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ABSTRACT Low-rank (LR) and total variation (TV) are two most frequent priors that occur in image
processing problems, and they have sparked a tremendous amount of researches, particularly for moving
from scalar to vector, matrix or even high-order based functions. However, discretization schemes used
for TV regularization often ignore the difference of the intrinsic properties, so it will lead to the problem
that local smoothness cannot be effectively generated, let alone the problem of blurred edges. To address
the image inpainting problem with corrupted data, in this paper, the color images are naturally considered
as three-dimensional tensors, whose prior of smoothness can be measured by varietal TV norm along
different dimensions. Specifically, we propose incorporating Shannon total variation (STV) and low-rank
tensor completion (LRTC) into the construction of the final cost function, in which a new nonconvex
low-rank constraint, namely truncated γ -norm, is involved for closer rank approximation. Moreover, two
methods are developed, i.e., LRRSTV and LRRSTV-T, due to the fact that LRTC can be represented by
tensor unfolding and tensor decomposition. The final solution can be achieved by a practical variant of the
augmented Lagrangian alternating directionmethod (ALADM). Experiments on color image inpainting tasks
demonstrate that the proposed methods perform better then the state-of-the-art algorithms, both qualitatively
and quantitatively.

INDEX TERMS Tensor completion, truncated γ -norm, tensor decomposition, Shannon total variation,
image inpainting.

I. INTRODUCTION
In the fields of computer vision and image processing [1],
image inpainting is a vital research topic which can be
regarded as a missing value estimation problem. And its
main challenge is how to establish relations between known
and unknown elements. Some methods often used in image
inpainting [2], i.e., PDEs [3] and belief Propagation [4],
mainly focus on the local relationship. The fundamental
supposition is that the missing items are lied in adjacent
elements. Therefore, it is known that the further away two
pixels are, the less correlated they would be. However, it is
a fairly common occasion in the natural images that the
missing items may depend on those elements that are far
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away from themselves. Meanwhile, the convolutional neural
networks (CNNs)-based approaches [5], [6] have been proved
to be particularly successful because of its powerful learning
ability, which performs excellently in the representation of
hierarchical non-linear images. However, there are a huge
amount of tuning parameters in the CNN models [7], [8],
and implementing the CNN algorithms usually require a large
number of training data sets as well as strong compression
capabilities. As for the small-sized scenarios, especially the
single picture application in this paper, the advantage of CNN
models cannot be fully employed. Thus, it is still necessary to
develop new prior-based algorithms that can capture intrinsic
information from the images.

Matrix completion (MC) [9], namely the second-order ten-
sor completion problem [10], has been reported to be able
to effectively estimate the missing values in a matrix in line
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with a small number of known items. Although MC is widely
used in image/video inpainting, denoising [11] and decoding
problems, it suffers from unlimited solutions due to its ill-
poseness without using any prior constraints [12]. A general
assumption is that for a image to be completed, its matrix
rank should be probably as low as possible. Accordingly,
a common scheme is to minimize the difference between
the given incomplete matrix and the estimated one by using
the low-rank constraint. Therefore, it is often substituted by
nuclear norm(NN) which is continuous, convex and easy to
optimize [13]. In fact, it has been proved that NN is the
tightest convex approximation of the rank function among all
existing surrogates [14].

In implementation, nuclear norm is set as `1-norm on
the vector of singular values. It gets low-rankness through
encouraging the sparsity of singular values. As Fan and Li
pointed out [15], the `1-norm was a loose approximation to
the `0-norm and, it over penalized large entries of vectors.
Hence, when we draw an analogy between the `0-norm of
vectors and the rank function of matrices, we can see that
the larger singular values are also over penalized. Schatten-
p quasi-norm (0 < p < 1) [16] was suggested to replace
the nuclear norm for better approximating the rank function.
Recently, some novel low rank approximation methods have
also been proposed, e.g., the weighted Schatten-p norm and
the truncated nuclear norm. Besides, Ref. [17] proposed a
γ -norm based low-rank regularizer that is totally different
from Schatten-p norm and held more preferable low-rank
property.

Tensor is a generalization of matrix and vector, which
is convictive to show multidimensional data or interactions
relevant to multiple factors. A third-order tensor is well
suited to describe three channels, i.e., height, width and color,
of a natural image. In recent years, different variants of low
rank constraints have also been presented to recover higher-
order tensors from given observations. The main difference
lies in the detailed definition on the rank of used tensors.
Accordingly, many methods of low-rank tensor completion
(LRTC) [18] are accomplished by extending the definition of
the rank of a matrix. The first LRTC definition was proposed
by Liu et al [18]. In their works, the nuclear norm of a
tensor was computed as an average of all NN values from
its unfolded matrices. The resulted model was then opti-
mized by minimizing the averaged constraint of the restored
tensor. However, since it shared the same entries for all
the unfolded matrices in each mode, their nuclear norms
were interdependent consequently. Thus, the defined tensor
nuclear norm was difficult to minimize. To address this issue,
Ref. [18] introduced several auxiliary matrices for different
modes to separate the interdependent terms in optimization.
As a result, they established two enhanced methods, FaL-
RTC and HaLRTC. Meanwhile, the other approaches used
tensor decomposition techniques, which have been proposed
in Ref. [19]. For the decomposition technique used in LRTC,
some methods based on Tucker decomposition are widely
proposed. For example, Ref. [20] developed a method that

employs nuclear norm for the factors of Tucker decomposi-
tion, called as LRTC-TV-II. Tucker-basedmethods can obtain
a good performance by minimizing the total variation and
Trucker-rank constraints, but there may be redundancy in
the core tensor and need further decomposition [21]. The
other line of tensor completionmethods directly minimize the
CANECOMP/PARAFAC(CP) rank, which is another natural
extension of matrix rank. Ref. [22] proposed fully Bayesian
CANECOMP/PARAFAC (FBCP) method, which uses the
Bayesian inference to find an appropriate tensor rank. The
methods based on CP decomposition have better accuracy,
but the rank-1 approximation of step-by-step operation is
inefficient [23].

In our paper, we consider that low-rank constraints, though
useful, are not sufficient to effectively utilize some poten-
tial local structures of tensors for completion. This point is
especially evident in image inpainting. Due to the existence
of objects or edges, visual data tend to show smooth and
segmented structure in spatial dimension. Without special
considerations on the local structures, the recovered results
may be barely satisfactory. Since total variation (TV) regu-
larization was proposed for image recovery [24], it has been
proven extremely useful for many applications like image
inpainting, interpolation [12], artifacts removal [25], [26] and
so forth. Recently, Remy Abergel and Lionel Moisan pro-
posed the Shannon Total Variation (STV) [27] that performed
better in aspects of artifact removal, isotropy and sub-pixel
accuracy. According to the Riemann sum of corresponding
integrals, the continuous TV of the Shannon interpolation
can be closely approximated by STV. Borrowing their idea
and following the low rank property of the natural images,
we attempt to combine these two terms in one cost function
for practical image inpainting.

The main contributions of the paper can be summarized as
follows: 1) In this work, to enhance performance, we take
the local smoothness and the global structure into consid-
eration and propose our tensor completion method. Note
that, to the best of our knowledge, the STV has never been
investigated for tensor completion. For the purpose of cap-
turing most low-rank complementary information, STV is
introduced into tensor recovery to further discover the local
piecewise smooth structure. 2) We present a new low-rank
regularizer, namely truncated γ -norm, which is an operator
for a better approximation to the true rank minimization
problem. 3) As tensor completion can be formulated by both
tensor unfolding and tensor decomposition, we propose two
image inpainting approaches using direct tensor modeling
techniques. In this way, we can infer the multichannel factors
and the predictive distribution over missing entries given an
incomplete tensor. 4) To solve the nonconvex optimization
problem in our algorithm, we propose an efficient algo-
rithm involving augmented Lagrangian alternating direction
method(ALADM) [28]and proximal gradient, which can effi-
ciently deliver the completion results of our method. 5) The
experimental images can be recovered by the proposed meth-
ods generating certain smoothly changed shape comparable
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to that of the original images. Two well-known numerical
indicators, i.e., Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM), are used to quantitatively evaluate
our approaches.

II. RELATED WORK
A. A SIMPLE FORMULATION OF TENSOR COMPLETION
Given M ∈ Rp×q whose elements in the set � are known
while the remaining elements are missing, a general matrix
completion problem can be written as follows [29]:

min
X

1
2
‖X� −M�‖

2
F + τ ‖X‖∗ (1)

where X is the target matrix to be recoved and τ is a con-
stant, ‖ · ‖2F is Frobenius norm. Ref. [18] extends the matrix
nuclear norm to the tensor case and proposes to recover the
missing entries in a low rank tensor by solving nuclear norm
minimization problem.

min
X

1
2
‖X� −Y�‖

2
F + τ ‖X‖∗ (2)

where X ,Y ∈ RI1×...×In are n-mode tensors with identical
size in each mode, the nuclear norm of tensorX is defined as
‖X (i)‖∗ :=

∑n
i=1 αi‖X (i)‖∗, and αis are constants satisfying

αi ≥ 0,
∑n

i=1 αi = 1. Under this definition, the optimization
in (2) can also be written as

min
X

n∑
i=1

αi
∥∥X (i)

∥∥
∗

s.t. X� = Y� (3)

Both the problems (2) and (3) are difficult to solve due
to the interdependent matrix nuclear norm terms, i.e., while
we optimize the sum of multiple matrix nuclear norms, these
matrices share the same entries and cannot be optimized
independently. The key motivation of simplifying this issue
is to split these interdependent terms so that they can be
solved independently. In related studies, Ji Liu el.at propose
High Accuracy Low Rank Tensor Completion (HaLRTC)
algorithm [18]. Specifically, they introduce additional matri-
ces M (1), . . . ,M (n) and obtained the following equivalent
formulation:

min
X ,{M (i)}

n
i=1

n∑
i=1

αi
∥∥M (i)

∥∥
∗

s.t.X� = Y�, {X (i) = M (i)}
n
i=1 (4)

whereM (i) ∈ RIi×(
∏
k 6=i Ik ), and X ,Y ∈ RI1×...×In .

B. LOW-RANK TENSOR COMPLETION WITH TV
Theoretically, within lower bound of the rank function of
matrices, the nuclear norm is the tightest convex. Thus, NN
is always adopted as a practical measurement of rank, which
can be further used to represent the low rank prior. Moreover,
according to the case discussed in the introduction section,
this work also considers the sparse gradient regularization.

Altogether we have the following formulation:

min
X ,{M (i)}

n
i=1

n∑
i=1

αi
∥∥M (i)

∥∥
∗
+

n∑
i=1

λ‖∇M (i)‖0

s.t.X� = Y�, {X (i) = M (i)}
n
i=1 (5)

Noticing the second term in equation (5) is the `0-norm
of gradient. Minimization corresponding to the `0-norm is
usually relaxed to `1-norm and thus the `0- gradient becomes
total variation [30]. Similar to the rank function, the `0-norm
is strongly non-convex, which turns to be convex by relaxing
itself to total variation. Borrowing the scheme of LRTV,
we also incorporate total variation into our image inpainting
problem. Consequently, Eq. (5) can be reformulated as fol-
lows.

min
X ,{M (i)}

n
i=1

n∑
i=1

αi
∥∥M (i)

∥∥
∗
+

n∑
i=1

λTV(M (i))

s.t.X� = Y�, {X (i) = M (i)}
n
i=1 (6)

Compared with the cost function that only has the low
rank regularization term, the TV regularization can improve
the restoration effect. However, there are some drawbacks of
the original TV regularization. First, it often smooths out the
true depth of the edges. Second, it can be observed that TV
norm always becomes close or even lower than the truth in
the depth of inpainting effects. Third, even with a lower-than-
groundtruth TV, the image is still visually noisy.

C. THE SHANNON TOTAL VARIATION
For the total variation property, most algorithms choose to
approximate the continuous TV by a sum (over all pixels)
of the `2 norm of a discrete finite-difference estimate in the
image gradient, that is,

TVd (u) =
∑

(i,j)∈�

√
(∂1u(i, j))2 + (∂2u(i, j))2 (7)

where {
∂1u(i, j) = u(i+ 1, j)− u(i, j)
∂2u(i, j) = u(i, j+ 1)− u(i, j)

(8)

In some situations, an anisotropic scheme (`1 norm) may be
used [31], leading to the anisotropic discrete TV that can be
written as

TVd
ani(u) =

∑
(i,j)∈�

|∂1u(i, j)| + |∂2u(i, j)| (9)

The performances of these numerical schemes are poor
both in pixel-level and subpixel-level. In fact, it is difficult
to interpolate on the image, which obtained either by min-
imizing TV d -based energies, or sampled based on Shannon
theory. Recently, Remy Abergel and Lionel Moisan proposed
a new total variation termed as the Shannon Total Variation
(STV) to relieve this issue.

Let | · | denotes the `2 norm over R2, let � = Ip × IQ
denotes a 2-D discrete domain of size P × Q and u ∈ R�,
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a discrete gray-level image with domain �. We define the
Shannon Total Variation of u by

STV∞(u) =
∫
[0,P]×[0,Q]

|∇U (x, y)|dxdy (10)

in whichU is the Shannon interpolation of u, and the gradient
of the trigonometric polynomial U is denoted by ∇U :

R2
→ R2. Therefore, there is no closed-form formula for

(10), then Remy Abergel and Lionel Moisan approximated
this continuous integral with the Riemann sum

STVa(u) =
1
a2

∑
(i,j)∈�a

|∇u(i, j)| (11)

where n ∈ N∗, �a = IaP × IaQ, and ∀(i, j) ∈ �a,∇u(i, j) =
∇U ( ia ,

j
a ).

In order to calculate STVa(u), we can get the gradient of
U , that is, ∀(i, j) ∈ R2

∇U (i, j) =
1
PQ

∑
−P/2≤α≤P/2
−Q/2≤β≤Q/2

e2ιπ(
αi
P +

βj
Q )gû(α, β) (12)

where

û(α, β) =
∑

u(i, j)e−2ιπ (
αi
P +

βj
Q ) (13)

gû(α, β) = 2ιπεp(α)εQ(β)û(α, β)
(
α/P
β/Q

)
(14)

and the definition for integer P

εp(α) =


1
2
, |α| = P

2

1, otherwise
(15)

About the dual formulation of the Shannon total variation,
the STVn operator defined in (11) can be rewritten under the
form STVn(u) = 1

n2
‖∇nU‖1,2, where ‖·‖1,2 is the norm over

the space R�a × R�a which is defined as

∀g ∈ R�a × R�a , ‖g‖1,2 =
∑

(i,j)∈�a

|g(i, j)| (16)

One can easily checks that the dual norm of ‖·‖1,2 is the norm
‖ · ‖∞,2 defined as

∀p ∈ R�a × R�a , ‖p‖∞,2 = max
(i,j)∈�a

|p(i, j)| (17)

For any integer a ≥ 1 and for any matrix or tensor u ∈ R�,

STVa(u) = max
p∈R�a×R�a

〈
1
a2
∇au, p〉 − δ‖·‖∞,2≤1(p) (18)

and δ‖·‖∞,2≤1 =

{
0, ‖p‖∞,2 ≤ 1

+∞, otherwise
.

The studies of Remy Abergel and Lionel Moisan show that
it is difficult to interpolate on the processed images based on
the variational TV when the TV is discretized by the classical
finite difference scheme. Among them, STV successfully
addresses this issue. Fig. 1 shows the recovery results of (a)
by TV and STV. When magnifying the images, compared
with (d), (c) is more blurred and noncontinuous. So, we can
absolutely believe that STV will also perform better than
traditional TV algorithms in our algorithm model.

FIGURE 1. A simple image restoration instance on 40% random missing.
(a-b) the original. (c) recovery results by STV. (d) recovery results by TV.

FIGURE 2. An instance of (a) corrupted sample and (b) its rank
components.

III. PROPOSED MODEL: LRRSTV
A. PROBLEM FORMULATION
In the previous section we have discussed the low rank ten-
sor completion problem and the STV constraint. Generally
speaking, low-rank regularization is used to retrieve useful
information from remote regions, while total variation regu-
larization for keeping better local consistency. As discussed
in the end of subsection II. C, we will replace TV constraint
with STV constraint to reformulate equation (6) as follows

min
X ,{M (i)}

n
i=1

n∑
i=1

αi
∥∥M (i)

∥∥
∗
+

n∑
i=1

λSTV(M (i))

s.t.X� = Y�, {X (i) = M (i)}
n
i=1 (19)

Recall that for the first constraint in equation (19), existing
methods usually employNN to recover the low rank structure.
However, there is still a gap between current research and
practical application. The solution obtained by those existing
algorithms usually deviates from the original problem.
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FIGURE 3. Approximation of the rank function using different functions.

In other words, although the nuclear norm used in model
(19) is the tightest convex surrogate to the rank constraint,
the obtained solution is only a loose approximation to the
original one, particularly in the presence of noises. Fig. 2
illustrates a noisy face image and its rank components.
Fig. 2(b) shows that the larger rank components of the noisy
image are closely coherent with the original ones, while the
smaller singular values deviate far away from the original
ones. Based on these observations, we propose truncated
γ -norm by only minimizing the smallest min(p, q)− r singu-
lar values, where min(p, q) is the number of singular values
and r is the main action of the matrix, which is defined as

rank(M) ≈ ‖M‖γ,r =
min(p,q)∑
s=r+1

(1− e−σs(M)/γ ) (20)

where γ > 0. Here, we substitute the NN tern in (19) with
our truncated γ -norm. Fig. 3 shows the behaviors of several
commonly used low rank regularizers. From this figure, it can
be easily observed that when the singular values are relatively
larger, then the responding curves of nuclear norm, Schatten-
p norm and the log-determinant function locate far away from
the original one. That means they cannot approximate the
rank function well. On the contrary, the γ -norm performs
better than them in term of approxinating the true rank.

The proposed low rank tensor completion using truncated
γ -norm and Shannon total variation regularized (LRRSTV)
method is formulated as follows:

min
X ,M (i)

βi

n∑
i=1

λ STV(M (i))+
1
n

n∑
i=1

∥∥M (i)
∥∥
γ,r

s.t.X� = Y�, {X (i) = M (i)}
n
i=1 (21)

where tensor X represents the recovery result; X (i) denotes
its mode-n unfolding matrix of tensor X . λ is a tunable
parameter; β1, β2, . . . , βn are 0 or 1, which indicate there is a
smooth piecewise prior on the n-th mode of tensors recovered
by our method. The settings of β1, β2, . . . , βn are domain
dependent. when Y is a three-order tensor of color image,
we set β1, β2 = 1 and β3 = 0, due to the fact that a prior
that has both smoothness and piecewise continuity properties
cannot exist in any dimension other than the spatial one.

B. ALGORITHM OPTIMIZATION
In our model, the two terms share the same variable M (i),
they are interdependent. Furthermore M (1),M (2), . . . ,M (n)
again share the same entries of tensor X , which makes our
model difficult to optimize. Hence, we introduce twomatrices
{N (i)}

n
i=1 and {R(i)}

n
i=1 as auxiliary variables. Correspond-

ingly, we split the interdependencies and rewrite the opti-
mization problem as

min
X ,{M (i),N (i),R(i)}

n
i=1

βi

n∑
i=1

λSTV(N (i))+
1
n

n∑
i=1

∥∥M (i)
∥∥
γ,r

s.t.X� = Y�, {X (i) = M (i),N (i) = R(i),R(i) = X (i)}
n
i=1

(22)

We follow the augmented Lagrangian alternating direction
method (ALADM) algorithm to solve the cost function in
equation (22). ALADM is proven to be efficient for solving
optimization problems with multiple non-smooth terms in the
cost function. By using the augmented Lagrange formulation,
the optimization problem is transformed into:

L =
n∑
i=1

λ

(
βiSTV(N (i))+

ρ1

2

∥∥∥∥N (i) − R(i) +
31(i)

ρ1

∥∥∥∥2
F

)

+

n∑
i=1

λ

(
ρ2

2

∥∥∥∥R(i) − X (i) +
32(i)

ρ2

∥∥∥∥2
F

)

+

n∑
i=1

(
1
n
‖M (i)‖γ,r +

ρ3

2

∥∥∥∥M (i) − X (i) +
33(i)

ρ3

∥∥∥∥2
F

)
s.t.X� = Y� (23)

wherematrices {31(i)}
n
i=1, {32(i)}

n
i=1, {33(i)}

n
i=1 are Lagrange

multipliers. Note that, although themain purpose of Lagrange
method is to turn a constrained variational problem to an
unconstrained one, we still retain the constraint X� = Y�

for directly accessing the known points. For each of the
four matrices {M (i)}

n
i=1, {N (i)}

n
i=1, {R(i)}

n
i=1, {X (i)}

n
i=1 to be

resolved in equation (23), all their subproblems are convex
when the remaining three matrices are kept fixed.

In other words, equation (23) can be solved itera-
tively via the following four subproblems. First, by fixing
{M (i)}

n
i=1, {R(i)}

n
i=1, {X (i)}

n
i=1, {N (i)}

n
i=1 is updated by the fol-

lowing formulation.

min
{N (i)}

n
i=1

λ

(
βiSTV(N (i))+

ρ1

2

∥∥∥∥N (i) − R(i) +
31(i)

ρ1

∥∥∥∥2
F

)
(24)

According to the dual formulation of the STV, and equation
(24) can be written as follows:

min
{N (i)}

n
i=1

λ

(〈
β

n2
∇nN (i), p(i)

〉
− δ‖·‖∞,2≤1(p(i))

)
+λ

ρ1

2

∥∥∥∥N (i) − R(i) +
31(i)

ρ1

∥∥∥∥2
F

(25)

We adopt the Chambolle-Pock (CP) algorithm [32] to
resolve Eq.(25) due to its complexity. CP has been widely
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used in all kinds of image processing assignments involving
total variation and it shows good convergence in practical
applications. Generally speaking,the CP algorithm is devel-
oped for the problems shown below.

min
x

max
y

{
〈Kx, y〉 + G(x)− F∗(y)

}
(26)

By drawing parallel to (26), equation (25) can be similarly
optimized with (x, y) = (N (i), p(i)), K =

β

n2
∇n, G(N (i)) =

ρ1
2

∥∥∥N (i) − R(i) +
31(i)
ρ1

∥∥∥2
F
, and F∗(p(i)) = δ‖·‖∞,2≤1(p(i)). In

Algorithm 1, we list the optimization procedure for problem
(24), where the proximal mapping of proxσ and proxτ can be
formulated as follows.

proxσ [F
∗](z) = argmin

z,

{
F∗(z,)+

‖z− z,‖2F
2σ

}
(27)

Algorithm 1 Chambolle-Pock(CP) Resolvent Algorithm for
Problem (24)
1: τ, σ > 0;θ ∈ [0, 1];k = 0
2: Initialize N (i), p(i) to zero values
3: N̄

0
(i) = N0

(i)
4: Repeat
5: pk+1(i) = proxσ [F

∗]
(
pk(i) + σK N̄

k
(i)

)
6: Nk+1

(i) = proxτ [G]
(
Nk

(i) − τK
T pk+1(i)

)
7: N̄

k+1
(i) = Nk+1

(i) + θ
(
Nk+1

(i) − N
k
(i)

)
8: k = k + 1

In Algorithm 1, in the case θ = 0, one iteration k consists
in a proximal ascent of p(i) 7→ H (Nk

(i), p(i)) followed by
a proximal descent of N (i) 7→ H (N (i), p

k+1
(i) ), producing a

semi-implicit variant of the classic Arrow-Hurwicz algorithm
within O(1/

√
T ) after T iterations. In the case θ = 1, let

L = ‖ β
n2
∇n‖ satisfy τσL2 < 1 and assume problem (26) has

a saddle-point. The iterate N̄
k+1
(i) = Nk+1

(i) +θ
(
Nk+1

(i) − N
k
(i)

)
represents the linear approximation of the next iterationNk+2

(i)
based on the previous iterates Nk+1

(i) and Nk
(i).It is generally

used to make the scheme more implicit and to prove the
convergence of the sequence (Nk

(i), p
k
(i)) towards the saddle-

point with an estimate of the convergence rate O(1/T ) in
finite dimensions for the complete class of problems.

Second, by fixing {N (i)}
n
i=1, {R(i)}

n
i=1, {X (i)}

n
i=1, the sub-

problem of {M (i)}
n
i=1, can be written as the following prob-

lem,

min
{M (i)}

n
i=1

n∑
i=1

(
1
n
‖M (i)‖γ,r +

ρ3

2

∥∥∥∥M (i) − X (i) +
33(i)

ρ3

∥∥∥∥2
F

)
(28)

which is a non-convex problem [33], let φ(σs(M (i))) =
1 − e−σs(M (i))/γ , so 6min(p,q)

s=r+1 φ(σs(M (i))) is the nonconvex
surrogate of the rank function. M (i) can be represented as
M (i) =

∑min(p,q)
s=1 σsusvTs , σs is the s-th singular value of

matrix M (i), ∇φ(σs) denotes the gradient of φ at σs. Let
f (M (i)) = 1

2‖M (i) − G(i)‖
2
F with G(i) = X (i) −

33(i)
ρ3

. It is
obvious that the gradient of f (M (i)) is Lipschitz continuous by
setting the Lipschitz constant being 1. So, the M-subproblem
can be written as the following problem,

min
{M (i)}

n
i=1

n∑
i=1

1
n

min(p,q)∑
s=r+1

φ(σs(M (i)))+ ρ3f (M (i))

 (29)

The penalty function φ and loss function f satisfy the follow-
ing conditions:
A 1: φ : R+ → R+ is continuous, concave, monotoni-

cally increasing at [0,∞).
A 2: f : Rp,q

→ R+ is a smooth function and Lipschitz
continuous,

‖∇f (M )−∇f (G)‖F ≤ L(f )‖M − G‖F (30)

where L(f ) is Lipschitz constant of ∇f .
By the supergradient definition of the concave function,
we have

φ(σs(M (i))) ≤ φ(σs)+∇φ(σs)(σs(M (i))− σs) (31)

where

0 ≤ ∇φ(σ1) ≤ ∇φ(σ2) ≤ . . . ≤ ∇φ(σs) (32)

It is worth noting that the nonnegativeness of ∇φ(σs) is
automatically calculated property of φ in condition A1.

Thus, motivated by (31), we can get the following relax-
ation problem:

M (i) =
1
ρ3

min(p,q)∑
i=r+1

φ(σs)+∇φ(σs)(σs(M (i))− σs)+ f (M (i))

=
1
ρ3

min(p,q)∑
i=r+1

∇φ(σs)σs(M (i))+ f (M (i)) (33)

Lemma 1: Given data G(i) = X (i)
−

33(i)
ρ3

, ζ = min(p, q)
0 ≤ ∇φ(σ1) ≤ ∇φ(σ2) ≤ . . . ≤ ∇φ(σs), a globally opti-
mal solution M (i) to problem (33) is given by the Weighted
Singular Value Thresholding (WSVT) [34]:

M (i) = U (61:r + S∇φ
ρ
(6r+1:ζ )V T (34)

where G(i) = U6V T is SVD of G(i), 61:r =

diag(σ1, σ2, . . . , σr , 0), 6r+1:ζ = diag(0, σr+1, . . . , σζ ) and
S∇φ
ρ3
(6) = diag{(6ss − (∇φ(σs)/ρ3))+}.

Third, by fixing {N (i)}
n
i=1, {M (i)}

n
i=1, {X (i)}

n
i=1, the sub-

problem of {R(i)}
n
i=1, can be written as the following problem,

min
{R(i)}

n
i=1

n∑
i=1

λ
ρ1

2

∥∥∥∥N (i) − R(i) +
31(i)

ρ1

∥∥∥∥2
F

+

n∑
i=1

λ
ρ2

2

∥∥∥∥R(i) − X (i) +
32(i)

ρ2

∥∥∥∥2
F

(35)

53054 VOLUME 8, 2020



M. Qin et al.: LRTC and TV Minimization for Color Image Inpainting

Hence, by solving the minimization problem, the following
updated formula can be obtained:

R(i) = (ρ1I + ρ2I )−1(31(i)+ρ1N (i)+ρ2X (i)−32(i)) (36)

where I stands for the identify matrix.
Finally, the optimization problem w.r.t. X is:

min
X

n∑
i=1

λ

(
ρ2

2

∥∥∥∥R(i) − X (i) +
32(i)

ρ2

∥∥∥∥2
F

)

+

n∑
i=1

(
ρ3

2

∥∥∥∥M (i) − X (i) +
33(i)

ρ3

∥∥∥∥2
F

)
s.t.X� = Y� (37)

The updated formulae of X are computed as:

X �̄

=

[∑n
i=1(fold(i)(33(i)+ρ3M (i)))+fold(i)(32(i)+ρ3R(i))(

nρ3+
∑n

i=1 λ(i)ρ2
) ]

�̄

and X�

= Y� (38)

Here fold(i)(·) denotes the opposite operation of mode-n
unfolding of a tensor, i.e., fold(i)(A(i)) = A.

Algorithm 2 The LRRSTV for Tensor Completion
Require: an incomplete tensor Y , iteration number

T ,λ, ρ1, ρ2, ρ3 and µ ∈ [1, 1.5].
Ensure: a recovery tensor X .
1: [X ]� = [Y]�,[X ]�̄ = 0,randomly initialize {N (i)}

n
i=1,

{R(i)}
n
i=1,{M (i)}

n
i=1.

2: For t = 1 to T do
3: Update {N (i)}

n
i=1, {M (i)}

n
i=1,{R(i)}

n
i=1 and X by equation

(24), (34), (36), (38), respectively.
4: {31(i)}

n
i=1 = {31(i) + ρ1(N (i) − R(i))}ni=1

5: {32(i)}
n
i=1 = {32(i) + ρ2(R(i) − X (i)}

n
i=1

6: {33(i)}
n
i=1 = {33(i) + ρ3(M (i) − X (i)}

n
i=1

7: ρ1 = µρ1, ρ2 = µρ2, ρ3 = µρ3.

8: t = t + 1
9: Return X .

Inspired by these update formulae, the whole optimization
procedure of our method is given in Algorithm 2. According
to the previous derivations, the solving procedure updates the
auxiliary matrices {N (i)}

n
i=1, {M (i)}

n
i=1, {R(i)}

n
i=1 and target

output variableX iteratively, which is shown in the third line.
In the next 3 lines, the Lagrange multipliers, 31(i), 32(i) and
33(i) are updated following the standard ALADM. In line
7, to accelerate convergence, ρ1, ρ2 and ρ3 are adaptively
increased.

IV. PROPOSED MODEL: LRRSTV-T
A. PROBLEM FORMULATION
Tucker decomposition approximates [35] the tensor X as

X ≈ G ×1 U (1)
×2 U (2)

× . . .nU (n) (39)

where U (n)
∈ RIn×Jn are matrices of dimensions In × Jn

and G ∈ RJ1×J2×...×Jn is N -order tensor. The core tensor G
is solely determined by the factor matrices, with dimensions
J1 × J2 × . . .× Jn. This process is similar to discovering the
low-rank approximation, where J1 × J2 × . . .× Jn are the
ranks of the reduced representation.

In our method, to further improves the accuracy, we con-
sider incorporating STV regularization and Schatten-p norm
into tensor Tucker decomposition (LRRSTV-T). Specifically,
the proposed method is formulated as follow:

min
X
βi

n∑
i=1

λ1STV(X (i))+
1
n

n∑
i=1

∥∥∥U (i)
∥∥∥
γ,r
+ λ2‖G‖2F

s.t.X� = Y�,X = G ×1 U (1)
×2U (2)

× . . .×nU (n) (40)

Similar to LRRSTV, tensorX represents the recovery result,
Y is an incomplete tensor, G andU (n) are Tucker decomposi-
tion factors. Our cost function in equation (40), comprises of
three terms, the first term is STV regularization. The Tucker
decomposition factor can be formulated as the second item
of this formula because the rank of the factor is sufficiently
low. The function of the last term of the formula is to avoid
the problem of overfitting in the process of model training.

B. ALGORITHM OPTIMIZATION
In method LRRSTV-T, the three terms are interdependent.
To address this problem, we introduce {N (i)}

n
i=1, {R(i)}

n
i=1 and

{U (i)
}
n
i=1 as auxiliary variables and split the interdependen-

cies and rewrite the optimization problem as

min
X ,G,{N (i),U (i)

}
n
i=1

βi

n∑
i=1

λ1STV(N (i))+
1
n

n∑
i=1

∥∥∥U (i)
∥∥∥
γ,r

+ λ2‖G‖2F
s.t. {V (i)

= U (i),N (i) = R(i),R(i) = X (i)}
n
i=1

X� = Y�,X = G ×1 U (1)
×2 U (2)

× . . .×n U (n)

(41)

We follow ALADM algorithm to solve the cost function
in equation (41). And by using the augmented Lagrange
formulation, the optimization problem is transformed into

L =
n∑
i=1

λ1

(
βiSTV(N (i))+

ρ1

2

∥∥∥∥N (i) − R(i) +
31(i)

ρ1

∥∥∥∥2
F

)

+

n∑
i=1

βi

(
ρ2

2

∥∥∥∥R(i) − X (i) +
32(i)

ρ2

∥∥∥∥2
F

)
+ λ2‖G‖2F

+

n∑
i=1

(
1
n
‖U (i)
‖γ,r +

ρ3

2

∥∥∥∥V (i)
− U (i)

+
33(i)

ρ3

∥∥∥∥2
F

)
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+
ρ4

2
‖X − G ×1 V (1)

×2 V (2)
× . . .×n V (n)

+
Z
ρ4
‖
2
F

s.t.X� = Y� (42)

wherematrices {31(i)}
n
i=1, {32(i)}

n
i=1, {33(i)}

n
i=1 and tensorZ

are Lagrange multipliers. It is easy to check that {N (i)}
n
i=1,

{R(i)}
n
i=1, {U

(i)
}
n
i=1 can be solved as the optimization method

LRRSTV.
Fixing {N (i)}

n
i=1, {R(i)}

n
i=1, {X (i)}

n
i=1, {U

(i)
}
n
i=1 and G,

the subproblem of {V (i)
}
n
i=1 can be formulated as follows.

min
{V (i)
}
n
i=1

n∑
i=1

ρ3

2

∥∥∥∥V (i)
− U (i)

+
33(i)

ρ3

∥∥∥∥2
F

+
ρ4

2
‖X − G ×1 V (1)

×2 V (2)
× . . .×n V (n)

+
Z
ρ4
‖
2
F (43)

Hence, by solving the minimization problem, the following
updated formula can be obtained:

V (i)
=

(
−33(i) + ρ3U (i)

+
(
Z(i) + ρ4X (i)

)
V (−i)GT(i)

)
×

(
ρ3I + ρ4G(i)V (−i)TV (−i)GT(i)

)−1
(44)

Similarly, the optimization problem w.r.t. X is

min
X

n∑
i=1

βi

(
ρ2

2

∥∥∥∥R(i) − X (i) +
32(i)

ρ2

∥∥∥∥2
F

)

+
ρ4

2
‖X − G ×1 V (1)

×2 V (2)
× . . .×n V (n)

+
Z
ρ4
‖
2
F

s.t.X� = Y� (45)

Then X can be computed as

X �̄ =

[∑n
i=1 βi

(
−fold(i)(32(i)+ρ2R(i))

)
−Z+ ρ4X̂∑n

i=1 βiρ2+ρ4

]
and X� = Y� (46)

Finally, we can compute G as

vec(G) =
(
V (−i)TV (−i)

⊗ ρ4V (i)TV (−i)T
+ λ2I

)−1(
vecV (−i)T (Z(i) + ρ4X (i))V (−i)

)
(47)

where⊗ is the Kronecker product,V (−i)
= V (1)

⊗V (2)
⊗. . .⊗

V (i−1)
⊗ V (i+1)

⊗ . . .V (i), and in equation (46), X̂ = G ×1
V (1)
×2 V (2)

× . . .×n V (n). With the above update formulae,
we summarize the solver of our method in Algorithm 3.

V. EXPERIMENTAL RESULTS
We apply our methods to a variety of natural images with dif-
ferent inpainting tasks, i.e. text removal, and randomly miss-
ing pixels filling. Specifically, we compare our approaches,
i.e., LRRSTV and LRRSTV-T, with some recently presented
algorithms, including HaLRTC [18], FBCP [22], FBCP-MF,
LRTC-TV-II [20]. The first eight benchmark color images
for the experiment are shown in Fig. 4. Each of them has

Algorithm 3 The LRRSTV-T for Tensor Completion
Require: an incomplete tensor Y , iteration number

T ,λ1, λ2, ρ1, ρ2, ρ3, ρ4 and µ ∈ [1, 1.5].
Ensure: a recovery tensor X .
1: [X ]� = [Y]�,[X ]�̄ = 0,randomly initialize {N (i)}

n
i=1,

{R(i)}
n
i=1,{M (i)}

n
i=1.

2: For t = 1 to T do
3: Update {N (i)}

n
i=1, {U

(i)
}
n
i=1, {R(i)}

n
i=1,{V

(i)
}
n
i=1,X and G

by equation (24), (34), (36), (44), (46),(47) respectively.
4: {31(i)}

n
i=1 = {31(i) + ρ1(N (i) − R(i))}ni=1

5: {32(i)}
n
i=1 = {32(i) + ρ2(R(i) − X (i)}

n
i=1

6: {33(i)}
n
i=1 = {33(i) + ρ3(V (i)

− U (i)
}
n
i=1

7: Z = Z + G ×1 V (1)
×2 V (2)

× . . .×n V (n)

8: ρ1 = µρ1, ρ2 = µρ2, ρ3 = µρ3, ρ4 = µρ4.

9: t = t + 1
10: Return X .

three color channels and the resolution of each one is 256-
by-256. In a word, they can be represented as 256-by-256-
by-3 tensors. In order to better compare the effects from
differnent algorithm in different dataset, we add two more
Paris Streetview color images whose resolution both are 227-
by-227. The well-known evaluation metrics, Peak Signal to
Noise Ratio (PSNR) and Structural Similarity (SSIM) indices
are adopted to demonstrate the performance of all the com-
peting methods. The computation formulations of PSNR and
SSIM are as follows

PSNR = 10× lg
mn∑m

x=1
∑n

y=1 [B(x, y)− A(x, y)]
2 (48)

SSIM =
(2µAµB + C1) (2σAB + C2)(

µ2
A + µ

2
B + C1

) (
σ 2
A + σ

2
B + C2

) (49)

where B indicates the recovered image and A indicates the
ground truth. The larger values of PSNR and SSIM indicate
better recovery performance. For fairness, the tunable param-
eters of each algorithm are finely set such that the results
of quantitative criteria, visual assessment, and computational
cost of each algorithm are optimal. For fairness, the tunable
parameters of each algorithm are finely set such that the
results of quantitative criteria, visual assessment, and com-
putational cost of each algorithm are optimal. Furthermore,
the maximum iteration number and the stop tolerance are
set as 200 and 1e-5, respectively. For our method, we set

FIGURE 4. Ground truth of color images.
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FIGURE 5. Recovery results of (c) HaLRTC, (d) FBCP, (e) FBCP-MF,
(f) LRTC-TV-II, (g) LRRSTV and (h)LRRSTV-T methods on the 60% random
missing image ‘‘sailboat’’.

λ = λ1 = 1, λ2 = 0 and β = 2.0 × 10−2 in all the
experiments.

Experimental environment: CPU for Intel (R) Core
i7-7500U 2.70GHz, 8GB of memory capacity, the system is
64-bit Microsoft Windows 10, the software version is Matlab
R2016a.

A. EXPERIMENTS ON RANDOM PIXELS MISSING
In this subsection, to test the inpainting performance,
a benchmark color image ‘‘sailboat’’ with 60% and 90%
missing pixels and a Paris StreetView color image with
90% missing pixels are considered as observed samples.
Fig.5 presents the recovery results on image ‘‘sailboat’’ with
60% random missing pixels. The performances on image
‘‘sailboat’’ and the Paris StreetView color image with 90%
random missing pixels are shown in Fig.6 and Fig.7, respec-
tively. Obviously, the worst perceptual results are the ones
fromHaLRTC,whose recovered images contain several verti-
cal or horizontal noisy lines and alsomany other artifacts. The
reason for the worst performance is that the local smooth and
piecewise property of visual data is neglected in HaLRTC.
LRTC-TV-II, a model based on Tucker decomposition and
total variation, outperforms most other competitors bene-
fiting from its additionally introduced variables for achiev-
ing better recovery results. However, it still lacks behind
LRRSTV-T due to our deeper consideration of the low-rank
and smooth properties.

To measure experimental results from an objective per-
spective, Table 1 and Table 2 list the numerical results on
image ‘‘sailboat’’ under random missing ratios of 60%, and
90%, respectively. Table 3 lists the quantitative metrics on
the Paris StreetView color image with 90% random missing
pixels. We can get similar results from these tables, HaLRTC
again performs the worst and our method LRRSTV-T per-
forms the best among all the approaches. Although the per-
formance gap under random missing ratio 60% is marginal,
it can be clearly observed that when the random missing
ratio is 90%, our advantage is quite encouraging. In the

FIGURE 6. Recovery results of (c) HaLRTC, (d)FBCP, (e) FBCP-MF,
(f) LRTC-TV-II, (g) LRRSTV and (h)LRRSTV-T methods on the 90% random
missing image ‘‘sailboat’’.

FIGURE 7. Example results on the 90% random missing, compared to c)
HaLRTC, (d)FBCP, (e) FBCP-MF, (f) LRTC-TV-II, on the Paris StreetView
dataset.

magnified views of the yellow box in Fig. 5, we can observe
that comparedwith LRRSTV andLRTC-TV-II, LRRSTV can
better describe the edge of the boat mast. Even, on the whole,
the results recovered by algorithm LRRSTV are a little more
ambiguous compared with algorithm LRTC-TV-II.

To comprehensively investigate the performance of differ-
ent competing methods, we further randomly remove 55%,
60%, 65%,70%, 75%, 80%, 85%, and 90% points in first
eight benchmark color images as missing values, then com-
pute the average recovery results. Fig.8 illustrates the PSNR
value versus increasing mask ratios of different approaches.
We can see that our method LRRSTV-T performs the best,
other algorithms’ performances become much worse when
the missing rate is dropping from 55% to 90%. It can be seen
that the LRRSTV-T method prevailed over other algorithms
in performance.

B. EXPERIMENTS ON TEXT REMOVAL
Text removal is another important problem in image process-
ing. The comparisons of different algorithms on text removal
task applied to image ‘‘peppers’’,image ‘‘baboon’’ and the
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TABLE 1. Recovery results by Various Completion Methods on the 60%
random missing image ‘‘sailboat’’.

TABLE 2. Recovery results by Various Completion Methods on the 90%
random missing image ‘‘sailboat’’.

TABLE 3. Recovery results on the 90% random missing, compared to
Various Completion Methods, on the Paris StreetView dataset.

FIGURE 8. Average recovery results of methods on the 55%-90% random
missing image.

Paris StreetView image are respectively shown in Fig.9,
Fig.10 and Fig.11, respectively. The corresponding numerical
results, namely PSNR and SSIM, are shown in Table 4,
Table 5 and Table 6, respectively. From these results, roughly
speaking, the imagewith damaged structure and texture infor-
mation can be recovered by all the selected algorithms both
visually and quantitatively.

From a deeper insigh, it can be observed in Fig.9 that
although the damaged image can be repaired by HaLRTC in
general, there are still some serious error or ambiguities in
the restoration of the texture information, especially around
the damaged region. From a subjective visual perspective,
the text region removed through our method is much closer
to the original image. In addition, according to the evaluation
indexes, the performance of our method is also better than
others on these text corrupted color images.

The results of Fig. 10 also show the improvement of
our method LRRSTV-T over the others. In the magnified
views of the yellow box, we can observe that HaLRTC,
FBCP and FBCP-MF still have much residual shadow of

FIGURE 9. Recovery results of (c) HaLRTC, (d) FBCP, (e) FBCP-MF, (f)
LRTC-TV-II,(g) LRRSTV and (h)LRRSTV-T methods on text removal image
‘‘peppers’’.

TABLE 4. Recovery results by Various Completion Methods on text
removal image ‘‘peppers’’.

FIGURE 10. Recovery results of (c) HaLRTC, (d) FBCP, (e) FBCP-MF, (f)
LRTC-TV-II,(g) LRRSTV and (h)LRRSTV-T methods on text removal image
‘‘baboon’’.

the scratches. We attribute it to the fact that these algo-
rithms ignore local smoothness and segmentation of natural
images. Algorithm LRTC-TV-II achieve similar results to our
algorithm, but it produces many undesirable artifacts. The
performances on the text corrupted Paris StreetView color
image are shown in Fig.11. This experiment demonstrates
that our algorithms can effectively fill the missing informa-
tion. Overall, our method not only fills the desirable pixels
but also preserves sharper edges and finer details, showing
better visual quality than the other competing methods.

C. COMPONENT ANALYSIS
Besides the introduced jointly optimization scheme, which
results in better PSNR results and appealing efficiency for
our proposed method, the performance of LRRSTV and
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TABLE 5. Recovery results by Various Completion Methods on text
removal image ‘‘baboon’’.

FIGURE 11. Example results on text removal, compared to c) HaLRTC,
(d)FBCP, (e) FBCP-MF, (f) LRTC-TV-II, on the Paris StreetView dataset.

TABLE 6. Recovery results on text removal, compared to Various
Completion Methods, on the Paris StreetView dataset.

LRRSTV-T also depend on two other components. That is
(i) the STV relying on oversampling factor a, and (ii) the
truncated γ -norm relying on parameter r . In the previous
experiments, we simply fix their values for a fair comparison.
Next, we evaluate our algorithm using varing a and r .
Fig. 12 plots the PSNR and runtime curves on images ‘‘bar-

bara’’, ‘‘sailboat’’, ‘‘facade’’ and ‘‘airplane’’ with a traversed
in {1, 2, . . . , 5}. Note that in Fig.12 (a), our method performs
relatively better when a becomes lager. We also observe that
the larger the a value, the more runtime required for model
convergence. In real-world applications, a = 3 is a desirable
value for a well balance of effectiveness and efficiency.

Fig. 13 further plots the PSNR and runtime curves on
the remaining images with r traversed in {0, 1, . . . , 8}.
In Fig.13(a), the curves on different images are relatively
stable along with the variations of r . In Fig.13(b), though the
lines on different images fluctuates with the variation of r ,
the runtime of our algorithm with r > 0 is always less than
that when r = 0. In practice, we suggest r = 5 due to its
appealing results on both of effectiveness and efficiency.

Recall that in our proposed model, the low-rank hypothesis
and smooth priori are introduced for the purpose of recov-
ering or retaining the intrinsic properties in natural images.
In order to analyze which one of the two regularizations
plays a more important role in enhancing image quality,
we test five images, including ‘‘airplane’’,‘‘barbara’’, ‘‘lena’’,
‘‘baboon’’, ‘‘peppers’’, using ‘‘only low-rank regularization

FIGURE 12. Comparisons on (a) PSNR and (b) running time under
different settings of parameter a.

FIGURE 13. Comparisons on (a) PSNR and (b) running time under
different settings of parameter r .

FIGURE 14. Image inpainting performance on five images form the 60%
random missing with different regularization.

(LR)’’, ‘‘only smooth regularization (TV)’’, and ‘‘smooth
regularization with low-rank prior (LR+TV)’’, respectively.
Fig. 14 shows the experimental results on five images under
60% randomly pixels missing. From this figure, we can
observe that LR+TV achieves the highest numerical values
in all the images, which demonstrates the advancement of
integratingmultiple properties into consideration. In addition,
the performance of LR is consistently poorer than the one
from TV, which verifies the superiority of Shannon interpo-
lation operation.

VI. CONCLUSION
In this study, by integrating Shannon total variation and
truncated γ -norm into Tucker-based low-rank tensor com-
pletion framework, we propose to model together the local
smoothness and low rank prior of visual data. Moreover,
since that LRTC can be represented by tensor unfolding
and tensor decomposition, we Correspondingly develop two
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methods, namely LRRSTV and LRRSTV-T, for the image
inpainting problem. By considering the color image as a
3-order tensor, our proposed methods can be directly used
in this multi-channel completion application. Experiments
under three different cases with 10 natural images demon-
strate that our proposal in this paper have both subjective
and objective advantages respectively in visual effect and
numerical metrics. In practice, our approach can achieve
high-fidelity recovery from the corrupted images in the edge
and texture regions.

The proposed methods are conceptually basic and have
great potential for further improvement. One current disad-
vantage of our algorithms is that they run slowly in images
with relatively larger size, e.g., 1024×1024. This is attributed
to the huge computational cost of the STV operation. We will
focus on solving this issue in the near future by investigat-
ing some closed form operator, making our algorithm more
efficient.
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