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ABSTRACT Regular inspection of pavement conditions is important to guarantee the safety of trans-
portation. However, current approaches are time-consuming and subjective, which requires the technician
to annotate each training image exactly pixel by pixel. To ease the workload of the inspector and lower
the cost of acquiring the high-quality training dataset, a semi-supervised method for the pavement crack
detection is proposed. Firstly, unlabeled pavement images can be used for the model training in our proposed
algorithm, our model can generate a supervisory signal for unlabeled pavement images, which makes up
for the deficiency of image annotation. Secondly, an adversarial learning method and a full convolution
discriminator are adopted, which can learn to distinguish the ground truth from segmentation predictions.
To improve the accuracy of pavement crack detection, the adversarial loss is coupled with the cross-entropy
loss in discriminator. Thus, the quality of the training model is no longer dependent on the quantity of the
labeled dataset and the accuracy of the labeled. Compared with existing methods that can only employ
labeled images, our method utilizes unlabeled images to improve the pavement crack detection accuracy.
Moreover, our model is validated on the CFD dataset and AigleRN dataset, the experimental results show
that the proposed algorithm is effective. Compared with existing methods, not only can our method detect
different types of cracks, but also be particularly effective when only a few labeled are available: when using
118 crack images with a resolution of 480× 320, using only 50% of the labeled data, the detection accuracy
of our model can reach 95.91%.

INDEX TERMS Adversarial learning, crack detection, semi-supervised learning, semantic segmentation.

I. INTRODUCTION
In road maintenance processes, to ensure the safety of the
road and the highway, one of the most important tasks is to
realize timely, accurate and automatic detection of pavement
cracks. In order tomaintain the traffic safety, it is an important
responsibility for the trafficmaintenance department to locate
and repair the cracks. However, manual detection of pave-
ment cracks is very time-consuming and requires expertise in
related fields. In order to reduce the workload of technicians
and facilitate the road inspection, it is necessary to realize the
automatic detection of cracks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

Over the past few decades, various algorithms to auto-
matically detect cracks on the pavement have been pro-
posed. Deep-learning-based approaches (such as FCN-based)
have accomplished marvelous achievement, but they need an
excessive amount of training data. Different from the target
detection, the task of semantic segmentation requires accurate
pixel annotation of the training image, which needs a lot of
time and cost. To reduce the cost of obtaining high-quality
training datasets, semi-supervised semantic segmentation is
adopted. These methods generally assume additional annota-
tions at the image level [1]–[5] or the point level [6].

This paper proposes a semi-supervised algorithm for pave-
ment crack detection, which can efficiently learn from the
annotation-free images. The recent success of Generative
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FIGURE 1. The first two lines of images are from the AigleRN dataset and
its ground-truth segmentation mask. The third line is the prediction
results obtained by using the supervised learning method and using all
the images labeled to train the model. The last line is the prediction
results obtained by training the model with 50% labeled images and 50%
unlabeled images using the semi-supervised learning method.

Adversarial Networks (GANs) [7] has promoted the devel-
opment of unsupervised and semi-supervised learning in the
field of semantic segmentation. A general GAN is composed
of two subnetworks which are optimized alternately during
the training stage. A sample vector is an input to the generator,
and output the predicted results at the pixel level of the
corresponding sample, while the discriminator distinguishes
the predicted results from the target sample. Then we train
the generator to generate samples similar to the target distri-
bution, to achieve the purpose of confusing the discriminator.
We use the same idea to detect pavement cracks and replace
the generator in the traditional GAN framework with a more
efficient segmentation network. In this case, we train the
segmentation network to make the output as close to the
ground truth one-hot mapping as possible.

Our design is based on the observation of two limitations
of supervised learning in the training process. The traditional
method mainly has the following two problems, see the third
line of Fig.1.

(1) The data of supervised learning training must be
labeled, so that, the quality of the trained model depends on
the number of marked datasets and the accuracy of the marks,
and over-fitting may occur in some cases (like the red box
in Fig.1).

(2) Traditional supervised learning is insensitivity to
low-resolution pixel information, resulting in the inability to
identify the crack area of the original image (like the blue box
in Fig.1).

To solve these problems and reduce the inspector’s work-
load of annotation for each training image and improve the
accuracy of crack detection under low resolution, we apply an
adversarial learning method and a full convolution discrimi-
nator which can learn to distinguish the real label from the
prediction label of the segmentation network output. Inspired
by [8], we use an adversarial loss encouraged segmentation
network to generate the prediction probability maps, which is
close to the ground truth.

The approach is related to the probability graphical model
like Conditional Random Fields (CRFs) [9]–[11], but such
method has no additional post-processing module in the
course of the test stage. Furthermore, in the test phase,
the discriminator is not needed during the detection of cracks,
so the proposed model will not add any computational load
in this phase. Based on the adversarial learning method,
we make further efforts to explore the proposed model under
the semi-supervised field. To realize semi-supervised learn-
ing, two specific loss functions are applied in our model,
it will be detailed in Section III. First of all, the output of
the discrimination network is used as the supervisory signal,
which points out which pixels in the prediction result are
close to the ground truth, then utilize the specific loss function
and prediction results to train the segmentation network. Sec-
ondly, in the semi-supervised training of the network, we use
the antagonistic loss function, which will make the model
predict the picture close to the ground truth, thus increasing
the discrimination difficulty of the discriminator.

The remaining of the paper is formed as follows: Section II
provides a brief review of crack detection methods and our
contribution; In Section III, we describe in detail our pro-
pose module, and provides a brief review of crack detec-
tion method; In Section IV based on CFD [12] dataset,
AigleRN [13] dataset SDNET2018[14] dataset, we con-
ducted a series of experiments with our model and other
popular models, and presented the corresponding results and
analysis; Lastly, Section V sum up the main work presented
in this article.

II. RELATED WORK
In this section, we will briefly introduce the application of
traditional methods, machine learning-based methods and
deep learning-based methods for crack detection.

A. TRADITIONAL METHOD
Early studies like [15]–[17] find that the cracks are darker
than the background in a pavement image; thus, the crack can
be extracted by setting a threshold. However, the difficulty
with this approach is how to select the appropriate threshold
to fit most of the crack images. On the other hand, this method
is sensitive to the illumination and noise of the image, which
results in poor stability of the algorithm.

Edge detection algorithm [18]–[20] can improve the accu-
racy of crack detection compared with the threshold method
when the contrast between the crack edge and the background
is obvious. However, this method has limited effectiveness in
detecting cracks in low contrast or noisy pavement images.

Gabor filters [21], [22], wavelet transform [23], [24]
adopted manually designed feature descriptor’s performance
significant progress in detecting cracks with a single back-
ground image, but this method cannot fit for detect complex
and diverse cracks. Besides, choosing suitable parameters is
also commonly difficult and time-consuming.

The method in [25] use a combination of filtering, edge
detectors, morphological operation and texture analysis to
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detection surface crack in concrete structures, the efficiency
and accuracy of this method are significantly improved com-
pared with other methods. However, the parameter selection
of the filter in this method is very subjective, resulting in poor
crack detection in complex scenes, and shadows, oil stains,
paint with dark color are often misidentified.

B. MACHINE LEARNING
With the advancement of machine learning, the following
methods focusing on feature extraction and pattern recogni-
tion have been successfully applied in crack detection: [26]
use AdaBoost to select texture feature’s descriptors, which
extract by numerous linear and nonlinear filters, the texture
features can describe crack images; [27] design crack features
by considered the pavement surface as a textured surface,
and then utilize the support vector machine (SVM) to dis-
tinguish crack from the non-crack; [28] can classify multiple
spatial image features by the random forest method. However,
the method is restricted to detecting learned crack images and
finds it hard to detect new crack images.

CrackForest [12] applied a new descriptor by using ran-
dom structured forests to describe cracks, which performance
well to identify various complex cracks. These methods are
very dependent on the quality and quantity of the manu-
ally designed features. Moreover, because of complicated
pavement conditions, it is hard to design universal features
effective for all pavements.

C. DEEP LEARNING
Lately, deep learning has made significant breakthroughs in
the domain of computer vision. The accuracy of classification
based on the convolutional neural network model has greatly
exceeded the precision of traditional methods [29]–[32] and
even that reach the human level [32]. References [33], [34]
predict the location of cracks in pavement images based on
deep learning object detectionmethods. References [35], [36]
use a sliding window to divide the pavement images into
smaller image blocks and utilizing CNN to predict whether
the block contains cracks or not. In spite of these methods
can exactly to locate the crack, the method can only detect
patch level cracks without considering the pixel level. Refer-
ences [37], [38] utilize CNN to detect whether the pixels of
the pavement image block appertain to the crack, which not
only accomplishes pixel-level detection but also reached high
accuracy. However block-based detection is time-consuming,
and the small blocks cannot provide adequate context infor-
mation for prediction.

References [39], [40] used the FCN network for crack
detection and obtained high accuracy and detection speed.
However, this method required substantial labeled pavement
images, and the labeled image should be at the pixel-level
(i.e. each pixel of training images must be annotated) assign-
ing a label to each image pixel and needs a significant number
of pixel-level annotated data, which is often expensive and
time-consuming. Moreover, this method cannot leverage a
large amount of available unlabeled pavement images.

Reference [41] proposed a new hybrid crack detector by
combining the DCNN and the edge detector, which uses the
output of deep learning models for crack detection using edge
detector. This method can effectively reduce the noise rate of
crack recognition and improve the recognition accuracy com-
pared with other deep learning methods. However, because
the number of layers of the convolutional network is too
deep, there are many parameters to be recorded, which makes
model training very time-consuming.

D. CONTRIBUTION
This study proposes a new model for pavement crack detec-
tion, which integrates the idea of full convolution network
and adversarial learning. The contributions and novelties of
our paper are summarized as follows:

(1) A semi-supervised learning framework is proposed that
employs unlabeled pavement images in the model training,
which greatly reduced the workload of manual annotation.

(2) Dense connection mode is added to our network struc-
ture, which requires fewer parameters than traditional crack
detection algorithm.

(3) The proposed method improves the information flow
and gradient in the network and makes the model easy to
detect low-resolution pixel information.

Experiments were carried out on two public pave-
ment crack datasets: CFD dataset, AigleRN dataset and
SDNET2018 dataset. The distinct detection accuracy and
training speed improvements on three datasets show that
this method is superior to other advanced crack detection
methods, and verifies the effectiveness of semi-supervised
learning framework in pavement crack detection.

III. METHOD
The proposed architecture for the semi-supervised semantic
segmentation using adversarial learning for pavement crack
detection, as shown in Fig. 2. The model is composed of
two parts: the segmentation network and the discriminator
network. The part of segmentation can be an arbitrary net-
work used for semantic segmentation, such as FCN [40],
FC-DenseNet [42]. Take a pavement image with dimension
of H × W × 3, as the network input, then get the image
probability maps by the segmentation network, the size of the
output is H × W × C , we set C = 2, which represents the
number of semantic categories.

In the course of our experiment, the algorithm is described
as four steps:
Step 1: We trained the FCN-based model as our discrim-

inator network, which takes pavement image segmentation
result or the ground truth label one-hot maps as the input,
the one-hot mapwill be covered in detail in Section III. D, and
then outputs the confidence maps of sizeH×W×1, the value
of p for each pixel in the confidence maps represents whether
the pixel came from the segmentation network (p = 0) or the
ground truth label (p = 1).
Step 2: Take a fully-convolutional discriminator network

that can accept arbitrary sizes of input, compared with typical
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FIGURE 2. The architecture of the proposed system for pavement crack detection by semi-supervised
semantic segmentation. Firstly, using the loss LD to train the fully-convolution discriminator network;
then, we use three losses functions to optimize the segmentation network during the training process:
cross-entropy loss Lce of segmentation output and one-hot map, fool the discriminator by adversarial
loss Ladv , and the semi-supervised loss Lsemi .

GAN discriminators network. Our framework extends the
typical GAN which takes fixed-size input images and out-
puts a single probability value for pixel-level prediction and
application in semantic segmentation. What’s more impor-
tant, we prove that this transformation is necessary for the
proposed semi-supervised learning based pavement to the
crack detection scheme.
Step 3: When training the model, labeled and unlabeled

pavement images are used in the semi-supervised process.
For the labeled pavement images, the cross-entropy loss Lce
and the adversarial loss Ladv is applied to train the segmenta-
tion network, this process of training segmentation network is
supervised learning. What needs to be pointed out is that we
train the discriminator network only make use of the labeled
pavement images.
Step 4: For the unlabeled data pavement images,

the semi-supervised method is proposed to train the segmen-
tation network. We first obtain the segmentation prediction
of the unlabeled pavement images from the segmentation
network, and then we treat the prediction of segmentation
network as the input of the discriminating network, we can
acquire a confidence map from the output of this network.
The output of the discriminant network is used as the super-
visory signal, and we use cross-entropy loss Lsemi to train the
segmentation network. The output of the discriminant net-
work reveals the quality of the segmentation results, for this
reason, the segmentation network can trust the map during
the training process.

In the following sections, we will describe more detail
on how the proposed method implements pavement crack
detection based on the semi-supervised learning. Firstly,
we introduced the structure details of FC-DenseNet used in
the segmentation network, such as the formulation of the
densely connected convolutional network (DenseNet) [43].
Secondly, show the architecture of the segmentation network
FC-DenseNet and discriminator network. Thirdly, the loss

FIGURE 3. The architecture of denseblock.

function used in our proposed method is introduced in detail.
Finally, how the method can be realized to use the unlabeled
and fake pavement images in a semi-supervised segmentation
way is introduced, and explain how the typical GAN model
is modified to apply in pavement crack detection based on
semi-supervised learning.

A. DENSELY CONNECTED CONVOLUTIONAL NETWORKS
In order to further utilize the information flow of each layer,
we adopt a different feedforward structure. This model is
DenseNet, the idea is that each layer is directly connected
to all subsequent layers in a feedforward manner so that each
layer receives additional input from all the previous layers
and passes its own property mapping to all the subsequent
layers, thus maintaining the feedforward property on the
model. Fig. 3 shows the schematic diagram of the DenseNet
structure.

Compared with CNN-based, FCN-based methods, there is
no need to relearn the redundant feature maps, this dense
connection mode requires fewer parameters than traditional
convolutional networks. In the traditional feedforward struc-
ture, the information flow is only passed between layers,
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FIGURE 4. Fully convolutional DenseNets architecture.

each layer reads the state from its previous layer and writes
to the next layer, changing the state while passing the infor-
mation that needs to be retained. The DenseNet structure
clearly distinguishes the information added to the network
from the information retained, and keeps the remaining fea-
ture maps unchanged. The final classifier makes decisions
according to all feature maps in the network. Another advan-
tage of DenseNet is that it improves the flow of information
and gradients across the network, which makes it easier to
train, which helps train the network architecture at a deeper
level. In addition, the dense connection has regularization
effect, which can reduce the over-fitting of tasks with a small
training set.

In order to enhance the information flow between lay-
ers, a different connectivity pattern is applied in our model:
Denseblock introduces connections from the previous layer to
subsequent layers. Fig. 3 illustrates the layout of the Dense-
block schematically. Next, we will build a Denseblock using
four steps:
Step 1: On the basis of the traditional convolutional neural

network, the input to the `th layer of the DenseBlock is
changed to the feature-maps from all the previous layers
[x0, x1, . . . , x`−1], the formula is expressed as follows:

x` = H` ([x0, x1, . . . , x`−1]) (1)

in the formula, [x0, x1, . . . , x`−1] represents the concatena-
tion of the output feature maps in the 0, . . . , `−1 layer. In the
process of experiment, the multiple inputs of H`() in Eq.(1)
are concatenated into a single tensor.
Step 2: Deterministic the composite function H`(), which

plays an important role in the training process. In a Dense-
block, this function contains three operations: batch normal-
ization (BN) [44], rectified linear unit (ReLU) [45] and a 3×3
convolution (Conv).
Step 3: Since the concatenation operations applied in

Eq.(1) require the same size of feature maps for each layer,
In order to facilitate the downward sampling in the net-
work, the network is divided into several densely connected
blocks, shown in Fig. 3. We refer to layers between blocks
as transition layers, which do convolution and pooling.
In our experiments, the transition layers consist of a batch

normalization layer, a 1 × 1 convolutional layer and 2 × 2
average pooling layer.
Step 4: Determine the hyper-parameter k . If each function

H` produces k feature maps, it follows that the `th layer has
k0+k× (`−1) input feature-maps, where k0 is the number of
channels in the input layer. The hyper-parameter k determines
howmuch new information each layer adds to the global state.
Once the network structure is determined, each layer can be
applied everywhere within the network.

B. SEGMENTATION NETWORK
In view of DenseNets has the following characteristics:
(1) parameter efficiency, (2) implicit deep supervision,
(3) feature reuse, and it naturally generates skip join and
multi-scale supervision. So, DenseNet is very suitable for
pavement crack detection.

The DenseNet is extended to Fully Convolutional
DenseNet(FC-DenseNet) by adding an up-sampling path to
recover full input resolution, Fig. 4 shows the overview of the
FC-DenseNet architecture. In order to revivification the input
spatial resolution, FC-DenseNet implemented this action by
transition up. Transition up modules can up-samples the
former feature maps. By the skip connection, we can con-
catenate the up-sampled feature maps together to construct
a new dense block (shown in Fig. 3). The last dense block
in accordance with the same resolution and integrates all
the information contained in all the previous dense blocks.
So, we can use all the available feature maps at a given
resolution to compute the dense blocks of the up-sampling
path Fig. 4 expounds this idea in detail.

As a supplement, we introduced the detailed structure of
transition down and transition up in Fig. 5. Denseblock layer
is made up of batch normalization, ReLU, a 3 × 3 convo-
lution layer, and a dropout layer. Transition down is made
up of batch normalization, ReLU, a 1× 1 convolution layer,
a dropout layer and a max-pooling layer. Transition up is
made up of a transposed convolution to recover the pooling
operation.

C. DISCRIMINATOR NETWORK
The structure of the discriminator network is similar to
FC-DenseNet, in the training process, it is different from
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FIGURE 5. Building blocks of fully convolutional DenseNets. From left to
right: layer used in the model, BN stands for Batch Normalization,
TD stands for Transition Down, TU stands for Transition Up.

the segmentation network in the setting of hyper-parameters,
where the growth rate k of DenseNet is set as 5, and each
DenseBlock is followed by an activation function ReLU
except the last block. In addition, because we set batch size
as 5 in the training process, we didn’t use any batch normal-
ization layer in the discriminator network.

D. LOSS FUNCTION
Take an image Xn of sizeH×W×3 as segmentation network
input, we use S() to represent the segmentation network and
denote the predicted result by S (Xn) of size H × W × C ,
where C = 2 represents the number of categories (crack
or non-crack). We use D() to represent the discriminator
network which takes a probability map from segmentation
result S (Xn) or one-hot encoded ground truth vector Yn, and
outputs a confidence map of size H ×W × 1.

To train the discriminator network, we maximize the
cross-entropy loss function LD using:

LD =
∑
h,w

(1− yn) log
(
1− D (S (Xn))(h,w)

)
−yn log

(
D (Yn)(h,w)

)
(2)

If the input takes from the segmentation network, we set
yn = 0; if the input takes from the ground truth label,
we set yn = 1. Moreover, D (S (Xn))(h,w) represents the
confidence map of X at location (h,w). We obtain the ground
truth one-hot map by one-hot encoding, then, the ground
truth one-hot mapping of discrete labels is converted into
C-channel probability mapping, if the pixel X (h,w)

n belongs to
crack, Y (h,w,c)

n takes value 1 and 0 otherwise.
When training the segmentation network, we minimize a

multi-task loss function to train the segmentation network,
using:

Lseg = Lce + λadvLadv + λsemiLsemi (3)

whereLsemi,Ladv andLce represent the semi-supervised loss,
adversarial loss and cross-entropy loss respectively. In Eq.(3),
λadv and λsemi are two weights parameters.
We first discuss the situation of using labeled data, for

an input pavement image Xn, Yn and S (Xn) on behalf of its
one-hot encoded ground truth and prediction result respec-
tively, the cross-entropy loss function is obtained by:

Lce = −
∑
h,w

∑
c∈C

Y (n,w,c)
n log

(
S (Xn)(h,w,c)

)
(4)

By receiving the output of the full convolution discrimi-
nator network D(), calculate the minimum loss function Ladv
to train the counter network, the loss function is defined as
follows:

Ladv = −
∑
h,w

log
(
D (S (Xn))(h,w)

)
(5)

Based on the above function, the network training based
semi-supervised learning is described as three steps:
Step 1: In Eq.(5), we train the segmentation network first

and then trick the discriminator by maximizing the probabil-
ity of producing the predicted results from the ground truth.
For the unlabeled data pavement images, we consider the
semi-supervised method to train the segmentation network.
In the training process, since we have no ground truth anno-
tation pavement image, we don’t use the loss function Lce.
We still apply the adversarial loss Ladv, because it only acted
on the discriminator network.
Step 2: In the self-taught learning network, we use unla-

beled pavement images to train the discriminator network.
We use the trained discriminator network to generate a confi-
dence map D (S (Xn)), and then use the confidence map to
infer the region close enough to ground truth distribution.
In order to show the region of trust more clearly, we use
threshold method to binary the confidence map.
Step 3: If c∗ = argmaxc S (Xn)

(h,w,c), we set Ŷ (
h,w,c∗)

n = 1
for the one-hot encoded ground truth Ŷn. The semi-supervised
loss function we use is defined as:

Lsemi = −
∑
h,w

∑
c∈C

I
(
D (S (Xn))(h,w) > Tsemi

)
∗

Ŷ (h,w,c)
n log

(
S (Xn)(h,w,c)

)
(6)

In this function, Tsemi is a threshold used to control the
self-learning process and I() are the indicator function. It’s
important to note that, when we train the model, we treat the
value of I() and Ŷn as constants, so, Eq.(6) can be regarded
as a cross-entropy loss. During the experiment, we found that
the learning effect of themodel was better when Tsemi ranging
between 0.15 and 0.26.
Finally, in order to explain the training process of our

model more easily, we drew a schematic diagram as shown
in Fig. 6, this diagram describes the optimization process
of segmentation network and discrimination network loss
function.
In more detail, when the parameters of the fixed segmen-

tation network (G) as shown in Fig. 6(a) remains unchanged,
the LD value to the loss function on the network (D) is max-
imized according to Eq.(2). When D reaches the optimum,
the parameters of fixed D remain unchanged and the global
optimal solution is sought. Fig. 6(b) shows the optimization
process of segmentation network G, and the value of Lsemi
is minimized according to Eq.(6) If and only if the value of
model loss function L(G,D) reaches the point of P, the global
optimal solution is achieved.
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FIGURE 6. In the figure, L(G,D)represents the current loss value. The
generator trains model parameters by maximizing L(G,D), and the
discriminator trains model parameters by minimizing L(G,D), generator
and discriminators adopt alternate optimized discriminator.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
We apply the Pytorch as the deep learning framework to
implement our approach, and train the proposed model on
an operating system of Windows 10, which has an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz with 16GB memory
and a single TitanX GPU with 12 GB memory. Stochastic
Gradient Descent (SGD) optimization method is applied to
train the segmentation network, we utilize the method men-
tioned in [10] to set the initial learning rate. For discrimina-
tor, we employ Adam optimizer [46] with the learning rate
10−4 and the same initial learning rate as the segmentation
network. For the hyper-parameters that appear in this method,
set λadv as 0.012 when training with labeled data, and set λadv
as 0.005 when training with unlabeled data, and set λsemi as
0.12 and Tsemi as 0.22.

B. EVALUATION DATASETS AND METRIC
We assessment our model on three public crack datasets:
CFD, AigleRN and SDNET2018. The evaluation metric
applied in this paper is intersection-over-union (IoU). A def-
inite number of categories c, predictive value oi and the
target yi, the IoU is defined as:

loU(c) =

∑
i (oi == c ∧ yi = c)∑
i (oi == c ∨ yi == c)

(7)

where ∧ stands for logic and, ∨ stands for logic or.
In addition, we also considered the processing time in both

training and testing phases as one of the performance metrics.
In order to comprehensively evaluate the performance of
each model, we introduced precision (Pr), recall (Re) and
F1 score (F1), defined as:

Pr =
TN

TP+ FP
(8)

Re =
TP

TP+ FN
(9)

F1 =
2× Pr × Re
Pr + Re

(10)

where TP, FP , FN are the numbers of true positive, false
positive and false negative respectively.

TABLE 1. Training and testing database.

In the CFD database, there are 118 three channels images
with a resolution of 480 × 320 pixels. The images were
taken by a mobile phone from the pavements of Beijing,
China. These images contain a lot of interference factors,
such as water stains, oil spots, shadow and other noise. The
AigleRN database contains 269 gray-level images with a
resolution of 991× 462 or 311× 462, which were collected
by Aigle-RN system on French pavement. It consists of two
parts: 68 images with pixel-level annotation and 201 images
without pixel-level annotation. Each ground-truth is care-
fully annotated at the pixel level by professional engineers.
We cropping the crack images into 256× 256 image patches
for the model training and testing, therefore, the training and
test sets consist of cracked image patches with a resolution of
256× 256, we embed this information in Table 1.
Compared with the CFD database, the pavement images

in AigleRN contain more complex texture. For each dataset,
we use labeled data with ratios of 1/8, 1/4, 1/2, 1 respectively,
andwe use the remaining unlabeled images as the training set.

C. ARCHITECTURE AND TRAINING DETAILS
All FC-DenseNet layers are summarized in Table 2, this
architecture consists of 103 convolution layers: input layer
as the first layer, the next 38 layers are the down-sampling
path, then 15 layers of bottleneck and 38 in the up-sampling
path. Five Transition Down (TD) and five Transition Up (TU)
is applied in our model, extra convolution and transposed
convolution are contained in TD, TU respectively. To provide
a distribution of each class at each pixel, the final layer is a
1× 1 convolution followed by a softmax layer.

In Table 2, Dense Block is represented by DB, Batch
Normalization is represented by BN and c represents the
number of categories. In our framework, we set c as 2 (crack
or non-crack).

D. CFD DATASET
The CFD dataset was published in [12], and it is composed
of 118 RGB images. This dataset can generally reflect the
urban pavement surface condition. These images contain
noises such as water stains, oil spots and shadows, these
interference factors make crack detection very difficult.

1) IMPLEMENTATION DETAILS AND RESULTS
We adopt different ratios of labeled and unlabeled training
sets to evaluate our approach 1/8, 1/4, 1/2, 1 represent the
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TABLE 2. Architecture details of FC-DenseNet model used in our
experiments.

TABLE 3. Crack detection results evaluation on CFD.

scale of the total training images in the dataset that are applied
as labeled data, the rest of the image was applied without
labels. The labeled images in the training set were randomly
selected from the whole dataset, which ensured the objectiv-
ity and impartiality of the experimental results. We compare
the proposed approach with FCN, FC-DenseNet and Hybrid
Crack Detector [41] methods, the experimental results are
shown in Table 3. When using labeled pavement image with
ratios of 1/8, 1/4, 1/2, 1, the IoU of prediction reach values
of 78.1%, 84.9%, 92.1%, 93.2%, respectively. Our network
also performs robustly in supervised training, for which the
values of IoU are 81.1%, 85.9%, 90.4%, 94.2%, respectively.

Since the images in the CFD dataset contain noises such
as water stains, oil spots and shadows, which makes crack
detection difficult. On the one hand, our model applied the
DenseNet structure, which can maximize the information

flow between layer and layer, it connects all layers directly
with each other. Therefore, ourmethod canwell distinguished
crack and non-crack pixels in the pavement image, even if
there are many disturbing factors in the image, the crack
and non-crack features can still be accurately distinguished,
so, the experimental results were better than themethod based
on FCN. On the other hand, our proposed algorithm employs
unlabeled pavement images in model training, which can
generate additional supervisory signals to training model,
so our method can detect low-resolution information, How-
ever, themethod based on FC-DenseNet cannot use unlabeled
data, which greatly limits the amount of training, therefore
the experimental results were better than the method based
on FC-DenseNet.

The result shown in Table 3 demonstrates that our approach
outperforms the others. Fig. 7 shows the comparison of
the proposed approach with FC-DenseNet, FCN and Hybrid
Crack Detector. The following aspects are shown from left to
right: original crack images, ground truth, prediction results
from FC-DenseNet, Hybrid Crack Detector, FCN and our
models. As seen from the figure, several wrong detections
and missed detections occur in the images predicted by FCN,
FC-DenseNet and Hybrid Crack Detector because of the
small context of the block for detection. In contrast, our
schema can analyze different types of cracks with sufficient
contextual features, as seen in the fifth row of Fig. 7, indicat-
ing the robustness of our approach.

2) HYPER-PARAMETER ANALYSIS
The three adjustable hyper-parameters in the training pro-
cess: λadv and λsemi for equilibrate the learning process
in Eq.(3), and Tsemi is used to adjust the semi-supervised
learning rate in Eq.(6). Table 4 shows the results of dif-
ferent hyper-parameters on the CFD dataset in the case of
semi-supervised training.

As can be seen from the table, when the proportion of
labeled pictures in the training set is 1/2, and set λadv as
0.015, the experimental results were observed by adjusting
the values of λsemi and Tsemi, when we set Tsemi as 0.23 and
set λsemi as 0.12, the detection precision obtain the best
experimental results. Fig. 8 shows how IoU changes during
the training process.

On the whole, the proposed model achieves the best IoU
of 92.1%.When λsemi is set as 0.12. Furthermore, we training
the model with different values of Tsemi by setting λadv =
0.015 and λsemi = 0.12. With higher Tsemi, it can be seen
from the experimental results that the model only trusts the
regions with the high similarity of structure, which can be
used to generate supervisory signals. Fig. 9 shows image
confidence maps from the discriminator.

According to the prediction results of the segmented net-
work, the discriminant network generates a confidence map
from this result, the white pixels indicate that they are closer
to crack pixels. We use the white pixels as the monitoring
signal of the training segmentation network. In some images,
the identification of relatively fine cracks is still not very ideal
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FIGURE 7. Results comparing on CFD.

TABLE 4. Hyper parameter analysis for CFD.

(In Fig. 9, we use the red box to identify the unrecognized
area), which is what we need to further study and improve in
the next step.

E. AigleRN DATASET
The AigleRN crack dataset consists of 269 grayscale pave-
ment images, which contains four types of pavement cracks:
alligator cracks, longitudinal cracks, transverse cracks and
block cracks, and the conditions of each pavement image
in AigleRN contain more complex texture. In addition,
the image contains cracks of different length and width,
which makes crack detection difficult.

1) IMPLEMENTATION DETAILS AND RESULT
As the image resolution is relatively large, we crop the image
into several 256 × 256 patches with a given step length

FIGURE 8. Visualization of the training process, when set Tsemi = 0.23,
λsemi = 0.06,0.12,0.24 (a) and λsemi = 0.12, Tsemi = 0.11,0.22,0.33
(b) the IoU value in the training process for CFD dataset.

and send them to the network respectively. For the cropped
image, we adopt different ratios of labeled and unlabeled
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FIGURE 9. Visualization of the confidence maps.

TABLE 5. Crack detection results evaluation on AigleRN.

training sets to evaluate our approach. 1/8, 1/4, 1/2, 1 rep-
resent the scale of the total training images in the dataset
that are applied as labeled data respectively, the rest of the
image was applied without labels. The labeled images in the
training set were randomly selected from the whole dataset.
We compare the proposed approach with FCN, FC-DenseNet
methods and Hybrid Crack Detector, the evaluation results of
the four types of cracks on the AigleRN dataset are presented
in Table 5. When using labeled pavement image with ratios
of 1/8,1/4,1/2,1, the IoU of prediction reach values of 80.2%,
85.9%, 91.4%, 92.8%, respectively. Our network also per-
forms robustly in supervised training, for which the values
of IoU are 82.1%, 87.4%, 91.5%, 93.2%, respectively.

Although the images in the AigleRN dataset contain differ-
ent types of cracks, On the one hand, the DenseNet structure
exploits feature reuse enhances the potential of the network
to identify different types of features, yielding crack detec-
tion model is easy to train and suitable for complex types.
Therefore, our method can well distinguish the different types
of pavement cracks. On the other hand, because AigleRN
dataset contains a large number of unlabeled images, our
model can make full use of this unmarked data, the other two
methods cannot use this unlabeled data to train the model,

so our model can learn more unmarked features that other
methods can’t, and the experimental results were better than
the method based on FCN, FC-DenseNet and Hybrid Crack
Detector.

As described in Section I, the traditional method is based
on supervised learning in the training process, the training
dataset must be labeled, so that, the quality of the trained
model depends on the number of marked datasets and the
accuracy of the marks. However, the annotation image in
dataset AigleRN is limited, and most of them are unla-
beled data, Therefore, the traditional supervised learning
method is not adapted to the dataset with a few anno-
tations. As Fig. 10 shows, Compared with our proposed
semi-supervised learning model, we observed a significant
improvement in the segmentation boundary compared to the
baseline model.

2) HYPER-PARAMETER ANALYSIS
Similar to the experimental process CFD dataset, when using
1/2 annotated images, fixed the parameters λadv as 0.02. Then
change the values of λsemi and Tsemi for comparisons. As can
be seen from Table 6, the test accuracy reaches the highest
when we set Tsemi as 0.2. Then we set λsemi as 0.1 and the
comparison test is performed by changing the value of Tsemi,
it can be inferred from the experimental results that the testing
effect is best when λsemi is 0.1 and Tsemi is 0.2.

As can be seen from the table, when the proportion of
labeled pictures in the training set is 1/2, and set λadv as
0.02, the experimental results were observed by adjusting the
values of λsemi and Tsemi, when we set Tsemi as 0.2 and set
λsemi as 0.1, the detection precision obtain the best experi-
mental results. We plotted the IoU change process as shown
in Fig.11.

As can be seen from the figure, the different values of
the hyper-parameters only affect the training process, such
as the speed of convergence, but ultimately reach the optimal
accuracy, indicating the robustness of the model. Because we
introduce the idea of adversarial learning into model training,
the segmentation network and the discrimination network
interfere with each other in the training process, which leads
to the discrimination network unable to distinguish whether
its input is the real label or the output of the segmentation net-
work. Therefore, when the training epoch is enough, the influ-
ence of subtle changes of different hyper-parameters on the
training results is within the controllable range. At the same
time, verifies the stability of the confrontation framework.

F. SDNET2018 DATASET
In order to test the performance of our model, we use the
trained model to verify on the SDNET2018 dataset, the pave-
ment images were acquired from the roads and sidewalks
on USU campus using a 16 MP Nikon digital camera. With
a resolution of 256 × 256, these images contain a variety
of obstructions, including shadows, scaling, edges, holes,
and background debris, the interference factor make crack
detection very difficult.
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FIGURE 10. Results comparing on AigleRN.

TABLE 6. Hyper parameter analysis for AigleRN.

Since SDNET2018 does not have pixel-level annotation for
crack images, we cannot accurately obtain the detection accu-
racy, but we can intuitively evaluate the quality of a model
by displaying the experimental results. We have selected
a few typical images in SDNET2018, including images in
complex environments such as shadows and water stains,
Fig. 12 shows the detection results of each model.

From the figure, we can see that the model of FCN,
FC-DenseNet and Hybrid Crack Detector are not sensitive to
crack pixels under more complex backgrounds, the obvious
cracks in the image cannot be detected, and the environmental
disturbance is wrongly identified as cracks. In contrast, our
model can better adapt to crack detection in complex envi-
ronments, and can accurately detect crack regions in different
environments. However, as can be seen from the figure, our
model also has some limitations, the detection results of fine

FIGURE 11. Visualization of the training process, when set Tsemi = 0.23,
λsemi = 0.06,0.12,0.24 (a) and λsemi = 0.12, Tsemi = 0.11,0.22,0.33
(b) the IoU value in the training process for AigleRN dataset.

cracks in complex environments are not very ideal. Of course,
other models also have such problems, which will also be the
focus of our future research.
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TABLE 7. Experimental results of various evaluation metrics on CFD.

FIGURE 12. Results comparing on SDNET2018.

G. EXTENDS EXPERIMENT
In order to compare the comprehensive performance of
each model, we used multiple evaluation metrics to analyze
each model in this section, including precision, recall rate,
F1 score, parameter size, training and testing time per image.
We tested the above metrics on the CFD dataset, and the
experimental results are shown in Table 7.

As can be seen from the results in the table, the model
parameters of Hybrid Crack Detector and FCN are large,
moreover, the training and testing of the model are
time-consuming and the detection accuracy is not well.
Although the model parameters of FC-DenseNet decreased
significantly compared with the two methods, the detection
accuracy still needs to be improved. Our method not only
has fewer parameters, shorter training and testing time, but
also has the best accuracy and recall rate compared with the
current methods.

Finally, we validate the performance of our model on pub-
lic CFD datasets and AigleRN dataset which include various
crack types under diverse gathering conditions. Compared
with existing methods, we get the best results and apply the
new technology of semi-supervised semantic segmentation to
crack detection.

Experimental results show that our method not only can
detect different types of cracks, but also be particularly

FIGURE 13. Semi-supervised Semantic Segmentation: The proposed
semi-supervised learning approach improves over the baselines even
when only little labeled data is available using unlabeled data, shows
considerable improvement, especially with less than 5% labeled samples.
Performance is shown on the AigleRN dataset (a) and CFD dataset (b).

effective when only a few labeled are available: with as
little as 50% labeled data, we report a great performance
improvement over the state of the art (see Fig. 13). This
result further shows that the method can easily take advan-
tage of additional unannotated pavement images when these
are available. It compares favorably to the existing methods
operating in the same setting.

V. CONCLUSION
In this study, an adversarial learning architecture of Semi-
Supervised is proposed and applied for pavement crack detec-
tion. The following conclusions are obtained from this study:

(1) Validate our model on two challenging public datasets:
CFD datasets and AigleRN dataset covering all kinds of
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pavement cracks. When using labeled pavement image with
ratios of 1/8, 1/4, 1/2, 1, for CFD datasets, the IoU of pre-
diction still reach values of 78.1%, 84.9%, 92.1%, 93.2%,
respectively; for AigleRN dataset, the IoU of prediction reach
values of 80.2%, 85.9%, 91.4%, 92.8%, respectively.

(2) The proposed algorithm can train the model with unla-
beled images, which greatly reduces the dependence on the
number of labeled images and reduces the burden of manual
annotation. The output of the full convolution discriminator is
used as a supervisory signal, which makes up for the absence
of image annotation and realizes semi-supervised learning.
The significant performance and speed improvements of all
datasets show that this method is superior to other most
advanced crack detection methods.

(3) Adversarial framework is proposed that can improve
the precision of crack detection without extra calculation
load, and further improves the accuracy of pavement crack
recognition by adding the unannotated pavement images
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