthesis and simulation results of SW [12] and four versions of Ours (the best iterations# and execution time for each instance are
highlighted by gray cells).

FIGURE 8. Slices# and iterations# of Ours-C/H/CH (normalized by
ISQED [17]).

discussions will be given in Section V-D). Suppressing the
clock degradation will be thus a subject of our future work.

For one commonly-used instance uf225-028,WalkSAT
was evaluated on Virtex2 in [21], where the circuit con-
sumed 17,234 Slices and ran at 85.2MHz while taking on
average 25.74 cycles per iteration. In order to exclude the
device difference, based on the comparison done in [17],
we made an estimation to compare our solvers and Walk-
SAT – if our solvers were implemented on the same Vir-
tex2 device, we would achieve the 23.29-33.90× speedup
with the 1.69-2.18× Slices# (i.e., the 3.24× ADP improve-
ment) over WalkSAT. These results also demonstrate that our
solvers are superior to WalkSAT.

To further demonstrate the efficiency of our work in
terms of the solution search, we evaluated flips# per iter-
ation of Ours-CH, ISQED, and WalkSAT for the instance

FIGURE 9. Variable flips# per iteration (for uf225-028).

uf225-028. We implemented ISQED by software to mea-
sure the flips# per iteration and the total iterations# to find a
solution. Although the results of ISQED and Ours-CH were
taken from a random run, this does not hinder the natural
behavior of these methods. The results of WalkSAT were
referred to [21], where the four-thread implementation was
done to evaluate four clauses simultaneously. In Fig. 9, the x
and y-axes represent the iteration and the flips#, respec-
tively. Note that the x-axis is described in the logarithmic
scale. As shown in the figure, while WalkSAT constantly
flips four variables per iteration, ISQED and Ours-CH can
flip more variables at once – in this evaluation, they both
conducted more than 40 flips in the first iteration. When
the variable assignments are far from a solution (i.e., in the
earlier iterations of the solution search), they keep such large
flips# because of the frequent bounceback signals on many
variables. In ISQED, however, such aggressive flips continue
even when variable assignments are getting closer to a solu-
tion (i.e., in the later iterations), resulting in unsatisfying

49062 VOLUME 8, 2020

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

TABLE 3. Synthesis and simulation results of Ours-C for three GCP
instances.

even stable variable assignments. This is why ISQED takes
large iterations# to finally find a solution. Unlike ISQED,
Ours-CH avoids useless flips in the later iterations by learning
from the failure (i.e., considering the statuses of intermediate
variables caused by the recent bounceback controls) and con-
ducting flips not to degrade stable assignments, resulting in
the significant iterations# reduction. In other words,Ours-CH
determines the flips# according to the number of unsatisfied
constraints.

In summary, we observe that while WalkSAT can flip only
as many variables as the number of implemented threads in
each iteration, AmoebaSAT can evaluate more flips. In our
work, such feature of AmoebaSAT is further encouraged with
the help of the extended bounceback controls so that useless
flips# can be avoided unlike ISQED.

C. EVALUATION ON SAT-ENCODED GRAPH COLOURING
INSTANCES
The second evaluation was conducted to show the effi-
ciency of our work in handling real-life applications such
as 5G network scheduling problems [16]. Because those
problems can be potentially formulated as group colouring
problems (GCPs),5 we selected three instances that repre-
sent GCPs (flat50-1, flat75-10, and flat100-1).
Since the vertices# in the GCPs (i.e., 50, 75, and 100) are
tripled when encoding to SAT, the SAT-encoded instances
that we solved have 150, 225 and 300 variables, respec-
tively. We implemented Ours-C for these instances as we
found that Ours-C achieves the best ADP for larger instances.
We show the Slices# and the average iterations# over 100 runs
in Table 3.
As well as the results in Table 2, the linear increase in

Slices# and the clock degradation are seen along with the
instance complexity (i.e., the variables# and clauses#). The
execution time is 0.027-0.16ms, which indicate that our work
can handle, for example, the 5G network scheduling prob-
lem composed of 50 to 100 nodes (covering 250-500 IoT
devices [16]) considering that each node (i.e., fog access
point) has to response to its respective IoT devices within
an interval of 1ms. These results satisfy the requirement of
the target application and demonstrate the practicality of our
work.

5Each node or fog access point in the network can be represented as a
vertex in GCPs.

D. DISCUSSIONS
As discussed in Section IV-B and demonstrated from the
results in both Sections V-B and V-C, we found that the
Slices# of our solvers linearly increase alongwith the instance
size that is defined as the product of variables# N and
clauses# M . The difference in the Slices# can be also
explained by the different ratio of clauses# over variables#
(around 4.3 and 3.7 in the random and GCP instances, respec-
tively). These results indicate that our solvers are scalable and
practical for the size of real-life IoT applications such as [16].

On the other hand, it is hard to explain the results of the
other metrics (clock frequency and iterations#) between two
sets of instances only by the ratio difference. For example,
although the clock frequency is similar for the instances
with 150 variables (uf150-0100 and flat50-1), more
degradation is observed in the random instances by increas-
ing the instance size. Even though the largest GCP instance
(flat100-100) has more variables (300 variables) than the
largest random instances (225 variables), the latter’s clock
frequency is about 20MHz lower than the former’s. In other
words, the clock frequency is not affected only by the ratio
(or the variables# and clauses#). This is also the case for the
iterations#.

Therefore, to study in depth the instance features, we ana-
lyzed and compared the instances with the same variables#
from the two groups (150 and 225 variables). We measured
the dependent units# for which each unit needs to check
its related rules in each iteration (hereafter connections#).
Then we made a histogram between the connections# and
the incidence as shown in Fig. 10. From the figure, it is
obvious that the GCP instances have a considerably smaller
variance with much more locality than the random instances
– while the former have an average of 15 and up to 28 con-
nections# per unit, the latter have an average of 126 and up
to 253 connections# per unit. Such structured connections
in the GCP instances form a sparsity and a hierarchy, called
‘‘community’’ [20].

The community structure well explains both the results of
the clock frequency and iterations#. Since the dense con-
nections make it difficult to layout the complex inter-unit
buses, the random instances (with the high density) tend to
have long critical paths and hence large clock degradation
by increasing the instance size. Similarly, for the random
instances, it is more difficult to find the variable assignments
that can satisfy all units that are complicatedly dependent
each other, resulting in more iterations# to find a solution.

From the above insights and findings, we can conclude that
real-life applications (e.g., 5G network control [16]) tend to
have the low density or the well-structured community. Intu-
itively, some real-life applications would have much lower
density as the ratio of the SATLIB’s GCP instances (i.e.,
3.7) looks relatively high for real-life applications. There-
fore, it is very useful and effective to take the community
structure into account to further improve our AmoebaSAT
solver. The community-aware implementation can be done

VOLUME 8, 2020 49063

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

FIGURE 10. Connection# distribution of the random and GCP instances:
(a) 150 variables and (b) 225 variables.

in both hardware and software; In the hardware, the inter-unit
bus structure to share the bounceback signals can be hierar-
chically realized by following the inter-community structure.
Also in the software, the strength of the bounceback signals
defined by some local parameters (e.g., the ε value; uniquely
set in this paper) may be adjusted according to the community
structure. Such hardware/software co-design extensions will
more usefully exploit the application features to quickly solve
SAT-encoded problems.

VI. CONCLUSION
In this paper, we proposed an FPGA-based AmoebaSAT
solver and implemented it using a hardware/software co-
design approach. While the sequential pre-processing part of
the algorithm can be realized as software to exploit the high
clock frequency of the FPGAbuilt-inmicroprocessor, the par-
allel computation component implements solution search and
can be realized as hardware to fully extract the inherent
parallelism of the algorithm. We then applied both software
and hardware optimization techniques to find a solution in as
few iterations as possible.

In our evaluations, we demonstrated that our work effi-
ciently extracted the fine-grained parallelism to outperform
two state-of-the-art FPGA-based solvers, especially for larger
SAT instances. Also, we observed the scalability and practi-
cality of our solver in terms of both area and solution search
for SAT-encoded GCP instances representing real-life IoT
applications. Furthermore, we conducted in-depth analysis on

several instances and revealed the importance of considering
the community structure typically present in practical appli-
cations.

In this paper, among the three versions of the bounceback
rule extensions, the best bounceback rule extension depended
on the SAT instance. Finding the best version for a specific
application will be considered in our future work. Also,
we will develop community-aware optimization techniques
in both software and hardware to further accelerate the solu-
tion search.

ACKNOWLEDGMENT
The authors would like to thank Corey Waxman for useful
discussions.

REFERENCES
[1] M. Bellmore and G. L. Nemhauser, ‘‘The traveling salesman problem:

A survey,’’ Oper. Res., vol. 16, no. 3, pp. 538–558, Jun. 1968.
[2] S. Pettie and V. Ramachandran, ‘‘An optimal minimum spanning tree

algorithm,’’ Automata, Lang. Program., vol. 1853, pp. 49–60, Jan. 2000.
[3] D. B. Shmoys, ‘‘Computing near-optimal solutions to combinatorial opti-

mization problems,’’ in Combinatorial Optimization (Discrete Mathemat-
ics & Theoretical Computer Science), vol. 20. Feb. 1996, pp. 335–397.

[4] M. Capra, R. Peloso, G. Masera, M. R. Roch, and M. Martina, ‘‘Edge
computing: A survey on the hardware requirements in the Internet of
Things world,’’ Future Internet, vol. 11, no. 4, p. 100, Apr. 2019.

[5] R. D. Franceschi, M. Fischetti, and P. Toth, ‘‘A new ILP-based refine-
ment heuristic for vehicle routing problems,’’ Math. Program., vol. 105,
nos. 2–3, pp. 471–499, Feb. 2006.

[6] N. Absi and S. Kedad-Sidhoum, ‘‘MIP-based heuristics for multi-item
capacitated lot-sizing problem with setup times and shortage costs,’’
RAIRO-Oper. Res., vol. 41, no. 2, pp. 171–192, Apr. 2007.

[7] S. Z. Selim and K. Alsultan, ‘‘A simulated annealing algorithm for the
clustering problem,’’ Pattern Recognit., vol. 24, no. 10, pp. 1003–1008,
Jan. 1991.

[8] T. Starkweather, D. Whitley, and K. Mathias, ‘‘Optimization using
distributed genetic algorithms,’’ in Parallel Problem Solving from
Nature (Lecture Notes in Computer Science). New York, NY, USA:
Springer-Verlag, vol. 496, Apr. 2006, pp. 176–185.

[9] A. Lucas, ‘‘Ising formulations of many NP problems,’’ Frontiers Phys.,
vol. 2, p. 5, Feb. 2014.

[10] B. Selman, H. A. Kautz, and B. Cohen, ‘‘Noise strategies for improv-
ing local search,’’ in Proc. Nat. Conf. Artif. Intell., vol. 1, Sep. 1999,
pp. 337–343.

[11] A. Balint and U. Schöning, ‘‘Choosing probability distributions for
stochastic local search and the role of make versus break,’’ in Proc. Int.
Conf. Theory Appl. Satisfiability Test. (SAT), Jun. 2012, pp. 16–29.

[12] M. Aono, S.-J. Kim, S. Kasai, H.Miwa, andM. Naruse, ‘‘Amoeba-inspired
spatiotemporal dynamics for solving the satisfiability problem,’’ Adv. Sci.,
Technol. Environmentol., vol. B11, pp. 37–40, Jun. 2015.

[13] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A. D. King, M. M. Nevisi,
J. P. Hilton, and C. C. McGeoch, ‘‘Quantum annealing amid local rugged-
ness and global frustration,’’ J. Phys. Soc. Jpn., vol. 88, no. 6, Jun. 2019,
Art. no. 061007.

[14] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and
H. G. Katzgraber, ‘‘Physics-inspired optimization for quadratic uncon-
strained problems using a digital annealer,’’ Frontiers Phys., vol. 7, p. 48,
Apr. 2019.

[15] M. Yamaoka, T. Okuyama, M. Hayashi, C. Yoshimura, and T. Takemoto,
‘‘CMOS annealing machine: An in-memory computing accelerator to pro-
cess combinatorial optimization problems,’’ in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Apr. 2019, pp. 1–8.

[16] A. Pratap, R. Gupta, V. S. Siddhardh Nadendla, and S. K. Das, ‘‘On max-
imizing task throughput in IoT-enabled 5G networks under latency and
bandwidth constraints,’’ in Proc. IEEE Int. Conf. Smart Comput. (SMART-
COMP), Jun. 2019, pp. 217–224.

[17] K. Hara, N. Takeuchi, M. Aono, and Y. Hara-Azumi, ‘‘Amoeba-inspired
stochastic hardware SAT solver,’’ in Proc. 20th Int. Symp. Qual. Electron.
Design (ISQED), Mar. 2019, pp. 151–156.

49064 VOLUME 8, 2020

A. H. N. Nguyen et al.: FPGA-Based Hardware/Software Co-Design of a Bio-Inspired SAT Solver

[18] A. H. N. Nguyen, M. Aono, and Y. Hara-Azumi, ‘‘Amoeba-inspired hard-
ware SAT solver with effective feedback control,’’ in Proc. Int. Conf. Field-
Program. Technol. (ICFPT), Dec. 2019, pp. 241–244.

[19] M. Aono, S. Kasai, S.-J. Kim, M. Wakabayashi, H. Miwa, and M. Naruse,
‘‘Amoeba-inspired nanoarchitectonic computing implemented using elec-
trical brownian ratchets,’’ Nanotechnology, vol. 26, no. 23, Jun. 2015,
Art. no. 234001.

[20] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and L. Simon,
‘‘Impact of community structure on sat solver performance,’’ in Proc.
Theory Appl. Satisfiability Test., vol. 8561, Jul. 2014, pp. 252–268.

[21] K. Kanazawa and T. Maruyama, ‘‘An approach for solving large SAT
problems on FPGA,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 4,
no. 1, pp. 10:1–10:21, Dec. 2010.

[22] A. Luca, A. Ilyas, and A. Vlad, ‘‘Generating random binary sequences
using tent map,’’ in Proc. Int. Symp. Signals, Circuits Syst. (ISSCS),
Jun. 2011, pp. 1–4.

[23] G. Liu, M. Tan, S. Dai, R. Zhao, and Z. Zhang, ‘‘Architecture and synthesis
for area-efficient pipelining of irregular loop nests,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 36, no. 11, pp. 1817–1830,
Nov. 2017.

[24] K. Kanazawa and T. Maruyama, ‘‘FPGA acceleration of SAT/Max-SAT
solving using variable-way cache,’’ in Proc. 24th Int. Conf. Field Program.
Log. Appl. (FPL), Sep. 2014, pp. 1–4.

[25] K. Kanazawa and T. Maruyama, ‘‘An approach for solving SAT/MaxSAT-
encoded formal verification problems on FPGA,’’ IEICE Trans. Inf. Syst.,
vol. E100.D, no. 8, pp. 1807–1818, Aug. 2017.

[26] SATLIB—Benchmark Problems. [Online]. Available: https://www.cs.ubc.
ca/~hoos/SATLIB/benchm.html

ANH HOANG NGOC NGUYEN received the
B.E. degree in electronics and communications
engineering from the Hanoi University of Science
and Technology, Vietnam, in 2016, and the M.E
degree in information and communications engi-
neering from the Tokyo Institute of Technology,
Japan, in 2018. She is currently pursuing the Ph.D.
degree in information and communications engi-
neering with the Tokyo Institute of Technology.
Her research interests include high-level designs

for embedded systems and bio-inspired computing. She has been a recipient
of the Japanese Government Scholarship (MEXT), since 2016, and amember
of ACM.

MASASHI AONO received the degree from the
Faculty of Environment and Information Studies,
Keio University, Japan, in 1999, and the Ph.D.
degree fromKobeUniversity, in 2004. He has been
serving as a Tenured Associate Professor with
Keio University, since 2017. His central research
interest has been the information processingmech-
anisms of biological systems that adapt to dynamic
and versatile environments. He has advanced his
unique study on the development of amoeba-

inspired computers, working consecutively as a Researcher at RIKEN, Earth-
Life Science Institute of Tokyo Institute of Technology, and JST PRESTO.
For this innovative work, he received the Young Scientists’ Prize from the
Minister of Education, Culture, Sports, Science and Technology of Japan,
in 2017. His strong passion to accelerate the implementation of his own
amoeba-inspired computing technologies to control soft robots motivated
him to establish Amoeba Energy Co., Ltd., in 2018.

YUKO HARA-AZUMI (Member, IEEE) received
the Ph.D. degree in information science from
NagoyaUniversity, Japan, in 2010. Shewas a JSPS
Postdoctoral Research Fellow with Ritsumeikan
University, from 2010 to 2012, during which she
was also a Visiting Scholar at the University of
California, Irvine, USA, and the Karlsruhe Insti-
tute of Technology, Germany. In 2012, she joined
the Nara Institute of Science and Technology as
an Assistant Professor. Since 2014, she has been

with the Tokyo Institute of Technology, where she is currently an Associate
Professor. Her research interests include system-level design automation,
especially on high-level and logic synthesis, microprocessor architectures,
and hardware/software co-design for the embedded/IoT systems. She serves
as organizing and program committees of several premier conferences,
including DAC, ICCAD, DATE, CASES, ASP-DAC, FPL, and so on.

VOLUME 8, 2020 49065

