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ABSTRACT Kinematic model predictive control (MPC) is well known for its simplicity and computational
efficiency for path tracking of autonomous vehicles, however, it merely works well at low speed. In addition,
earlier studies have demonstrated that tracking accuracy is improved by the feedback of yaw rate, as it
improves the system transients. With this in mind, it is expected that the performance of path tracking can
be improved by a cascaded controller that utilizes kinematic MPC to determine desired yaw rate rather
than steering angle, and uses proportional-integral-derivative (PID) control to follow the reference yaw rate.
However, directly combining MPC with PID feedback control of yaw rate results in a controller with poor
tracking accuracy. The simulation results show that the cascaded MPC-PID controller has relatively stable
but larger error compared to classic kinematic and dynamic MPC. Based on the analysis of vehicle sideslip
angle, a novel path tracking control method is proposed, which is designed using a kinematic MPC to
handle the disturbances on road curvature, a PID feedback control of yaw rate to reject uncertainties and
modeling errors, and a vehicle sideslip angle compensator to correct the kinematic model prediction. The
proposed controller performances involving steady-state and transient response, robustness, and computing
efficiency were evaluated on Carsim/Matlab joint simulation environment. Furthermore, field experiments
were conducted to validate the robustness against sensor disturbances and time lag. The results demonstrate
that the developed vehicle sideslip compensator is sufficient to capture steer dynamics, and the developed
controller significantly improves the performance of path tracking and follows the desired path very well,
ranging from low speed to high speed even at the limits of handling.

INDEX TERMS Autonomous vehicles, path tracking, lateral control, model predictive control.

I. INTRODUCTION
In recent years, research on autonomous vehicles has
seen great achievement together with computer and sen-
sors technology advances. As one of major components
in autonomous vehicles, path tracking aims at following a
desired path or trajectory via controlling the vehicle in lateral
and longitudinal motion. In general, this reference path is
generated by path planning module. Due to the nonlinearity
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of the vehicle dynamics, time lag, uncertainties, and road
curvature disturbances, ensuring tracking accuracy and vehi-
cle stability simultaneously is considered to be a great chal-
lenge [1], [2]. The ideal path tracking controller should take
into account future road information and be capable of reject-
ing disturbances and parameter uncertainties.

To date, extensive research on path tracking has
been carried out and usually involves in feedforward-
feedback or optimization control. Early tracking controllers
are mostly developed based on geometric vehicle model and
feedback control theory due to its simplicity and stability,
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namely, the deviation inputs of the feedback controller are
obtained by the geometrical relationship between vehicle
and road. For instance, in the studies [3]–[5], different
proportional-integral-derivative (PID) control architectures
are proposed to follow the given path. Pure pursuit method,
as a standard benchmark, has been widely used in several
DARPA Challenge vehicles [6]. These methods are simple
but merely work well in a narrow operating window, since
these controllers always calculate errors at one or several pre-
view points and are unable to capture complete steer dynam-
ics. To improve these methods, many adaptive approaches
that automatically tune look-ahead distance depending on
curvature and speed have been proposed [7]–[9].

More recently, with the advances of computer perfor-
mance, model predictive control (MPC) has been shown
to be an attractive control algorithm for path tracking
problem [9]–[12]. It has the advantage of handling the con-
straints on the state variables and control inputs and achieving
multi-objective optimization, such as driver comfort, time
consumption, tracking accuracy. For instance, Wang et al.
proposed an improved MPC controller based on fuzzy adap-
tive control to improve both tracking accuracy and ride com-
fort which can adjust the weights of cost function adaptively
based on lateral position error and heading error [13]. Aiming
at the tracking error representation, Sun et al. believed that
path tracking accuracy and vehicle stability can hardly be
accomplished by one fixed control frame in various condi-
tions. Then, the authors presented a novel MPC controller
with switched tracking error which mainly involves different
treatments regarding sideslip angle in computing the heading
deviation [14].

Inspired by more precise modeling, actuator dynamics is
incorporated to capture the transient response of the vehicle
into collision avoidance constraints [15]. Cai et al. presented
a MPC controller using a 4-DOF vehicle model to reflect
the characteristics of vehicle dynamics to avoid rollover
accidents of automobiles [16]. In addition, considering the
noise in the localization and planning stage, a model-based
linear quadratic gaussian control with adaptive Q-matrix was
proposed to tracking controller design [17]. Although MPC
method with prediction has the ability to forecast future
dynamic behaviors and significantly improves path tracking,
it requires solving optimization problem repeatedly at each
control step. This may lead to heavy computational burden
and potential risks in real-time implementation. Moreover,
many vehicle parameters play an important role in vehicle
dynamic, however, these parameters probably change over
time, such as vehicle mass and cornering stiffness [18].
Actually, it should be noted that it is very difficult to accu-
rately characterize the nonlinearities by existing several semi-
empirical tire model [19]. Therefore, pure MPC method
may be unsatisfactory in real applications when taking into
account computational efficiency and prediction accuracy at
the same time.

To reject the aforementioned uncertainties and distur-
bances, many classical control theories are also explored,

such as fuzzy control [20], sliding mode control [2]. These
types of classical control deal with worst–case disturbances,
which often lead to too conservative performance [21].
In addition, these feedback control methods rely on system
instantaneous states and usually are incapable of predict-
ing future behaviors. Consequently, this drawback results
in the lack of flexibility of road curvature disturbances.
Recently, due to advances in hardware, sensors and artificial
intelligence, large amounts of data can be collected. Data-
driven methods attract increasing attention in the field of
autonomous driving. For instance, NVIDIA trained a con-
volutional neural network to map raw pixels from a single
front-facing camera directly to steering commands, which is
well-known as end-to-end approach [22]. Nitin et al. inves-
tigated the path tracking of racecar via iterative learning
control in consideration of the nonlinear vehicle dynamics
and unmodelled road conditions during racing task [23].
Shida et al. proposed a data-driven method, model-free
adaptive control for the lateral motion of an autonomous
vehicle [24]. The major drawback of these approaches is
the huge amount of training data set representing various
driving situations, which makes data-driven methods have
not yet applied to the real world as successfully as MPC
techniques.

In summary, the path tracking controller need to have the
ability to handle the road curvature disturbances with predic-
tion, reject uncertainties using feedback control, and become
high efficient in computation. With this in mind, in this paper,
a new path tracking control architecture is proposed, which is
designed using aMPC controller based on vehicle kinematics
to handle the disturbances on road curvature, a PID feed-
back control of yaw rate to reject uncertainties and modeling
errors, and a vehicle sideslip angle compensator to correct the
above prediction process.

Although it is well known that kinematic vehicle model is
unsuitable for high-speed path tracking as they are inaccurate
in regions of tire force saturation [25], the proposed controller
based on kinematic model follows the desired path very well,
ranging from low speed to high speed even at the limits
of handling. This is mainly caused by the involvements of
these aforementioned two elements, i.e., the feedback control
of yaw rate and vehicle sideslip compensation. It has been
demonstrated in earlier studies that the tracking accuracy is
improved by additional feedback of the yaw rate which can
be measured by a gyro, as it improves the system transients,
by changing the eigenvalues displacement of the steering
dynamics [2], [4], [26]. Consequently, the main contributions
of this paper are as follows.

1) To handle the challenges of path tracking at high speed
and sharp curves, a novel tracking control architecture is
developed, consisting of three main components: kinematic
model predictive control, feedback control of yaw rate, and
vehicle sideslip compensation.

2) A vehicle sideslip angle compensator is utilized to cor-
rect the prediction process using kinematic model, which is
designed based on the relationship between sideslip and yaw
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FIGURE 1. Kinematic bicycle model where αf and αr denote the front and
rear wheel slip angles, respectively. r is yaw rate.

rate, and formulized as an expression involving yaw rate and
current vehicle speed.

The remainder of this paper is organized as follows:
Section II presents the vehicle lateral kinematic and dynamic
model; and Section III introduces the lateral control design
for path tracking; Section IV evaluates the proposed control
method and compares it with classic kinematic and dynamic
MPC; and the field test is presented in Section V. Section VI
concludes this paper.

II. MODELING
In this section, kinematic bicycle modeling and dynamic
modeling are carried out respectively. The kinematic model
is the basis of the proposed control design and used to pre-
dictive control, however, the dynamic model is explored to
understand steer dynamics and contribute to vehicle sideslip
compensator design.

A. KINEMATIC BICYCLE MODEL
The kinematic bicycle model is given by the following set of
equations in an inertial frame according to the axes system
with SAE standards [19] (see Figure 1), under the assump-
tions: 1) The vehicle is assumed to have planar motion, and
the vertical, pitch and roll motions are ignored; 2) The slip
angles at both wheels are zero.

Ẋ = v cos(ψ + β) (1a)

Ẏ = v sin(ψ + β) (1b)

ψ̇ =
v cos(β)
lf + lr

(
tan

(
δf
)
− tan (δr )

)
(1c)

β = tan−1
(
lf tan (δr )+ lr tan

(
δf
)

lf + lr

)
(1d)

where X denotes global X axis coordinate, Y global axis
coordinate, v the speed of the vehicle, ψ the heading angle
of the vehicle, β vehicle sideslip angle, lf and lr represent the
distance from the center of the mass of the vehicle to the front
and rear axles, respectively. δf and δr are the steering angles
for the front and rear wheels. we assume δr = 0, as in most
vehicles the rear wheels cannot be steered.

FIGURE 2. Absolute lateral tire force as a function of slip angle, with
different vertical tire load FN .

In this paper, the path tracking control aims at minimizing
the lateral and heading deviation of the autonomous vehicle
with respect to a given reference path at arbitrary safe speed
ranging from low speed to extremely high speed at the limits
of handling. Figure 1 illustrates the schematic diagram of
path tracking model which demonstrates the geometric rela-
tionships between autonomous vehicle and the desired lane.
ea denotes the heading deviation that is the orientation error
between the heading of vehicle and the tangential direction of
the road centerline. ey denotes the lateral deviation that is the
distance of the c.g. of the vehicle from the center line of the
lane.

Generally, the kinematic bicycle model described above
is suitable for control law design at low speed. However,
at high-speed scenarios, this prediction model will become
increasingly unreliable, due to the rise of tire sideslip angles.
Therefore, it is necessary to investigate the vehicle dynamics
and tire side-slip characteristics for improving the controller
performance.

B. TIRE and VEHICLE DYNAMIC MODEL
It is well known that tire force plays a key role in the
analysis of vehicle motion, as in addition to aerodynamic
forces and gravity, all the forces that affect vehicle motion
are produced by the tires. To some extent, due to the com-
plexity of tire model, obtaining vehicle models of sufficient
accuracy is not available in real time. Moreover, it is very
difficult to precisely formulate the nonlinearities by a unified
tire force model. Most of the existing tire models are pre-
dominantly ‘‘semi-empirical’’ in nature, such as Burckhardt
model, Magic formula, and Dugoff model [19]. These semi-
empirical tire models involve severe nonlinearities as shown
in Figure 2, resulting in many difficulties in stability analysis
and real-time controller design [20]. Nevertheless, the typical
tire model shown in Figure 2 also indicates that in normal
driving situations where the slip angles are small, the relation
between lateral force and slip angle is nearly linear. Under
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such assumption, the tire model can be characterized by a
simplified linear model that the lateral tire forces are approx-
imately linear with respect to the tire slips and given as

Fyf = Cf αf (2)

Fyr = Crαr (3)

where Fyf and Fyr are the lateral tire force of the front and
rear wheels, respectively, αf and αr denote the front and rear
wheel slip angles, respectively, Cf and Cr denote the front
and rear wheel cornering stiffness, respectively. The tire slip
angles αf and αr can be expressed as

αf = β +
lf ψ̇
v
− δf (4)

αr = β −
lr ψ̇
v

(5)

With the aforementioned linear tire model and certain
assumptions: 1) Ignoring the weight transfers and road
bank angle, the left and right tire sideslip angles on the
same axle are identical; 2) The roll and pitch dynamics are
neglected, the vehicle lateral dynamicmodel can be expressed
as [2], [27]

ẍ = ψ̇ ẏ+ ax (6a)

ÿ = −ψ̇ ẋ +
2
m

(
Fyf cos

(
δf
)
+ Fyr

)
(6b)

ψ̈ =
2
Iz

(
lf Fyf − lrFyr

)
(6c)

Ẋ = ẋ cos(ψ)− ẏ sin(ψ) (6d)

Ẏ = ẋ sin(ψ)+ ẏ cos(ψ) (6e)

where ax is longitudinal acceleration,m denotes vehiclemass,
Iz is yaw moment of inertia.
It can be seen from the comparison between kinematic

and dynamic model that although the kinematic model also
involves vehicle sideslip angle β, it assumes that all tire slip
angles are deemed to be zero which will lead to significant
model mismatch as tire slip angles increase, such as at high
speed scenarios. This drawback of kinematicmodelmotivates
the proposed vehicle sideslip compensator which is one of our
main contributions.

Themain vehicle parameters are summarized in Table 1 and
the tire cornering stiffness is determined by the tire model
depicted in Figure 2 that the lateral tire forces are calculated
as a function of vertical load, lateral tire slip angle. The source
data in Figure 2 is from Carsim software by setting the type
of tires as ‘‘225/60 R18’’.

III. CONTROLLER DESIGN
As mentioned above, the objective of path tracking control
is to keep the vehicle as close as possible to the given
path under the desired speed. In this paper, we decouple
the problems of path tracking into lateral control design and
longitudinal control design, which is similar tomany previous
work [28], [29]. Additionally, we only focus on the lateral
control under the assumptions that the given path and desired

TABLE 1. Vehicle parameters.

FIGURE 3. Lateral control scheme where rdesired , rreal denote the
desired and real yaw rate, respectively. er is the error between the
desired and real yaw rate.

speed are obtained from existing modules. Therefore, the
steering angles of front wheels δf is the only output of the
proposed controller.

In this section, a novel lateral control scheme is proposed,
which is the main contribution of our work. The proposed
control scheme is illustrated in Figure 3. It is designed as a
hybrid MPC-PID cascade control loop. The external control
loop produces the yaw rate reference signal using a kine-
matic MPC controller with vehicle sideslip compensation.
Compared to the PID control in Marino’s work [4], the MPC
control law has considerable advantage on rejecting the dis-
turbances on road curvature and velocity variation, with the
ability to predict future behaviors of vehicle. The inner PID
control loop is to track rapidly the yaw rate reference coming
from the external one. As mentioned in introduction, this
design based on yaw rate is inspired by the existing studies
that additional feedback of the yaw rate leads to a significant
reduction of tracking error in nearly all driving maneuvers,
as it improves the system transients [2], [4], [26].

A. CASCADED MPC-PID CONTROL
Model predictive control has been widely used in the field of
path tracking, in general, which can be roughly classified into
two methods: kinematic MPC and dynamic MPC, depending
on the vehicle model [30]. Each method has its own pros and
cons. kinematic MPC is simple, but only works well at low
speed. As speed increases, the kinematic model mismatch
will result in large tracking error. On the contrary, dynamic
MPC can overcome the impact of increasing speed, however,
it has the drawback of poor computational efficiency and
becomes singular at low vehicle speeds, no matter linear
dynamic model or nonlinear model.

To deal with the above dilemma, we explore a cascaded
kinematicMPC-PID controller in this section, with the expec-
tation that PID feedback control of yaw rate is capable
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of rejecting uncertainties and modeling errors, meanwhile,
the controller retains superior computational efficiency. Con-
sidering the fact that the output of predicting model is yaw
rate rather than the steering angles of front wheels δf , the δf
needs to be eliminated from (1c), (1d). Substituting from (1c)
into (1d), the vehicle sideslip angle β can be rewritten as

β = sin−1
(
lr
v
ψ̇

)
(7)

Then, substituting from (7) into (1a), (1b), the kinematic
model used in MPC can be rewritten as

Ẋ = v cos
(
ψ + sin−1

(
lr
v
ψ̇

))
(8a)

Ẏ = v sin
(
ψ + sin−1

(
lr
v
ψ̇

))
(8b)

ψ̇ = r (8c)

where yaw rate r is the output of MPC controller and yaw
rate reference tracked by the PID inner loop via controlling
the steering angles of front wheels.

Based on the kinematic model (8), the desired yaw rate
is obtained by a typical MPC module. We used the publicly
available solver IPOPT [31] to solve the following optimiza-
tion problem. At each time, the following constrained finite
horizon optimal control problem is solved:

min
u

∑Hp

i=1

(
zi − zref ,i

)T Q (zi − zref ,i)
+

∑Hc−1

i=0

[
(ui − ui−1)T M (ui − ui−1)+ uTi Rui

]
s.t. z0 = z(t), u−1 = u (t − ts)

zi+1 = f (zi, ui) , i = 0, . . . ,Hp − 1

rmin,i ≤ ui ≤ rmax,i, ∀i

1rmin,i ≤ ui − ui−1 ≤ 1rmax,i, ∀i (9)

where, as in standard MPC notation, Q,M and R are weight-
ing matrices of appropriate dimensions. The reference sig-
nal zref represents the desired output, where z = [ψ,Y ]′.
Hp, Hc denote the prediction horizon and control horizon,
respectively. Time ts is the sampling time of the path tracking
controller. f (zi, ui) denotes the state update with the kine-
matic model derived in (8) through forward Euler. In partic-
ular, if f (zi, ui) update with the kinematic model (1) or the
dynamic model (6), we will achieve classic kinematic MPC
and dynamic MPC controllers, respectively [30]. The vari-
ables rmin,i, rmax,i, 1rmin,i, 1rmax,i denote lower and upper
bounds of the yaw rate and the constraints on increment
of yaw rate, respectively. ut,i =

[
ut , . . . , ut+Hc−1

]
is the

optimization vector at time t . Especially, u−1 represents the
control action at the previous sampling step and the first value
ut,0 of the optimization vector is used as the optimal control
action:

rdesired = ut,0 (10)

where rdesired is the MPC controller output, namely, the yaw
rate reference tracked by PID controller of the inner loop.

FIGURE 4. Simulation system architecture.

Once theMPC control loop is designed, the remaining step
is to design the PID inner loop controller. The goal of the
PID controller is to minimize the yaw rate error er between
the measured yaw rate rreal and desired yaw rate rdesired .
The relationship between the error er and output δf can be
formulated in the following standard PID control law,

er = rdesired − rreal (11)

δf = Kper (t)+ Ki

∫ t

0
er (t)dt + Kd

der (t)
dt

(12)

with proportional, integral and differential gain Kp, Ki, Kd .
It should be noted that yaw rate would not change with

steering angles δf at a standstill, which can also be derived
by equation (1c). Therefore, this cascaded MPC-PID control
method is not appropriate for stop-and-go scenarios and auto-
matic parking, if Ki is not set to zero.

B. STEADY-STATE RESPONSE with MPC-PID CONTROL
In order to test the above MPC-PID control law, we imple-
mented the MPC controller in C++ and evaluated it on
Carsim/Matlab joint simulation environment. An overview of
the simulation system architecture is outlined in Figure 4. The
simulation system is composed of two personal computers.
One is used for the path tracking controller based on Ubuntu
OS and Robot Operating System with an intel i5-4590 pro-
cessor. The other one aims at providing a simulator involv-
ing path and autonomous vehicle based on Carsim/Matlab.
Carsim, as a high-fidelity vehicle simulator, utilizes detailed
nonlinear tire models and vehicle models to simulate the
dynamic behaviors of different types of vehicle and is widely
used in automotive industry [20]. The TCP/IP networking
protocol is used to communicate between the above two
computers. Table 2 lists the main controller parameters which
are the same for all controllers presented in this paper.

Figure 5 shows the steady-state responses of three types
of controllers for following a circular path with a radius
of 100m as a function of vehicle speed. These controllers
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TABLE 2. Main controller parameters.

FIGURE 5. Steady-state response for following a circular path with a
radius of 100m. Each simulation test indicated by dots on the
corresponding curve was implemented at constant vehicle speed, ranging
from 10 to 100 in intervals of 10 km/h.

are classic kinematic MPC, dynamic MPC and MPC-PID
control law, based on kinematic model (1), dynamic model
(6) and the modified kinematic model (8), respectively. It is
apparent that reaching a certain point, the lateral tracking
errors grow with the vehicle speed under the classic kine-
matic MPC control, on the contrary, if the speed is decreased
to a certain point, the tracking errors will be increased for
dynamic MPC. The point of intersection of the above two
curves is close to 35 km/h. This confirms the expected
results from the consensus in existing literature that kine-
matic model is unsuitable for high-speed path tracking, and
the dynamic MPC control becomes singular at low vehicle
speeds [25], [30]. Moreover, it is of interest to note that
directly combining MPC with PID feedback control of yaw

FIGURE 6. The performance of PID control for tracking the desired yaw
rate.

rate results in a controller with poor tracking accuracy. The
cascaded MPC-PID control law never obtains the lowest
tracking error no matter how fast the vehicle moves, com-
pared to the other two MPC control methods. However,
the cascaded MPC-PID controller still makes a difference in
path tracking that the tracking error is relatively stable and
is limited into a range of 0.4 m without excessive deviation
from the desired path, which demonstrates the contribution
of the feedback of yaw rate and also implies some systematic
bias.

To further find out the reason for the poor accuracy of
MPC-PID controller, the performance of PID control for
tracking the desired yaw rate is illustrated in Figure 6 which
is extracted from one of the above steady-state tests under
the control of MPC-PID controller. The results show that the
inner PID control loop follows the desired yaw rate very well
when the vehicle speed is held at 50 km/h. Therefore, there
must be some significant model mismatch in the external
MPC control loop and the desired yaw rate generated via the
kinematic model (8) needs to be corrected. With this in mind,
a compensation for vehicle sideslip is proposed to alleviate
the above model mismatch and improve tracking accuracy
under MPC-PID control law.
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C. COMPENSATION FOR VEHICLE SIDESLIP
The classic kinematic model (1) and the derived kinematic
model (8) both involve the vehicle sideslip angle β, however,
it should be noted that obtaining the vehicle sideslip angle β
in both model are under the assumptions that the slip angles
at both wheels are zero. As it is shown in (4), (5), there
exists direct correlation among β and the tire slip angles
αf , αr . Therefore, in high-speed scenarios, these assumptions
will lead to severe mismatch between predicting model and
vehicle dynamics inevitably. In this section, a more accurate
form of vehicle sideslip angle β is derived from steady-state
cornering conditions with linear tire model. First, at steady-
state conditions (road curvature rate k̇ = 0, v̇ = 0), the rear
tire forces can be given by the following simplified equation
as described by Kapania et al. [1].

Fyr =
mlf
lf + lr

v2k (13)

Then, substituting from (13) and linear tire model (3) into (5),
yields the vehicle sideslip angle:

β =
mlf

(lf + lr )Cr
v2k +

lr ψ̇
v

(14)

Since road curvature k = 1
R =

ψ̇
v , the proposed sideslip

compensator can be obtained by rewritten (14) as

β =
mlf

(lf + lr )Cr
vψ̇ +

lr ψ̇
v

(15)

where yaw rate ψ̇ is the output of the proposed MPC control
loop. Therefore, at each prediction stage of solving the MPC
problem, the predicted sideslip angle β will update with ψ̇ .
Then substituting from (15) into (1a), (1b), yields the kine-
matic model:

Ẋ = v cos(ψ + β) (16a)

Ẏ = v sin(ψ + β) (16b)

β = K1vψ̇ + K2
ψ̇

v
(16c)

ψ̇ = r (16d)

where K1 =
mlf

(lf+lr )Cr
,K2 = lr . In practice, parameters

K1, K2 can be empirically tuned through simulation or field
test, and their effects are further explored in Section IV.
Note that the sideslip compensator will become singular at a
standstill because of the denominator involving the velocityv.
To avoid this situation, the velocity v will be replaced by a
threshold when the vehicle starts at a standstill. Replacing
kinematic model (8) with kinematic model (16) under the
framework of cascaded MPC-PID control, we obtain the
proposed controller.

IV. CONTROLLER PERFORMANCE
To better understand the performance of the proposed con-
trol law, in this section we analyze system steady-state and
transient responses, the effect of the parameters K1, K2, the
robustness against measurement error and parameters uncer-
tainties, and computing efficiency.

FIGURE 7. Steady-state response with sideslip compensation.

A. STEADY-STATE RESPONSE
Figure 7 demonstrates the steady-state response of the
designed MPC-PID control law with sideslip compensation
(K-MPC-PID-C). The simulation setting is consistent with
that in Figure 5. The results show the excellent performance
of the proposed controller that outperforms all the other
controllers in this steady-state test. First, at low speed both
classic kinematic MPC and our controller follow the desired
path well, however, as vehicle speed increases the classic
kinematic MPC becomes inacceptable, but the tracking error
of the proposed control law is immune to increasing. Second,
the proposed control law is superior to both dynamic MPC
and MPC-PID without compensation throughout the whole
range of vehicle speed. Third, at both low speed and high
speed, even at the limits of handling, the maximum of lateral
errors under sideslip compensation are less than 0.1 m.

B. TRANSIENT RESPONSE
Figure 8 shows the transient state responses for tracking a
sinusoidal path with an amplitude of 4m and a wavelength
of 50 m, mimicking the lane-change maneuver. The results
indicate that all controllers have the similar tracking perfor-
mance as the steady-state tests and the designed controller
still follows the sinusoidal path well throughout the whole
range of vehicle speed, despite approaching the limits of
handling with the maximum lateral acceleration of 8.4 m/s2.
This figure also illustrates that although the classic kinematic
MPC achieves the best tracking accuracy when speed is
lower than 30 km/h, the maximum tracking errors of the
proposed controller also have not exceed a limit of 0.1 m.
Then, as speed increases, the designed controller becomes
the only available control law in this test with maximum error
of 0.16m. In addition, one can observe that the dynamicMPC
is not capable of following the desired path at high lateral
acceleration conditions as the steady-state test in Figure 7,
despite the fact that the vehicle reaches to a similarly high
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FIGURE 8. Transient state responses as a function of vehicle speed for following a sinusoidal trajectory Y = 2 sin
(

2π
l (x + l

4 )
)
− 2, l = 50. Each

simulation test indicated by dots on the corresponding curve was implemented at constant vehicle speed, ranging from 10 to 60 in intervals of 5 km/h.

level of speed (beyond 40 km/h). The reason for this is that
the tire dynamics become so difficult to model at the limits
of handling where the mismatch of linear dynamic model
is unable to be neglected anymore. It is apparent that this
drawback makes it difficult to combine the kinematic MPC
and dynamic MPC, that is, the controller cannot trigger a
switch from kinematic MPC to dynamic MPC just accord-
ing to the increase of vehicle speed, because their tracking
performances depend on not only vehicle speed, but also
road curvature and the resulting lateral acceleration. The
above weakness of classic MPC for path tracking highlights
the contribution of the proposed control law that with the
derived sideslip compensation, the cascaded MPC-PID con-
trol achieves exact tracking accuracy from low speed to high
speed with different road curvature.

C. EFFECT of the PARAMETERS K1, K2
ParametersK1,K2 derived from the sideslip compensator (15)
and (16c) have their own theoretical definition, but in practice
we may be unable to obtain the precise value of those related
parameters such as vehicle mass and tire cornering stiffness.
Therefore, for a better sense of the effect of the parameters
K1, K2 in sideslip compensator, Figure 9 shows the changing

trend of the lateral tracking error for the designed controller
at varying group of the parameters K1, K2 by steady-state
test. The results reveal a tradeoff in tuning K1 and K2. When
K1 is set to zero, the larger K2 is capable of providing the
better tracking accuracy at low speed, but the worse tracking
accuracy at high speed. Then, when K2 is set to a proper
constant, K1 has the ability to improve the tracking accuracy
at high speed while ensure the tracking performance at low
speed. It can be see that the maximum of lateral error takes
place at the speed of around 80 km/h with the coupling effect
of K1 and K2, rather than the top speed of 100 km/h at the
limits of handling. Consequently, this coupling effect could
be used to tune the two parameters K1 and K2 for the best
tracking performance in accordance with the highest design
speed. In addition, the designed sideslip compensator could
be also incorporated into those advanced online estimations
on tire cornering stiffness [32] and vehicle mass [33] for
further improvement in path tracking.

D. ROBUSTNESS
In essence, the designed control law is a cascaded MPC-PID
control that the inner PID feedback control loop struggles
to track rapidly the desired yaw rate produced by the MPC
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FIGURE 9. The effect of the parameters K1, K2 in sideslip compensator.

loop. Therefore, the measurement of yaw rate plays a key role
in this approach compared to other path tracking methods.
For this reason, the robustness of the proposed controller
performancewith respect to themeasurement error of the yaw
rate sensor is tested in steady-state and transient scenarios
near the limits of handling. In addition, the robustness against
parameters uncertainties regarding the vehicle mass and tire
cornering stiffness are also validatedwith simulation, because
the derived kinematic model (16) with sideslip compensation
is related to both of them.

Controller robustness against measurement error of the
yaw rate sensor:

The measurement error of the yaw rate is modeled as
Gaussian distribution with a Matlab block called Random
Number and injected to the original yaw rate calculated by
the Carsim vehicle model. In field test presented in Section V,
the yaw rate is measured by the inertial navigation system
RT3002 which measures the yaw rate at the error level of
0.01 ◦/s, 1σ . Then, the disturbance of measurement error is
set to two orders of magnitude higher than that in the sensor
specification, i.e., 1 ◦/s.Moreover, in the transient test, we add
the case that measurement error mean or variance is 10 ◦/s
to explore where the tracking performance will get worse,
although the measurement accuracy of real sensors will not
be so inferior. As shown in Figure 10, the results of steady
and transient tests show that if the measurement error is
within the range that both the mean and variance are less than
1 ◦/s, the tracking performance of the proposed controller is
not significantly affected by the disturbance of measurement
error and controller achieves the equivalent tracking accuracy
compared to the cases of no noises. As the level of distur-
bance further increases, the actual tracking path has gradually
deviated from the desired path as shown in Figure 10 (b).
The tracking error is approximately 0.5m when mean of
measurement error is 10 ◦/s and variance is 1 ◦/s. However,
the 0.01◦/s angular rate accuracy with sensor RT3002 is far
better than the above error of 1 ◦/s and once control system

is successful to be deployed, the mean of measurement error
can be eliminated by control parameter tuning. Therefore,
the simulation results prove that the controller is capable of
following the path with the measurement error of yaw rate
sensors, which is further validated in field test presented in
next section.
Controller robustness against parameters uncertainties:
The robustness of the controller is evaluated over vehicle

parameters uncertainty with respect to vehicle mass and tire
cornering stiffness. Figure 11 shows the steady-state and
transient responses where payloads of four passengers with
different mass are set in Carsim to simulate the effect of
mass uncertainties. The steady-state tracking error increases
as payload increases, especially at high speed, however, all
tracking trajectory in transient responses nearly coincide with
each other even at the limits of handling where the result-
ing peak lateral acceleration is 8.6 m/s2. This interesting
observation is consistent with the mathematical derivation
of sideslip compensator (15) and (16c) that only gain K1
involves the term mass and the product of K1 and vehicle
speed is used to compensate the sideslip dynamics. Thus, The
robustness against vehicle mass decreases as speed increases.
Nevertheless, the designed controller is still able to meet the
demand of path tracking with acceptable errors despite the
variations of vehicle mass, as shown in Figure 11.

As for tire cornering stiffness, there are more compli-
cated responses than that of vehicle mass variations. First,
Figure 12 shows that when the cornering stiffness drops
25 percent or more, the vehicle will slide off the road at the
limits of handling because the tires are incapable of producing
adequate lateral forces. Second, it can be observed that the
controller has the ability to reject uncertainties that cornering
stiffness has increased by 25%, however, as it further climbs,
the tracking error is beyond 0.2 m indicating that the con-
troller fails to follow the desired path. Like the impact of vehi-
cle mass, the cornering stiffness variations impose stronger
disturbances at high speed than low speed with similarly high
level of resulting lateral acceleration.

E. COMPUTING EFFICIENCY
Figure 13 shows the comparison for computational cost of
three types of MPC controller for path tracking. we imple-
mented all these MPC controllers in C++with solver IPOPT
on Linux system with an intel i5-4590 processor. Moreover,
the same MPC parameter configurations are set to ensure a
fair comparison that both the prediction horizon and control
horizon are set to 10 steps, and sampling time are set to
0.1 s. It can be observed that the proposed controller reaches
a comparable level of computational efficiency compared
to classic kinematic MPC controller. The reason for this
is that the proposed controller is also based on kinematic
vehicle model. Thus, both kinematic MPC have almost the
same computing efficiency in solving the problem of path
tracking. In addition, it is obvious that the dynamicMPC con-
troller has the worst computational efficiency compared to
others.
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FIGURE 10. The robustness against the measurement error of the yaw rate sensor: a) steady-state, b) transient-state at the limits of handling (60 km/h).

FIGURE 11. Robustness against parameters uncertainties: vehicle mass uncertainties. a) steady-state, b) transient-state at the limits of handling
(60 km/h).

V. FIELD TEST
A. VEHICLE PLATFORM
The proposed cascaded MPC-PID with sideslip com-
pensator was implemented on an autonomous electric
vehicle—Dongfeng A60EV, as shown in Figure 14. A real-
time kinematic (RTK) positioning system and inertial mea-
surement unit RT3002 were used to obtain global vehicle
states. The controller was implemented in C++ under
Ubuntu and Robot Operating System with an intel i7-6700k
processor and operates at 50 Hz. The target vehicle longi-
tudinal speed was followed by a PID controller. Because of
space limitations of experimental field, only a circular path
with a radius of 14 m was used for experimental validation.
Although it does not cover all test cases to verify the proposed
approach, especially lacking of high speed scenarios, it is

adequate to validate the robustness against measurement error
of the yaw rate sensor and time lag, which are the main con-
cern about validation on the premise of the aforementioned
simulations.

B. EXPERIMENTAL RESULTS
Figure 15 presents the experimental results for following a
circular path on concrete road surface. The vehicle speed
varies from 10 km/h to 32 km/h in consideration of safety.
Note that although the vehicle speed is not very high in
this field test, the resulting maximum lateral acceleration
could be aggressive (5.84 m/s2), due to the small road
radius. It can be found that the proposed controller restricts
the lateral tracking error into a range of 0.08 m, which
denotes remarkable tracking accuracy and is identical with
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FIGURE 12. Robustness against parameters uncertainties: cornering stiffness uncertainties. a) steady-state test, Fy-R1 denotes the lateral forces of right
front tire. b) transient-state at the limits of handling (60 km/h).

FIGURE 13. Comparison of computing time with the same MPC
configurations that both the prediction horizon and control horizon are
set to 10 steps, and sampling time are set to 0.1 s.

the simulation results in Figure 7. Moreover, the plot of yaw
rate in Figure 15 shows that the desired yaw rate generated

FIGURE 14. Dongfeng A60EV used for field test.

by MPC loop is followed well by the real yaw rate and
both yaw rate change smoothly, which confirms the outstand-
ing prediction performance of MPC control with sideslip
compensation and the robustness under real inertial mea-
surement unit. In short, this experimental results indicate
that in the real world the proposed controller is capable
of providing comparably good tracking performance with
simulation.
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FIGURE 15. Experimental results for following a circular path with a radius of 14 m.

VI. CONCLUSION
This paper describes the design of a cascaded kinematic
MPC-PID controller with vehicle sideslip compensation for
path tracking of autonomous vehicles. A kinematic MPC
based on yaw rate is derived to tackle the disturbances of
the upcoming road curvature at various speeds. Subsequently,
in consideration of the kinematic model mismatch at high
speed, a novel vehicle sideslip compensator is proposed to
correct model prediction and is integrated into the kinematic
model. Note that the MPC control loop outputs desired yaw
rate rather than steering angle compared to classic MPC
controller for path tracking. Then, a PID control is designed
to follow the reference yaw rate, which takes full advantage of
the feedback of yaw rate to reject uncertainties and modeling
errors.

The proposed controller performances involving steady-
state and transient response, robustness, and computing effi-
ciency were evaluated on Carsim/Matlab joint simulation
environment. The simulation results demonstrate that the
proposed controller is successful to resolve the dilemma that
kinematic MPC only works well at low speed while dynamic
MPC has poor computational efficiency and gets worse at

low speed, with the improvement for path tracking that the
tracking errors are guaranteed less than 0.16 m, ranging from
low speed to high speed even at the limits of handling. In addi-
tion, due to the utilization of kinematic model, the proposed
control method reaches a comparable level of computational
efficiency compared to classic kinematic MPC. Furthermore,
simulation and field experiments conducted with the A60EV
autonomous vehicle validate the robustness against sensor
disturbances and time lag. Lastly, this research has also con-
firmed that

1) the developed vehicle sideslip compensator is sufficient
to capture steer dynamics and mitigate the effect of vehicle
sideslip angle in the proposed control architecture. This find-
ing may be incorporated into other control law based on the
feedback of yaw rate to improve path tracking.

2) As for classic MPC controller for path tracking, the con-
troller cannot trigger a switch from kinematic MPC to linear
dynamicMPC just according to the increase of vehicle speed,
because their tracking performances depend on not only vehi-
cle speed, but also road curvature and the resulting lateral
acceleration, consequently, which makes it difficult to com-
bine the kinematic MPC and dynamic MPC for improving
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tracking performance. The above weakness of classic MPC
for path tracking highlights the contribution of the proposed
control law.

Future work will focus on the implementation of the
proposed control method with embedded platform such as
NVIDIA Nano Kit.
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